Influence of hydrogen bonding on the spectroscopic properties and on the reactivity of ruthenium hydride dihydrogen complexes

Guari, Y.; Ayllon, J.A.; Sabo-Etienne, S.; Chaudret, B.; Hessen, B.

Published in:
Inorganic Chemistry

DOI:
10.1021/ic970872a

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Publisher's Version
Publisher's PDF, also known as Version of record

Publication date:
1998

Citation for published version (APA):

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Influence of Hydrogen Bonding on the Spectroscopic Properties and on the Reactivity of Ruthenium Hydrido Dihydrogen Complexes

Yannick Guari, José A. Ayllon, Sylviane Sabo-Etienne, and Bruno Chaudret*
Laboratoire de Chimie de Coordination CNRS, 205 route de Narbonne, 31077 Toulouse Cedex, France

Bart Hessen†
Shell Research BV, Koninklijke/Shell-Laboratorium, Badhuisweg 3, 1031 CM Amsterdam, The Netherlands

Received July 11, 1997

The reaction of RuH2(H2)(PCy3)2 (1) with L-X in pentane at room temperature yields new hydrido derivatives of ruthenium accommodating a stretched H-H bond, namely RuH(H2)(L-X)(PCy3)2 (L-X = C6H4N-O, 2; L-X = C6H4N-NH, 3). NMR studies show that hydrogen bond donors (substituted phenols, hexafluoro-2-propanol, etc.) interact with the hydrides in the case of 2, whereas for 3 an equilibrium with the cation [RuH(H2)(py-NH)(PCy3)]2+ is attained. The latter species has been isolated in the form of the [B(C6F5)4] salt, 4, independently prepared by addition of (PhNMe2)H[B(C6F5)4] to 3. These phenomena explain the difference of reactivity with olefins between 2 and 3 in nonpolar media or in the presence of alcohols.

The presence of hydrogen bonds between a transition metal hydride and a hydrogen bond donor containing an O-H or an N-H group has recently been established intramolecularly by Crabtree and Morris and intermolecularly by Crabtree in the solid state and Epstein and Berke in solution. We have been interested in studying the spectroscopic properties of the hydrides induced by the presence of hydrogen bonds. In this respect, we have recently shown that hydrogen bonding to Cp*(PCy3)RuH2 leads in solution to an enhancement of the exchange couplings present in this complex and have suggested that exchange couplings are good sensors for the establishment of hydrogen bonds. A further step was to study the modification of reactivity induced by the presence of such interactions. This proved possible in the case of the mixture of trans- and cis-RuH2(dpmm). Thus both isomers of this dihydride give hydrogen bonds to alcohols and phenol but only the hydrogen-bonded trans-isomer gives rise to an equilibrium with a dihydrogen complex.

A system incorporating both a hydride and a stretched dihydrogen ligand should be particularly interesting for this study, given the sensitivity of dihydrogen coordination to small modification of the electronic density on the metal. However when a complex incorporates other functional groups, the establishment of hydrogen bonds with other ligands can also occur and have an influence on dihydrogen coordination.

We have described recently in a preliminary communication the synthesis of a series of complexes accommodating stretched dihydrogen ligands, with calculated H-H distances near 1.3 Å. We present here full details on the synthesis of two of these complexes, namely RuH(H2)(py-O)(PCy3)2 (2) and RuH(H2)(py-NH)(PCy3)2 (3) as well as their reactivity toward hydrogen bond donors and protonation.

Results and Discussion

Synthesis of the Complexes. The reaction of a suspension of 1 in pentane with 1 equiv of L-XH [L = C\(_5\)H\(_4\)N (py); X = O, NH] yields solids analyzing for RuH\(_2\)(L-X)(PCy\(_3\))\(_2\) (L-X = py-O, 2; L-X = py-NH, 3) (see Scheme 1). A high-field triplet is observed at -12.64 ppm (\(J_{PH} = 14.3\) Hz, 2) and -11.90 ppm (\(J_{PH} = 14.6\) Hz, 3) in the \(^1\)H NMR, together with the characteristic resonances of the PCy\(_3\) ligands and peaks for the heterocycles between 6 and 8 ppm. The presence of three ruthenium bound hydrogens is deduced both from the careful integration of the high-field signal and from partially decoupled \(^{31}\)P NMR spectra (in which only the alkyl protons of the phosphines are irradiated). The latter displays a quartet pattern near 49 ppm. The relaxation times \((T_1)\) of the hydride signals were measured (250 MHz, C\(_7\)D\(_8\)), and the minimum was found to be respectively 33 ms at 243 K for 2 and 36 ms at 233 K for 3. Both complexes exchange readily H\(_2\) by D\(_2\), but only in the case of 3 did we succeed in measuring a \(J_{HD}\) value which was found to be near 3 Hz. This value can be in agreement with a classical trihydride structure or the presence of a very stretched dihydrogen ligand for which a \(J_{HD}\) of 9 Hz within the coordinated HD molecule would be calculated by assuming no IPR effects. In that case, using the empirical equation developed by Morris, the corresponding H-H distance would be 1.27 Å.\(^{10}\) Furthermore using relaxation data and as a reference the hydrido vinylidene complex RuH(C=C(H)SiEt\(_3\))(L-X)(PCy\(_3\))\(_2\),\(^{7}\) we could calculate distances of 1.28 and 1.30 Å for the dihydrogen ligands of 2 and 3 in agreement with their large elongation.\(^{11}\)

Addition of Hydrogen Bond Donors. Addition of various hydrogen bond donors [trifluoroethanol, phenol, 4-iodophenol, 4-(trifluoromethyl)phenol, and hexafluoro-2-propanol (HFP)] at room temperature to complexes 2 or 3 leads to an upfield shift of the “hydride” signal of these complexes (the signal corresponding to the rapid interconversion of the hydride and dihydrogen ligands) in \(^1\)H NMR as well as to a modification of the \(^{31}\)P NMR spectrum. Tables 1 and 2 and Scheme 1 summarize the different observations. The shift can be related to the hydrogen bond donor ability of each alcohol which is linked but not simply to the acidity of the proton involved in hydrogen bonding.\(^{5,12}\) Furthermore, the data reveal a significant difference between the chemical shift variations in the complexes, much larger in the case of 2 than in the case of 3.

To gain more insight into this phenomenon, a study of the chemical shift variation of the hydride signal of 2 and 3 was carried out at room temperature as a function of the concentration in hydrogen bond donor. For this purpose, we have chosen HFP which is the best hydrogen bond donor used in this study. The results are reported in Tables 1 and 2 and Figures 1-4. In the case of 2, the chemical shift of the hydride signal appears to be very sensitive to a low concentration of HFP whereas at high HFP concentration a saturation is observed, a behavior typical of equilibria involving hydrogen bonds (see Figures 1 and 3). At all steps of HFP addition, this signal remains a triplet. Broadening was observed upon measuring the 1H NMR spectrum at lower temperature, but no evidence for a decoalescence process was obtained down to 183 K. The behavior of 3 contrasts with that of 2 since no significant chemical shift variation occurs upon addition of up to 1.5 equiv of HFP. However, upon increase of HFP concentration a broadening of the hydride signal occurs and finally at high HFP concentration a new broad triplet signal is observed which displays a reduced J_{HP} coupling constant of 13 Hz (see Figures 2 and 3). The broad hydride signal resulting from the addition of 4.5 equiv HFP to 3 is due to a fast exchange between two interconvertible species as evidenced by NMR spectroscopy recorded at 213 K (see Figure 5). At this temperature, again in contrast with the behavior of 2, 2 peaks are clearly visible at -11.5 and -12.7 ppm on the high field 1H NMR spectrum and at 53.2 and 50.2 ppm on the 31P{1H} NMR spectrum which coalesce upon warming the solution up to room temperature. The low-field 1H NMR spectrum is also demonstrative of the decoalescence process between two similar complexes. The main difference is the splitting of a broad peak near 5.7 ppm at room temperature into three signals at 9.6, 5.45, and 4.05 ppm attributed respectively to the OH proton of the alcohol, to an NH$_2$ group,
Influence of Hydrogen Bonding on the Reactivity of Hydrido Dihydrogen Complexes. We have recently reported that, in an aprotic solvent such as toluene, the reactivity of 2 and 3 was identical and furthermore that both complexes were little reactive. The only clear reaction was found with triethylvinylsilane which led to the hydrido vinylidene complexes \(\text{RuH(C} = \text{C}(\text{H})\text{SiEt}_2)(\text{L} - \text{X})(\text{PCy}_3)_2 \) \((\text{L} - \text{X} = \text{py-O, 5; L} - \text{X} = \text{py-NH, 6})\). Since 2 and 3 behave differently in the presence of a hydrogen bond donor, it was of interest to study the reactivity of both compounds with vinylsilane in the presence of a hydrogen bond donor. The reaction was carried out in toluene as previously described except that 3 equiv of HFP was added to both reaction mixtures. The reactions were found very different. Thus after 72 h at room temperature most of 2 was recovered unchanged whereas 3 reacted rapidly to give after complete hydride loss a mixture of unidentified compounds.

This demonstrates that the presence of hydrogen bonding to a hydride has an inhibiting effect on the reactivity of the cis hydrido dihydrogen complex 2. We favor a steric explanation for this effect; i.e., the presence of hydrogen bonding impedes the access to the reactive site. On the contrary, when hydrogen bonding and/or proton transfer occurs on a ligand, the electronic effect of the charge leads to an enhancement and a modification of the reactivity, even if little changes in the spectroscopic properties of the complex are visible.

Conclusion

This study demonstrates that two complexes displaying exactly the same spectroscopic properties and the same reactivity in an aprotic solvent can behave very differently when hydrogen bonding is present. The presence of noncovalent interactions is well-known for directing the course of such an effect in organometallic chemistry. This study demonstrates that two complexes displaying spectroscopic properties of the complex are visible.

Experimental Section

All reactions were carried out under argon by using Schlenk glassware and vacuum line techniques. All solvents were freshly distilled from standard drying agents and thoroughly degassed under argon before use. Microanalyses were performed by the Laboratoire de Chimie de Coordination Microanalytical Service. NMR spectra were recorded on a Bruker AC200 (at 200.13 MHz for 1H, at 188 MHz for 19F, and at 81.013 MHz for 31P) and on a Bruker AMX400 (at 100.62 MHz for 13C), while variable-temperature proton spectra were obtained by using a Bruker AM 250 (at 250.134 MHz), all these spectrometers operating on the Fourier transform mode. RuCl$_3$3H$_2$O was purchased from Johnson Matthey Ltd. RuH$_2$(PCy$_3$)$_2$ (1) was made according to the procedure described in ref. 14.

Preparation of RuH$_2$(py)(PCy$_3$)$_2$ (2). A suspension of RuH$_2$(PCy$_3$)$_2$ (1) (244 mg; 0.37 mmol) in 20 mL of pentane was added 2-hydroxyypyridine (35 mg; 0.37 mmol) at room temperature. The reaction was allowed to react for 1 h, during which a white solid precipitated. The white precipitate was then filtered off, washed with 5 mL of pentane, and dried in vacuo. Yield: ca. 93%. Anal. Calcd for RuH$_2$(PCy$_3$)$_2$: C, 54.29; H, 5.26; N, 1.95. Found: C, 54.11; H, 6.15; N, 1.77. 1H NMR (200.13 MHz, CD$_2$Cl$_2$, 296 K; δ): 8.16 (d), 7.16 (pt), 6.38 (pt), 6.34 (d) (4H, all for py); 1.2-2.2 (m, 66H, PCy$_3$); -12.64 (t, 3H, $J_{HF} = 14.3$ Hz, RuH$_2$(H$_2$)); T_{1H} (J_{HF}) = 242 K; 234 K: 33 ms. 13P/1H NMR (81.01 MHz, CD$_2$Cl$_2$, 296 K; δ): 49.1 (q, $J_{FP} = 14$ Hz). 13C NMR (50.32 MHz, CD$_2$Cl$_2$, 296 K; δ): 108.8 (d, $J_{CF} = 164$ Hz), 110.9 (d, $J_{CF} = 163$ Hz), 136.4 (d, $J_{CH} = 157$ Hz), 149.9 (d, $J_{CH} = 170$ Hz) (all for py).

Preparation of RuH$_2$(pyNH)(PCy$_3$)$_2$ (3). Synthesis was as above, but using I (258 mg; 0.39 mmol) and 2-aminoypyridine (37 mg; 0.39 mmol). A pale green precipitate was obtained in 91 % yield. Anal. Calcd for RuH$_2$(pyNH)(PCy$_3$)$_2$: C, 64.96; H, 9.84; N, 3.69. Found: C, 64.75; H, 9.95; N, 3.57. IR (cm$^{-1}$, Nujol): 2015 (m, CH$_2$); 2019, 2031 (m, CH$_2$). T_{1H} (J_{HF}) = 250.13 MHz, CD$_2$Cl$_2$, 296 K; δ): 8.11 (d), 7.04 (pt), 6.09 (pt), 5.72 (d) (4H, all for py); 3.85 (s, 1H, NH); 1.3-2.3 (m, 66H, PCy$_3$): -11.9 (t, 3H, $J_{HF} = 14.6$ Hz, RuH$_2$(H$_2$)). T_{13C} (J_{HF}) = 250.13 MHz, CD$_2$Cl$_2$, 233 K: 36 ms. 13P/1H NMR (81.01 MHz, CD$_2$Cl$_2$, 296 K; δ): 49.5 (s). 13C (50.32 MHz, CD$_2$Cl$_2$, 296 K; δ): 104.0 (d, $J_{CH} = 163$ Hz), 108.0 (d, $J_{CH} = 157$ Hz); 134.1 (d, $J_{CH} = 157$ Hz), 151.5 (d, $J_{CH} = 172$ Hz), 169.9 (s) (all for py).

Preparation of [RuH$_2$(pyNH)$_2$(PCy$_3$)$_2$][B(C$_6$F$_5$)$_4$] (4). To a solution of RuH$_2$(pyNH)(PCy$_3$)$_2$ (85 mg; 0.11 mmol) in 15 mL of toluene was added [PhNMe$_2$]$^+$[B(C$_6$F$_5$)$_4$]$^-$ (90 mg; 0.11 mmol) at room temperature. The reaction was allowed to react for 1 h, during which the solution became yellow. The solvent was evaporated under vacuum and the resulting yellow solid was washed with 10 mL of pentane and dried in vacuo. Yield: ca. 88%. Anal. Calcd for RuH$_2$(pyNH)$_2$(PCy$_3$)$_2$: C, 64.96; H, 9.84; N, 3.69. Found: C, 64.75; H, 9.95; N, 3.57. IR (cm$^{-1}$, Nujol): 2015 (m, CH$_2$); 2019, 2031 (m, CH$_2$). T_{1H} (J_{HF}) = 250.13 MHz, CD$_2$Cl$_2$, 296 K; δ): 8.09 (d), 7.46 (m), 6.89 (m) (4H, py); 4.55 (br, 2H, NH$_2$); 1.09-1.95 (m, 66H, PCy$_3$); -13.19 (br, 3H, RuH$_2$(H$_2$)). 13P/1H NMR (81.01 MHz, CD$_2$Cl$_2$, 296 K; δ): 49.7. 13C NMR (100.62 MHz, CD$_2$Cl$_2$, 296 K; δ): 149.4 (d, $J_{CF} = 242$ Hz), 140.5 (br), 137.3 (d, $J_{CF} = 137$ Hz) (all for B(C$_6$F$_5$)$_4$); 152.2, 126.1, 121.0 (all for py). 19F NMR (188 MHz, CD$_2$Cl$_2$, 296 K; δ): -55.5 (br), -86.5 (t, $J_{HF} = 17.5$ Hz), -90.2 (br) (all for B(C$_6$F$_5$)$_4$). T_{13C} (J_{HF}) = 250.13 MHz, 283 K: 28 ms.

Acknowledgment. This work was supported by the European Union, Brussels, via the Human Capital & Mobility Network “Localization and Transfer of Hydrogen”, the CNRS, and SHELL International Chemicals B.V. (Amsterdam).

IC970872A