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Chapter 8

Hanle precession in the presence of
energy dependent coupling between localized
states and an epitaxial graphene spin channel

This chapter is under review for publication in Physical Review B.
Authors: J. J. van den Berg, A. Kaverzin, and B. J. van Wees.

Abstract

Hanle spin precession measurements are a common method to extract the spin transport
properties of graphene. In epitaxial graphene on silicon carbide, these measurements show
unexpected behavior, due to presumed localized states in the carbon buffer layer that is
present between the channel and the substrate. As a consequence, the Hanle curve narrows
in its magnetic field dependence and can show an unconventional shape, which has been
experimentally observed and modeled in previous studies.
Here, we extend the previously developed model by assuming that the localized states are
charge traps, that have a power-law distribution of trapping times. Our simulations show
that the energy dependence of these trapping times can be extracted from the temperature
evolution of the Hanle curve, that was previously observed in experiments. Our extended
model gives better insight in what processes play a role when a spin channel is coupled to
localized states and their relation to the experimental observations.

8.1 Introduction

E
pitaxial graphene on the silicon (0001)-face of silicon carbide (SiC)1–3 has been
studied recently for its suitability as a spintronic material using Hanle spin pre-

cession experiments,4, 5 which is a method to measure spin dynamics in a non-local
spin valve geometry in the presence of an external, out-of-plane B-field. It was ob-
served that the spin transport properties are influenced by the presence of localized
states in the buffer layer, an insulating carbon layer that is a characteristic feature of
this material, resulting in a dramatic narrowing of the Hanle curve in the presence
of the buffer layer.4, 6 More recently, even a change in the general shape of the Hanle
curve was observed at low temperatures.7

A previously developed model6 explains both effects by assuming, coupled to
the spin channel, localized states that briefly trap the itinerant spins. Simulations
using the localized states model resemble the typical change in the Hanle curve that
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is seen in the experiments to some extent, but have some features that are different.
So far, the localized states model succeeded in explaining the narrowing of the curve
at high coupling strength (observed at room temperature)6 and the development
of an anomalous shape of the curve at intermediate coupling strength (observed
at low temperatures).7 The exact shape of this anomalous Hanle curve however,
could not be properly simulated, indicating that the previously developed localized
states model in the intermediate coupling regime is perhaps somewhat oversimpli-
fied. Also, a physical interpretation of the temperature dependence of the coupling
rate has so far not been offered.

Here, we investigate further the shape of the Hanle curve within the scope of
the previously developed model. To extend this model, we assume a coupling rate
between the localized states and the channel that is not one specific value, but is
distributed over a range of values, described by a distribution function FpΓq. We
use for FpΓq an inverse power-law distribution, derived from the heavy-tailed dis-
tribution of trapping times commonly found to describe dispersive transport.8, 9 We
arrive at this distribution function by assuming an exponential dependence of the
coupling rate on the energy E of the localized states away from the Fermi level. In
this way, we can naturally explain the previously observed temperature dependence
of the change in the shape of the Hanle curve.

With this analysis, we show that Hanle experiments are a means of obtaining
insights about the nature of the localized states and the process that mediates the
coupling with the channel. Furthermore, this generalized model can be used to
describe any spin channel with localized or trapped states influencing the transport,
and could therefore be of interest for the understanding of spintronics in organic
semiconductors.

8.2 Localized states model

We start with a brief summary of the previously developed model of localized states
that are coupled to the spin channel,6 which we will later on refer to as the “ref-
erence model”. The itinerant spins in the channel have a probability to hop into
such a localized state and be trapped there for some trapping time tt. While being
immobilized, the spins can still relax and, in the presence of an applied magnetic
field, precess. When there is a sufficiently large amount of these localized states, or
groups of localized states, the spin dynamics in the system can be described using a
spin accumulation in the channel, ~µS, and in the localized states, ~µ˚S . The latter is a
continuous variable if there are enough states available, a fact that can be justified if
we consider that the buffer layer is a nonconducting, but graphene-like layer.

Now, the situation can be expressed using two coupled Bloch equations, given
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by:
$

&

%

0 “ D∇2 ~µS ´
~µS
τS
` ~ωL ˆ ~µS ´ ηΓp~µS ´ ~µ˚S q

0 “ ´
~µ˚S
τ˚S
` ~ω˚L ˆ

~µ˚S ´ Γp~µ˚S ´ ~µSq.
(8.1)

Here, D is the diffusion coefficient, τS the spin relaxation time and ωL the Larmor
precession frequency. The ˚ denotes the properties of the localized states. The con-
stant η “ νLS{ν is the ratio between the density of states (DOS) of the localized states
and the DOS in the channel, and Γ “ 1{tt is the coupling rate.

The effect of the localized states on ~µS can be described by rewriting the two
coupled Bloch equation into one, effective Bloch equation:6

0 “ D∇2 ~µS ´ ~µSτeff
S `

~ωeff
L ˆ ~µS, (8.2)

with

1
τeff

S
“

1
τS
` ηΓ

1` τ˚S Γ` pτ˚S ω˚Lq
2

p1` τ˚S Γq2 ` pτ˚S ω˚Lq
2 (8.3)

ωeff
L “ ωL ` ηΓ2 pτ˚S q

2ω˚L
p1` τ˚S Γq2 ` pτ˚S ω˚Lq

2 (8.4)

As described in Ref. 6, the expression of Eq. 8.3and Eq. 8.4 can be simplified
by considering different coupling regimes. This is done by comparing the coupling
rate Γ with the other characteristic rates in the system, 1{τS and ωL. When these
rates are much larger than Γ, spins that hop into the localized states will be lost
due to relaxation or dephasing, respectively. However, the regime of strong coupling
(Γ " 1{τ˚S ) and low precession frequency (Γ " ω˚L) is typically the regime of interest
for our system, at least at room temperature. In this regime, Eq. 8.3and Eq. 8.4 can
be simplified into: 1{τeff

S “ 1{τS ` η{τ˚S and ωeff
L “ ωL ` ηω˚L . This results in a Hanle

curve that is very narrow compared to the conventional case of a channel without
localized states, but the curve maintains its shape.

In Ref. 7, the regime of intermediate coupling was considered, where ηΓ „ 1{τS.
In this regime, the complex interdependence of τeff

S and ωeff
L results in a non-trivial

change of the shape of the Hanle curve, which in that work was experimentally
shown at low temperatures down to 4 K.

8.2.1 Extension of the model: localized states with varying coupling
rate

Now, we investigate what happens if Γ changes as a function of the position x in the
channel. In this approach, which we will call the “extended model”, the system can
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Figure 8.1: Schematic representation of a diffusive spin channel where spins can be
trapped in localized states coupled to the channel. In the model presented here, the
coupling rate Γ can be different from trap to trap. We model this by n distinctive
states, which each have a different coupling rate. The effective spin transport prop-
erties can then be calculated by a summation over the contributions of all localized
states.

be described as a channel where the localized states have a changing coupling rate
Γi depending on the specific location in the channel, as shown in Fig 8.1. We make
the assumption that the spin dynamics in the systems can be described in terms of
the spin accumulation ~µS and a spin accumulation ~µS,i, associated with all localized
states or groups of localized states with coupling rate Γi. The quantity ηi describes
the ratio between the DOS of the localized states with Γi and the DOS in the channel.

Because we consider a large number of localized states and a continuous variable
~µS, the system behaves as a channel which is coupled to different types of localized
states that couple at the same location simultaneously, where we maintain the as-
sumption that there is no hopping between the localized states. Now, we can extend
the reference model by simply adding extra coupled Bloch equations describing the
spin accumulation in the system. For n different types of localized states we are now
left with n` 1 coupled equations. In this notation we have replaced the spin accu-
mulation in the localized states ~µ˚S that was used in the reference model with ~µS,i.
For the corresponding properties we also replace the ˚ with the index i:

$
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0 “ D∇2 ~µS ´
~µS
τS
` ~ωL ˆ ~µS ´ η1Γ1p~µS ´ ~µS,1q ´ η2Γ2p~µS ´ ~µS,2q ´ . . .

0 “ ´ ~µS,1
τS,1
` ~ωL,1 ˆ ~µS,1 ´ Γ1p ~µS,1 ´ ~µSq

0 “ ´ ~µS,2
τS,2
` ~ωL,2 ˆ ~µS,2 ´ Γ2p ~µS,2 ´ ~µSq

. . .

0 “ ´ ~µS,n
τS,n

` ~ωL,n ˆ ~µS,n ´ Γnp ~µS,n ´ ~µSq

(8.5)

We can rewrite 0 “ ´ ~µS,i{τS,i ` ~ωL,i ˆ ~µS,i ´ Γip ~µS,i ´ ~µSq as ~µS,i “ ai ~µS, following
the same method as for the reference model for one type of localized states.6 Thus
we can rewrite the first line of Eq. 8.5 that describes the spin accumulation in the
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channel, as:

0 “ D∇2 ~µS ´
~µS

τeff,1
S

`
~

ωeff,1
L ˆ ~µS ´ η2Γ2p~µS ´ ~µS,2q ´ . . . (8.6)

using the same procedure as for Eq. 8.2. Iterating this step n times yields an effective
Bloch equation that takes into account the contributions of all types of localized
stated. This gives:

0 “ D∇2 ~µS ´
~µS

τeff,n
S

`
~

ωeff,n
L ˆ ~µS (8.7)

with

1

τeff,n
S

“
1
τS
`

n
ÿ

i“1

ηi f pΓiq (8.8)

ωeff,n
L “ ωL `

n
ÿ

i“1

ηigpΓiq (8.9)

using for convenience the following newly introduced functions:

f pxq ” x
1` τ˚S x` pτ˚S ω˚Lq

2

p1` τ˚S xq2 ` pτ˚S ω˚Lq
2 (8.10)

and

gpxq ” x2 pτ˚S q
2ω˚L

p1` τ˚S xq2 ` pτ˚S ω˚Lq
2 (8.11)

Not to complicate things further, we made here the assumption that the spin relax-
ation time in all the localized states is constant τS,i “ τ˚S . We also used ωL,i “ ω˚L ,
because there is no reason to believe a significant variation in the g-factor.

We can interpret ηi as the weighing factor of the different contributions, meaning
that for each Γi there is a corresponding ηi “ ηpΓiq. In other words, the weighing
factor is in fact a Γ-dependent variable ηpΓq. As a consequence, we have to change
notation and now define the constant η0 “ νLS{ν as the ratio between the DOS of all
localized states and the DOS in the channel (where we previously used η), in order to
keep the description consistent with the reference model. Hence, η0 is now defined
as the ratio between the localized states DOS and the DOS in the channel, summed
over all types of localized states:

n
ÿ

i“1

ηi “

n
ÿ

i“1

ηpΓiq “ η0. (8.12)
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For a large n, we can consider Γ to be a continuously distributed parameter,
described by some distribution function FpΓq. This distribution function is closely
related to the weighing factor via the expression ηpΓiq “ FpΓiq∆Γ. This allows us to
rewrite the summation terms in Eq. 8.8 and Eq. 8.9 as an integral, by taking the limit
n Ñ8, giving:

1
τeff

S
“

1
τS
`

ż

Γ

FpΓq f pΓqdΓ; (8.13)

ωeff
L “ ωL `

ż

Γ

FpΓqgpΓqdΓ. (8.14)

The continuous version of Eq. 8.12 is given by:

lim
nÑ8

n
ÿ

i“1

ηpΓiq “

ż

Γ

FpΓqdΓ “ η0. (8.15)

Thus, using this description we can investigate any distribution function FpΓq
describing the spreading in the coupling rate Γ, while keeping the ratio η0 constant.
Note that the distribution function given by FDpΓq “ η0δpΓ´ Γ0q, where δpΓq is the
Dirac delta function, returns the original results described in equations 8.3 and 8.4,
where we changed notation from Γ (which is now a variable) to Γ0.

8.3 Inverse power-law distribution for F pΓq

To find out what type of distribution function FpΓq would correctly describe our
system, we look in the literature for other systems with similar transport character-
istics. A good candidate is offered by the well-studied disordered semiconductors
that exhibit dispersive transport, characterized by free carriers that are immobilized
in charge traps. These traps have a range of trapping times that are described by a
power-law distribution.8, 9 The effect of this distribution of trapping times on spin
transport in organic semiconductors was recently studied.10 In this study the as-
sumption was made that electrons in traps do not undergo any spin relaxation, re-
sulting in a strong narrowing and shape change of the Hanle curve.

The power-law distribution of trapping times is a direct consequence of charge
traps that are exponentially distributed in energy E, where E is the activation energy
that is required to leave the traps. Following Ref. 9, the dependence on energy of the
DOS of the traps (to be more precise, its ratio with the DOS in the channel) ηpEq, is
then described by:

ηpEq “ η0 exp
ˆ

´
E

kBTC

˙

, (8.16)
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with kB Boltzmann’s constant and TC a characteristic temperature that gives the
steepness of the energy distribution that describes the decline of the number of traps
as the energy moves away from EF. The coupling rate is given by:

ΓpEq “ Γ0 exp
ˆ

´
E

kBT

˙

, (8.17)

with T the temperature.
For the trapping time tt, this results in a distribution FPpttq that has a power-law

decay,9 also known as the Pareto distribution. Because we consider Γ “ 1{tt, we
deduce here the inverse of that distribution, FIPpΓq (see also Supp. Information):

FIPpΓq “
dη

dE
dE
dΓ

“ η0αΓ´α
0 Γpα´1q, for 0 ď Γ ď Γ0. (8.18)

Here, we introduce the parameter α “ T{TC, which is an index that gives the weight
of the tail of FPpttq. In Fig 8.2 we show both FPpttq and FIPpΓq for different values
for α. Thus, we have an energy dependent distribution describing the coupling rate
solely determined by the parameters TC, η0 and Γ0, where the latter two replace the
constant values for η and Γ that were used in the reference model.

tt (s)

F P
 (t t)

1/Г0

Г0

F IP
 (Γ

)

0

(a) (b)

Γ0

4/Г0

Γ (s-1)

α = 4
α = 2
α = 1
α = 0.5

0

α = 4
α = 2
α = 1
α = 0.5

Figure 8.2: (a) Power-law distribution for the trapping time FPpttq for different tail
indices α. (b) Inverse power-law distribution function for the coupling rate FIPpΓq.

8.4 Simulations

Using the software MATLAB it is possible to simulate the effect of the distribution
function in Eq. 8.18 on the Hanle curve. To obtain the full expressions for the effec-
tive properties τeff

S and ωeff
L , we incorporate Eq. 8.18 into Eq. 8.13 and Eq. 8.14 and

integrate over the whole range 0 ď Γ ď Γ0.
We show here the effect of changing the typical parameters TC, η0 and Γ0. The

rest of the parameters used in the model are based on the experimental results and
analysis from previous studies.
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Figure 8.3: (a) The effect on the Hanle curve of a different coupling rate Γ0 in the
extended model that includes the inverse power-law distribution function for the
coupling rate. Used parameters for this plot: DC “ 0.015 m2 s´1; τS “ 150 ps;
L “ 1 um; W “ 1 um; τ˚S “ 1 ns; η0 “ 50; T “ 300 K; TC “ 200 K. (b) The effect of
a different ratio η0 between the DOS of the localized states and the DOS in the spin
channel. The used coupling rate Γ0 “ 1012 s´1, other parameters used for this plot
are the same as for (a).

Figure 8.3(a) shows how Γ0 relates to the narrowing and/or shape change of
the Hanle curve. For high coupling, there is a narrowing of the curve, while for
intermediate coupling also the shape changes, as is consistent with the reference
model. Also consistent with previous description, η0 relates to the strength of the
effect of narrowing and shape change of the Hanle curve in the limit at Γ0. The effect
is demonstrated in Fig. 8.3(b).

In Fig. 8.4(a) we show the role of TC in the extended model. When increasing
the temperature from the cryogenic region up to room temperature, the Hanle curve
evolves from a shape that has some features of a conventional Hanle curve without
the effect of localized states, into the final shape defined by Γ0 and η0. TC relates
to the typical temperature where the Hanle curves stops evolving and reaches the
high coupling limit. Thus, for T ą TC, the Hanle curve can be described by the
reference model in the high coupling limit. Hence, the temperature evolution of the
Hanle precession curve can show the steepness of the localized states decay with
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energy, by simply looking at the transition temperature between the intermediate
and high coupling regime, or similarly, the transition between an anomalous shape
and a narrowing of the curve.

In Fig. 8.4(b) we show a comparison between previously obtained experimental
data (from Ref 7) and the two different models. The reference model (also from
Ref. 7) doesn’t have an explicit dependence on T, but instead shows the curve for two
different values of Γ. The extended model with the inverse power-law distribution
FIPpΓq, as described in this paper, is shown for two different temperatures (RT and
at 4 K). The measurements are shown by the black solid line. The three narrow
Hanle curves show that both models have a good match at RT, as can be seen from
their overlap with the experiment. The wider and larger curves are at cryogenic
temperature. Here, the Hanle curve has an anomalous shape, and this is also where
the models deviate from the experiment and from each other. The number of free
parameters in both models however, is too high for an unambiguous fit to the data.
The extension of the model allows for reproducing certain features of the measured
curve, in a way that was not possible with the reference model. However, the model
is limited in completely reproducing the experiment with a single set of parameters.

8.5 Discussion and conclusions

To have an idea how strongly the extended model relies on the use of the proposed
inverse power-law distribution, we also investigated the effect of other distribution
functions FpΓq on the spin transport properties and the Hanle curve. We found that
using a constant spreading or a normal distribution did not have a significant effect
on the Hanle curve shape, compared to the reference model. Likewise, a slightly
skewed distribution such as the log-normal distribution did not effect the shape sig-
nificantly either. The only type of distribution functions having a significant effect on
the Hanle shape, were functions with a large contribution from states in the regime
of intermediate coupling, but with a significant weight of Γ spreading out over sev-
eral orders of magnitude. Thus, a power-law or inverse power-law distribution are
suitable candidates to imitate the effect seen in experiment.

The fact that the extended model still deviates from the experimental data in
Fig. 8.4(b), can have a number of reasons. A first reason could be that both energy
dependent functions ηpEq, ΓpEq are not purely exponential, but should be approxi-
mated by some other function, increasing the complexity of the distribution function
FpΓq and its temperature dependence. Secondly, the fact that we assume a constant
(i.e. energy and temperature independent) relaxation time in the localized states
τ˚S might be an oversimplification of the physical situation. Thirdly, their could be a
significant spatial variation in the DOS of the localized states, as well as in their prop-
erties, depending on the physical origin of the localized states (e.g. strain, defects,
dangling bonds or a combination). Lastly, we did not incorporate the effect of tun-
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neling between the localized states and the channel, that could play a role additional
to the thermal hopping.

Even though a number of features could be added to extend the model further,
it is important to note that already in our simplified description the number of de-
grees of freedom is too high to unambiguously determine all parameters with the
available experimental data. To further understand the physical mechanisms that
play a role, new experiments should be designed. More information about the most
important variables could be obtained by employing different techniques, for exam-
ple optical spin injection in a time-of-flight setup, electron spin resonance or noise
measurements.

To conclude, we introduced here an explanation for the temperature evolution
of the Hanle curve in epitaxial graphene spin devices on SiC, by assuming hopping
between the spin channel and charge traps. For this, we assume that the number of
traps and their coupling rate exponentially decay with their energy difference with
the Fermi level. The strength of this decay, defined by TC, can be extracted from
experiments by identifying the transition between narrowing of the Hanle curve at
room temperature to an anomalous shape at lower temperatures. Our extended
model thereby describes the temperature evolution of the Hanle line shape in a nat-
ural way. Comparing our simulations with previously measured experimental result
showed, that neither the reference localized states model nor the extended model
can fully fit the measured curve, but both can capture certain features of the shape.
Complementary experimental investigations are necessary to study in more detail
the seemingly complex relationship between the anomalous Hanle line shape and
the energy distribution of the localized states in an epitaxial graphene spin channel.
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Supplementary information

Here, we show the derivation of FIPpΓq.

FIPpΓq “
dη

dE
dE
dΓ

“
d

dE

ˆ

η0 exp
„

´
E

kBTC

˙

d
dΓ

ˆ

´kBT ln
„

Γ
Γ0

˙

“
η0

Γ0

T
TC

exp
„

´
E

kBTC
`

E
kBT



“
η0

Γ0
α

ˆ

exp
„

´
E

kBT

˙pα´1q

“ η0αΓ´α
0 Γpα´1q

(8.19)

Note that evaluating FPpttq and substituting tt Ñ 1{Γ yields the same result.
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Figure 8.4: (a) T dependent simulations of the Hanle curve shape using the extended
model. The tail index α “ T{TC puts more weight in the tail of the distribution func-
tion Fpttq, resulting in a bigger contribution of states with a low coupling rate. Thus
at low T, many localized states fall in the intermediate coupling regime, changing the
shape of the Hanle curve. TC relates to the temperature above which the distribution
function doesn’t effect the shape. Used parameters in this plot: DC “ 0.015 m2 s´1;
τS “ 150 ps; L “ 1 um; W “ 1 um, τ˚S “ 1 ns; η0 “ 50, T “ 300 K, TC “ 200 K.
(b) Comparison between the experiment (black solid lines, from Ref. 7) and the two
models: the reference model (blue dashed line, also Ref. 7) and extended model (red
dotted line) at different temperatures. For clarity, only the RT and 4K curves are
shown. The three narrow, overlapping curves are the RT measurements and simu-
lations. The other three, wider curves are at low temperature. The used parameters
in these simulations are for the reference model: DC “ 0.02 m2 s´1; τS “ 150 ps;
L “ 1 um; W “ 1 um, τ˚S “ 0.42 ns; η0 “ 42; Γ0 “ 109 { 1013 s´1. For the extended
model, we used DC “ 0.015 m2 s´1; τS “ 30 ps; L “ 1 um; W “ 1 um, τ˚S “ 1 ns;
η0 “ 31, Γ0 “ 1012 s´1 and TC “ 200 K.


