Geometric variability of organs at risk in head and neck radiotherapy
Brouwer, Charlotte Louise

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
International consensus delineation guidelines for head and neck organs at risk

Published as:
CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines

Radiother Oncol. 2015 Oct;117(1):83-90

Online Supplemental Materials: http://dx.doi.org/10.1016/j.radonc.2015.07.041
Abstract

Purpose
The objective of this project was to define consensus guidelines for delineating organs at risk (OARs) for head and neck radiotherapy for routine daily practice and for research purposes.

Methods
Consensus guidelines were formulated based on in-depth discussions of a panel of European, North American, Asian and Australian radiation oncologists.

Results
Twenty-five OARs in the head and neck region were defined with a concise description of their main anatomic boundaries. The online Supplemental material provides an atlas of the consensus guidelines, projected on 1 mm axial slices. The atlas can also be obtained in DICOM-RT format on request.

Conclusion
Consensus guidelines for head and neck OAR delineation were defined, aiming to decrease interobserver variability among clinicians and radiotherapy centers.
Introduction

In recent decades, the quality of radiotherapy imaging, planning and delivery has improved markedly. To fully utilize the benefits of these new technologies in radiation oncology practice, consistent delineation of targets and OARs has become increasingly important. However, delineation accuracy of targets and OARs is limited by interobserver and trial protocol variability. By reducing this variability, the generalizability and clinical utility of Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) models in routine practice can be improved. To reduce treatment variations among clinicians and radiotherapy departments in the delineation of target volumes, guidelines for the delineation of the neck node levels for head and neck tumors have been developed [1]. The interobserver variability in the delineation of head and neck OARs is similar to the variation in the delineation of target volumes [2].

OAR delineation guidelines vary widely between publications and authors, resulting in inconsistent dose–volume reporting [3]. These inconsistencies hamper the comparison of dose–volume effect relationships as reported in studies using different delineation protocols [3]. We propose that both daily clinical practice and future multi-institutional clinical trials will benefit from improved consistency in delineation guidelines for OARs.

Therefore, the aim of this project was twofold: (1) to attain international consensus on the definition and delineation of OARs for head and neck radiotherapy and (2) to present consensus guidelines for CT-based delineation of a set of OARs in the head and neck region that are considered most relevant for radiotherapy practice.

Methods

To reach consensus on OAR guidelines, a panel of experts in the field of head and neck radiation oncology was established (WB, CG, VG, AL, PM, CN, JB, SP, DIR, BOS, JAL). The panel consisted of representatives from Europe, North America, Australia/ New Zealand and Asia and members of the cooperative groups DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG. For the purpose of this project, a number of group meetings were held during international conferences. First, the panel agreed on an OAR set considered relevant for the most common acute and late side effects of head and neck radiotherapy. We did not discuss dose–volume effects or side effects for the OAR set in this paper, but focussed on a concise description of consensus guidelines for delineation.
Second, each member of the panel delineated the OARs in a CT set from one patient without any predefined guidelines. The CT images (2 mm slice thickness) were made with the patient in a supine position on a multidetector-row spiral CT scanner (Somatom Sensation Open, 24 slice configuration; Siemens Medical Solutions, Erlangen, Germany). The delineation environment used is dedicated to study interobserver variability [4]. Subsequently, the outcome of this procedure was presented to and discussed with the experts in order to identify the most prevalent inconsistencies and to formulate consensus guidelines.

Finally, consensus delineations were depicted on axial CT slices of an atlas of head and neck anatomy with 1 mm slice thickness. The CT images were registered with T2-weighted MRI images of the same anatomy for clarification. Since multimodal imaging is not the general standard at present, the atlas description was based on CT only.

Results

After the panel delineated the proposed OAR set (Fig. 1), variability in delineation for each OAR was discussed. Subsequently, the panel agreed on consensus definitions for each OAR and formulated the final consensus guidelines for the following 25 head-and-neck OARs:

Anterior segment of the eyeball
The anterior segment of the eyeball consists of the structures ventral from the vitreous humor, including the cornea, iris, ciliary body, and lens.

Posterior segment of the eyeball
The posterior segment of the eyeball is located posteriorly to the lens, and consists of the anterior hyaloid membrane and all of the posterior optical structures including the vitreous humor, retina, and choroid. The optic nerve is excluded from this contour. The entire retina is included in the posterior segment of the eyeball.

Lacrimal gland
The lacrimal gland is located superolateral to the eye and lies within the preseptal space. The gland is molded at its inferomedial aspect to the globe, giving it a concave outline. The gland can be visualized on CT by its location partly encased in the bone and enveloped in low-density fat.
Parotid glands
The parotid glands were delineated according to previously published guidelines [5]. In these guidelines the retromandibular vein is included in the parotid gland contour, since it is difficult to discriminate it from the parotid gland tissue in non-contrast enhanced CT images. Anatomic borders are listed in Table 1. The use of a planning CT with intravenous contrast is however strongly recommended to be able to distinguish the extension of the glands from its surroundings.

Submandibular glands
The submandibular glands were delineated according to previous published guidelines [5]. Anatomic borders are listed in Table 1.

Extended oral cavity
The delineation of the extended oral cavity was based partly on Hoebers et al. [6]. For the sake of simplicity and consistency, the extended oral cavity structure was defined posterior to the internal arch of the mandible and maxilla. The mucosa anterior to the mandible and maxilla is included in the contour of the lips, and the mucosa lateral to the mandible and maxilla is included in the buccal mucosa (see next items and Fig. 3). Anatomic boundaries of the extended oral cavity contour are listed in Table 1. For research purposes, the extended oral cavity can be subdivided into oral tongue and anterior oropharynx, by drawing a vertical line from the posterior hard palate to the hyoid (circumvallate line).
Buccal mucosa
The buccal mucosa is defined according to the borders listed in Table 1.

Lips
The lip contour extends from the inferior margin of the nose to the superior edge of the mandibular body. The lip contour was defined to include the lips as well as the inner surface of the lips (for delineation details concerning inner surface of the lips refer to Van de Water et al. [5]). Detailed anatomic boundaries of the lip contour are listed in Table 1.

Mandible
The mandible was defined as the entire mandible bone, without teeth. The use of CT bone view settings is recommended.

Cochlea
The cochlea is embedded in the temporal bone, located lateral to the internal auditory meatus, which can best be recognized in CT bone view settings (Fig. 2).

FIGURE 2
Delineation of the cochlea in CT bone settings (left), matched to MRI-T2 (right).
Pharyngeal constrictor muscles (PCM)
For the delineation of the PCM, many delineation guidelines are available in the literature. These are particularly variable regarding the cranial and caudal demarcation [3,7]. For the sake of simplicity and reproducibility, we defined the PCM as a single OAR. The cranial border was defined as the caudal tip of pterygoid plates (according to previous studies [7–12]), and the caudal border as the lower edge of the arytenoid cartilages. For pragmatic reasons, a thickness of 3 mm was assumed (Fig. 3).

Supraglottic larynx
The supraglottic larynx is delineated according to Christianen et al. [7]. Anatomic borders are listed in Table 1. An axial slice of the supraglottic larynx is depicted in Fig. 4a.

![FIGURE 3](image-url)
Axial (left) and sagittal (right) view of the consensus delineations of the parotid glands (1), pharyngeal constrictor muscles (2), carotid arteries (3), spinal cord (4), mandible (5), extended oral cavity (6), buccal mucosa (7), lips (8), brain (9), chiasm (10), pituitary gland (11), brainstem (12), supraglottic larynx (13), glottic area (14), crico-pharyngeal inlet (15), cervical esophagus (16) and thyroid (17). (For the full atlas, the reader is referred to the online Supplemental material.)
<table>
<thead>
<tr>
<th>Organ at risk</th>
<th>Remarks</th>
<th>Anatomic boundaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parotid gland</td>
<td>Include : carotid artery, External auditory canal, mastoid process, retromandibular vein and extracranial facial nerve.</td>
<td>Subcutaneous fat, platysma</td>
</tr>
<tr>
<td>Anterior</td>
<td></td>
<td>Lateral</td>
</tr>
<tr>
<td>Post. part submandibular space</td>
<td></td>
<td>Medial</td>
</tr>
<tr>
<td>Masseter m., post. border mandibular bone, lateral pterygoid m.</td>
<td></td>
<td>Posterior</td>
</tr>
<tr>
<td>Mylohyoid m., inferior constrictor m.</td>
<td></td>
<td>Anterior</td>
</tr>
<tr>
<td>Submandibular gland</td>
<td></td>
<td>Caudal</td>
</tr>
<tr>
<td>Medial pterygoid m., mylohyoid m., hyoglossus m.</td>
<td></td>
<td>Canal</td>
</tr>
<tr>
<td>Parapharyngeal space, sternocleidomastoid m.</td>
<td></td>
<td>Medial</td>
</tr>
<tr>
<td>External auditory canal, mastoid process</td>
<td></td>
<td>Lat.</td>
</tr>
<tr>
<td>Lat. Surface mylo-huoid m., hyoglossus m.</td>
<td></td>
<td>Med.</td>
</tr>
<tr>
<td>Fatty tissue</td>
<td></td>
<td>Subcutaneous fat, platysma</td>
</tr>
<tr>
<td>Post. belly of the digastric m., styloid process, parapharyngeal space</td>
<td></td>
<td>Post.</td>
</tr>
<tr>
<td>Submandibular gland</td>
<td></td>
<td>Ant. belly sternocleidomastoid m., lat. side post. belly of the digastric m. (posterior-medial)</td>
</tr>
<tr>
<td>Medial pterygoid m., mylohyoid m.</td>
<td></td>
<td>Ant.</td>
</tr>
<tr>
<td>Fatty tissue</td>
<td></td>
<td>Anterior</td>
</tr>
<tr>
<td>Post. belly of the digastric m., styloid process, parapharyngeal space</td>
<td></td>
<td>Caudal</td>
</tr>
</tbody>
</table>

TABLE 1

Organs at risk with specification of anatomic boundaries.
Pharyngeal Constrictor Muscle

Supraglottic Larynx

| Tip of epiglottis | Cranial edge of arytenoid cartilages | Hyoid bone, pre-epiglottic space, thyroid cartilage | Inferior PCM, pharyngeal lumen | Thyroid cartilage | Pharyngeal lumen (lumen excluded) |

Glottic Area

| Cranial edge of ant, part of thyroid cartilage | Caudal edge of arytenoid cartilages | Tracheal lumen | Vertebral body |

Cricopharyngeal Inlet

| Caudal edge of arytenoid cartilages | 1 cm caudal to the lower edge of the cricoid cartilage | Vertebral body |

Cervical Esophagus

| 1 cm caudal to the lower edge of the cricoid cartilage | Caudal edge of C7 |

Brachial Plexus

| If the brachial plexus is wrapped around the vascular bundle on the most inferior slices, the vascular structure is included in the contour. | Cranial border of C5, vertebral body | Cranial border of T3, vertebral body | Dorsal border of: anterior scalene muscle, subclavian artery, axillary vein | Ventral border of: middle scalene muscle, seratus anterior muscle, subscapularis muscle | Lateral border of: anterior and middle scalene muscles, pectoralis major, teres major | Inter vertebral foramen (bony vertebral body), lateral border of 1st rib |
Glottic area
We decided to define the glottic area structure, including the vocal cords and paraglottic fat. Air should be excluded from the contour. Cranial, caudal and posterior borders can be found in Table 1. An axial slice of the glottic area is depicted in Fig. 4b.

Arytenoids
The arytenoids (or arytenoids cartilage) are defined as a separate structure. The base (caudal edge) of each arytenoid is broad for articulation with the cricoid cartilage. The apex (cranial edge) is pointed.

Cricopharyngeal inlet
The crico-pharyngeal inlet represents the transition from the PCM to the cervical esophagus (Table 1). An axial slice of the crico-pharyngeal inlet is depicted in Fig. 4c.

Cervical esophagus
The cervical esophagus starts 1 cm caudal to the lower edge of the cricoid cartilage, and ends at the caudal edge of C7 (Table 1). An axial slice of the cervical esophagus is depicted in Fig. 4d.

Brachial plexus
It is difficult to localize the brachial plexus on CT. Anatomical borders are listed in Table 1, and a step-by-step technique, based on the guideline of Hall et al. [14], can be found in the online Supplemental Materials.

Thyroid gland
The thyroid gland has two connected lobes and is located below the thyroid cartilage. It has considerable contrast compared to its surrounding tissues.

Brain
The delineation of the brain includes brain vessels, and excludes the brainstem. CT bone settings are recommended. In the case of nasopharyngeal cancer, a subdivision of brain structures could be made, i.e. delineation of the hippocampus and temporal lobe with the use of a brain atlas [15,16].

Brainstem
The cranial border of the brainstem was defined as the bottom section of the lateral ventricles, the caudal border as the tip of the dens of C2 (cranial border of the spinal cord). MRI is recommended for delineation of the brainstem. The bottom section of the lateral ventricles is clearly visible on both CT and MRI. For research purposes, the brainstem could be further subdivided, for example according to Kocak-Uzel et al. [17].
Axial CT slices showing the delineation of the supraglottic larynx (A) (a), glottic area (B) (b), crico-pharyngeal inlet muscle (C) (c), and cervical esophagus (D) (d). Other organs at risks visible are the submandibular glands (1), pharyngeal constrictor muscles (2), carotid arteries (3), brachial plexus (4), spinal cord (5), arytenoids (6) and thyroid (7). (For the full atlas, the reader is referred to the online Supplemental material.)
Pituitary gland
The pituitary gland is a very small OAR, which in general cannot be identified easily on CT. Alternatively, however, the inner part of the sella turcica can be used as surrogate anatomical bony structure. The borders of the pituitary gland can be defined best in the sagittal view.

Optic chiasm
The optic chiasm is located in the subarachnoid space of the suprasellar cistern. Typically, it is located 1 cm superior to the pituitary gland, located in the sella turcica. MRI is recommended for delineation of the optic chiasm. It is demarcated laterally by the internal carotid arteries and inferiorly to the third ventricle (Fig. 5) [19,20].

Optic nerve
The optic nerve is usually 2–5 mm thick and in general is clearly identifiable on CT [20]. It has to be contoured all the way from the posterior edge of the eyeball, through the bony optic canal to the optic chiasm. MRI is recommended for a better delineation of the optic nerve, at least close to the optic chiasm.

Spinal cord
The spinal cord is delineated as the true spinal cord, not the spinal canal. The cranial border was defined at the tip of the dens of C2 (the lower border of the brainstem), and the caudal border at the upper edge of T3. With caudally located tumours or lymph node areas, we advise extending the spinal cord contours by at least 5 cm caudal to the PTV.

Carotid arteries
The carotid arteries include the common and internal carotid artery (external carotid artery was omitted). The left and right common carotid arteries follow the same course with the exception of their origin. The right common carotid originates in the neck from the brachiocephalic trunk. The left arises from the aortic arch in the thoracic region. The bifurcation into the external and internal carotid arteries occurs around the level of C4. The upper border of the internal carotid artery is the cranial part of the optic chiasm.

The resulting consensus delineation guidelines were depicted on 1 mm axial CT slices from an anatomy atlas in Mirada RTx (Mirada Medical Ltd., UK) (online Supplemental material). The atlas in DICOM-RT format can be retrieved via the different co-operative groups.
Discussion

With the introduction of these consensus guidelines for delineation of OARs, we aim to decrease interobserver variability among clinicians and radiotherapy centers. These guidelines complement the previously published guidelines for neck node levels for head and neck tumours [1]. These two guidelines combined should contribute to reduce treatment variability and should also aid the design and implementation of multi-institutional clinical trials. The OAR guidelines are particularly useful when radiation-induced side effects are considered relevant endpoints. Moreover, the current consensus guidelines could facilitate the generalizability and clinical utility of Normal Tissue Complication Probability (NTCP) models.

FIGURE 5

Delineation of the optic nerves (blue and purple), optic chiasm (green) and carotid arteries (yellow and brown) on CT (left) and MRI-T2 (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
We decided not to describe all possible OARs in great detail. Consequently, for some OARs we did not use single anatomic structures, but amalgamated surrogate structures involved in combined functions (e.g. the extended oral cavity). Nevertheless, the current guideline contains a comprehensive list of OARs. At the individual patient/center level one should decide which OAR to include, a decision that may depend on the tumour location, for example. In general, it is helpful to always include the delineation of the parotid and submandibular glands, spinal cord and PCM. For research purposes, OARs could be further subdivided (e.g. as described in case of the extended oral cavity, PCM, brainstem and brain).

There are natural variations for some OARs, such as the location of the bifurcation of the common carotid artery [21], which is used for contouring the brachial plexus. In addition, anatomic changes in OARs may occur due to tumor extension, or an OAR may be infiltrated by tumor. Therefore, a basic understanding of the normal anatomy remains essential.

For primary tumors of the nasopharynx, oral cavity and oropharynx, we strongly recommend the use of MRI in addition to CT. This will facilitate the delineation of OARs in this area, which includes the brainstem, spinal cord, pituitary gland, lacrimal glands, optic chiasm and optic nerves. MRI is ordinarily also beneficial for delineation of the parotid glands and PCM. For primary tumors in close vicinity of the brain, we also recommend defining the temporal lobe and hippocampus (but delineation guidelines for these OARs are beyond the scope of these current guidelines) [15,16].

Some of the atlas structures are very small, such as the cochlea, pituitary gland, lacrimal glands and chiasm, with volumes <0.5 cm³. Volume and dose–volume histogram (DVH) data calculated over such small volumes is susceptible to differences in the calculation algorithm (i.e. sampling and interpolation strategy), and also depend on CT slice thickness, pixel width, dose grid voxel width and DVH dose resolution, and may differ widely between the various methods [22]. Consequently we recommend expanding small structures such as the cochlea, pituitary gland, chiasm and arytenoids by 5 mm to calculate reliable and more consistent DVH data (but avoid overlap with the PTV). Additionally, we recommend acquiring contrast-enhanced CT scans with ≤ 2mm slice thickness to improve delineations of such very small structures.

For some, serial OARs, ICRU recommends the addition of a PRV margin, which depends on planning technique and patient population [23]. For the spinal cord for example, it is common practice to add a 5mm PRV margin [24]. In the case of OARs in close proximity to, or overlapping with the PTV, derived OAR structures can help to guide the planning process (i.e. OAR with subtraction of the PTV). For dose evaluation, however, the original OAR contour should be used. We advise to adhere to the standardized OAR naming conventions as proposed by Santanam et al. [25].
We recommend incorporating the current guidelines on a large scale to support consistent reporting of dose–volume data in addition to encouraging consistent radiotherapy practice for treatment prescriptions. Considering the increasing use and availability of MRI as well as the increasing knowledge and understanding about the OARs that are most relevant for side effects in radiotherapy, we anticipate updating these recommendations in the near future to a full MRI-based delineation guideline, incorporating as much anatomical and functional information as possible.

References

