Orphan nuclear receptor TR4 and fibroblast growth factor 1 in metabolism

Liu, Weilin

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Effective treatment of steatosis and steatohepatitis by Fibroblast Growth Factor 1 in mouse models of non-alcoholic fatty liver disease

Weilin Liua, Dicky Struika, Vera J.M. Niesa, Angelika Jurdzinskia, Liesbeth Harkemab, Alain de Bruina,b, Henkjan J. Verkadea, Michael Downesc, Ronald M. Evansc, Tim van Zutphena, and Johan W. Jonkera1

aCenter for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
bDutch Molecular Pathology Center, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
cGene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.
1To whom correspondence should be addressed. E-mail: j.w.jonker@umcg.nl.

\textit{PNAS, 2016 Feb. 23;113:2288-93}
ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder and strongly associated with obesity and type 2 diabetes. Currently, there is no approved pharmacological treatment for this disease but improvement of insulin resistance using PPARγ agonists, such as thiazolidinediones (TZDs), has been shown to effectively reduce steatosis, steatohepatitis and improve liver function in patients with obesity-related NAFLD. However, this approach is limited by adverse effects of TZDs.

Recently, we have identified fibroblast growth factor 1 (FGF1) as a target of nuclear receptor PPARγ in visceral adipose tissue and as a critical factor in adipose remodeling. As FGF1 is situated downstream of PPARγ, it is likely that therapeutic targeting of the FGF1 pathway will eliminate some of the serious adverse effects associated with TZDs.

Here we show that pharmacological administration of recombinant FGF1 (rFGF1) effectively improves hepatic inflammation and damage in leptin-deficient ob/ob mice and in choline-deficient mice, two etiologically different models of NAFLD. Hepatic steatosis was only effectively reduced in ob/ob mice, suggesting that rFGF1 stimulates hepatic lipid catabolism. Potentially adverse effects such as fibrosis or proliferation were not observed in these models. Since the anti-inflammatory effects were observed both in the presence and absence of the anti-steatotic effects, our findings further suggest that the anti-inflammatory property of rFGF1 is independent from its effect on lipid catabolism. In addition to its potent glucose-lowering and insulin-sensitizing effects, our current findings indicate that rFGF1 could also be therapeutically effective in the treatment of NAFLD.
SIGNIFICANCE

Fibroblast growth factor 1 (FGF1) is critical for adipose tissue remodeling under conditions of dietary stress. Pharmacological treatment with recombinant FGF1 (rFGF1) has potent glucose-lowering, insulin-sensitizing and anti-steatotic effects in hyperglycemic mouse models, yet the mechanism is largely unknown. Here, we characterized the effects of rFGF1 on non-alcoholic liver disease in two etiologically different mouse models. Whereas strong anti-steatotic effects of rFGF1 were observed in \textit{ob/ob} mice, this was not observed in choline-deficient mice, suggesting that rFGF1 exerts its anti-steatotic effect via processes specifically impaired in choline-deficient mice, such as lipid oxidation and lipoprotein secretion. In contrast, hepatic inflammation and alanine aminotransferase levels were reduced in both models, indicating that these effects are independent of the anti-steatotic properties of rFGF1.
INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in developed countries and strongly associated with obesity and type 2 diabetes (Ahmed et al., 2015). NAFLD refers to a wide spectrum of liver disorders ranging from simple fatty liver (steatosis) to nonalcoholic steatohepatitis (NASH) with increased risk to develop progressive fibrosis, cirrhosis and liver cancer (Marchesini et al., 2003).

Treatment options for NAFLD are limited and mainly directed at weight loss or pharmacological improvement of insulin resistance (Adams & Angulo, 2006). While no pharmacologic therapy has been approved, the thiazolidinedione (TZD) class of insulin sensitizers has been demonstrated to improve steatosis, steatohepatitis and liver function in mice and patients with NAFLD (Ahmed et al., 2015). TZDs improve insulin sensitivity through activation of nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARγ) which reduces insulin resistance in adipose tissue, liver and skeletal muscle (Tontonoz & Spiegelman, 2008). The exact mechanism by which PPARγ exerts its beneficial effects on NAFLD is not completely understood but it is believed that improved hepatic insulin sensitivity enhances lipid oxidation and reduces hepatic lipogenesis, thereby reducing steatosis (Kim et al., 2004). In addition, increased peripheral insulin sensitivity may reduce lipolysis in white adipose tissue and thereby limit ectopic fat accretion.

PPARγ and its activators also have broad anti-inflammatory effects. On one hand PPARγ has been shown to attenuate the expression and secretion of pro-inflammatory cytokines (including IL-1β and TNF-α) associated with M1 macrophages (Jiang et al., 1998) whereas on the other hand it reduces macrophage activity via transrepression of nuclear factor-κB (Ricote et al., 1998). Despite their efficacy in glycemic control and reduction of steatosis, TZDs are associated with various serious adverse side effects, including weight gain, fluid retention, osteoporosis and cardiovascular toxicity, which has strongly limited their clinical use (Tontonoz & Spiegelman, 2008). These limitations highlight the need for novel approaches such as more selective PPARγ agonists or through direct activation of downstream targets.

Recently, we have identified fibroblast growth factor 1 (FGF1) as a novel target of PPARγ in visceral adipose tissue and as a critical factor in adipose remodeling.
(Jonker et al., 2012). Mice with a deficiency in FGF1 displayed a severe diabetic phenotype with increased inflammation and fibrosis in adipose tissue. Conversely, pharmacological treatment with rFGF1 has a potent insulin-sensitizing effect at the systemic level, whereas in the liver it effectively reduces steatosis in ob/ob mice (Suh et al., 2014). It remains unclear, however, if and to what extent the hepatic effects of FGF1 are direct or indirect.

In this study, we aimed to determine the mechanism by which rFGF1 improves liver disease using two etiologically different models of NAFLD. First, leptin-deficient ob/ob mice, which develop steatosis primarily through excessive food intake, and second, mice with a dietary choline-deficiency, which develop steatosis primarily as a result of a defect in hepatic lipid catabolism (Park et al., 2011). Interestingly, we found that rFGF1 effectively reverses steatosis in ob/ob mice but not in mice with a dietary choline-deficiency, suggesting that rFGF1 stimulates hepatic lipid catabolism. rFGF1 treatment improved steatohepatitis and plasma alanine transaminase activity (ALT) in both models, indicating that effects of rFGF1 on hepatic inflammation and liver function are independent from its anti-steatotic properties. Together our results provide insight into the mechanism by which rFGF1 improves NAFLD and highlight its potential therapeutic value in the treatment of different aspects of liver disease.

MATERIALS AND METHODS

Animals. Mice were housed and handled according to institutional guidelines complying with Dutch legislation. All experiments were approved by the Ethical Committee for Animal Experiments, University of Groningen, The Netherlands. Animals used in this study were male wild-type and ob/ob mice on a C57Bl/6J genetic background (Charles River, France), between 8-12 wks of age. Animals were housed in a light- and temperature-controlled facility (lights on from 7 a.m. to 7 p.m., 21 °C). All mice received a standard laboratory chow (RMH-B; Hope Farms, Woerden, The Netherlands) and acidified water ad libitum.

Animal experiments. Choline-deficiency was induced by a 3 or 6 wk challenge with a choline-deficient L-amino acid defined (CDAA) diet (CDAA, #518753) or a choline-sufficient control diet (CSAA, #518754) (Dyets inc., PA, USA). Mice were treated with vehicle (PBS) or rFGF1 (0.5 mg/kg, Prospec, Rehovot, Israel) by intraperitoneal
(i.p.) injection starting 3 days before the dietary intervention and then every 72 h for 3 or 6 wks. Mice were euthanized by cardiac puncture after anesthesia with isoflurane. Terminal blood samples were collected in EDTA-coated tubes. Tissues were collected and frozen in liquid nitrogen or processed for histology. Hepatic lipids were extracted according to Bligh & Dyer (1959). TGs were determined using Trig/GB kit (Roche #11877771) and absorption at 540 nm. Plasma was obtained by centrifugation at 6,000 rpm for 10 min and used for determination of alanine transaminase (ALT) activity using the spinreact GOT-GPT kit (# 1002500, Girona, Spain).

Protein analysis. For immunoblot analysis, total liver was homogenized in liquid nitrogen and whole-cell lysates were prepared in Spheroid Lysis Buffer (SLB, Tris-HCL pH=8, 138 mM NaCl, 1% (v/v) Nonidet P-40, 2.7 mM KCL, 1 mM MgCl₂, 5% (v/v) Glycerol, 5 mM EDTA, 1 mM Na₂VO₄, 20 mM NaF, 1mM DTT and protease inhibitor) and protein concentrations were determined using the BCA Protein Assay kit (Thermo Scientific, IL, USA). Protein samples were subjected to SDS-PAGE (15% gels) and transferred to nitrocellulose using Trans-Blot® Turbo™ transfer system (Bio-Rad). After blocking for one hr at room temperature (RT) in PBS containing 0.1% (v/v) Tween and 2% (w/v) milk powder, membranes were o/n incubated with primary antibodies at 4°C. Antibodies used in this study are: anti-TNFα (rabbit polyclonal [52B83], ab6671, Abcam, UK), anti-MCP1 (mouse monoclonal, AM32136PU-N, Acris, DE), anti-β-Actin (rabbit polyclonal, a2066, Sigma) and anti-GAPDH (mouse monoclonal, CB1001-500UG, Calbiochem). Antibodies were detected by incubating the blot with horseradish peroxidase (HRP)-conjugated donkey anti-rabbit (Life science, NA934) or rabbit anti-mouse (Dako, p0260) IgG for 1h at RT. Image Lab software (Bio-Rad) was used for densitometry.

Histological analysis and immunohistochemistry. For microscopic examination, tissues were fixed in 4% (w/v) phosphate-buffered formalin, embedded in paraffin, sectioned at 4 μm, and stained with hematoxylin and eosin (H&E). Liver fibrosis was assessed by Sirius red staining. Liver steatosis was visualized by Oil red O staining of liver cryosections. For determination of zonation, GS staining was used for central vein localization (Gebhardt & Mecke, 1983). Briefly, sections were deparaffinized in xylene and rehydrated in a series of graded alcohol washing steps. Antigen retrieval
was conducted by mildly boiling of sections in 1 mM EDTA solution, pH 8.0 for 15 minutes. Endogenous HRP activity was blocked in 0.3% (v/v) H₂O₂, 10% (v/v) normal goat serum in 1% (w/v) BSA PBS solution was used to block non-specific binding prior to antibody incubation. Anti-glutamine synthetase (mouse IgG₂a, 610518, BD Biosciences, USA) primary antibody was o/n incubated at 4°C, then washed with PBS followed by incubation with HRP-conjugated goat anti-mouse IgG (Invitrogen, R40101), incubation for 1 hour at RT. AEC reagent containing 0.3% (v/v) H₂O₂ was used for visualization.

Assessment of hepatic steatosis and steatohepatitis was performed in an unbiased manner by two board certified pathologists. Hepatic steatosis and inflammation were graded in H&E stained liver sections by using an adapted version of the NAS scoring system for NAFLD developed by Kleiner et al. (Kleiner et al., 2005). For quantitation of steatosis, H&E- and glutamine synthetase (GS)-stained sections (6 slides for each group) were randomly selected. Next, 3 to 4 pericentral or periportal areas on each section were selected and quantified for steatosis using ImageJ.

Gene expression analysis. Total RNA was isolated from the liver using Tri reagent (Life Technologies, USA) and reverse transcribed into cDNA using M-MLV, random primers and dNTPs according to standard procedures. For quantitative PCR (qPCR), cDNA was amplified using Hi-ROX SensiMix™ SYBR green (Bioline, London, UK) and StepOnePlus™ Real-Time PCR System (Applied Biosystems, CA, USA). Primers used for qPCR are listed in Table S5. U36B4 was used as the housekeeping gene in all PCR analyses and the ΔΔCt method was used for quantification.

Isolation of primary rat hepatocytes and cell culture. Rat primary hepatocytes were isolated from Wistar rats based on the two-step collagenase perfusion method (Seglen, 1976). Cells were seeded into collagen-coated plates and o/n recovered in dexamethasone-containing William’s E complete medium. Prior to experiments, the medium was replaced by dexamethasone-free William’s E complete medium supplemented with 5% (v/v) charcoal-stripped serum + 1% (v/v) penicillin streptomycin (p/s). Then, cells were pre-incubated with 100 ng/ml rFGF1 or PBS for 2 h. Subsequently, an acute inflammatory response was elicited using mTNFα (20 ng/ml) and hIL-1β (10 ng/ml). RAW264.7 cells were cultured in RPMI 1640 medium
supplemented with 10% (v/v) FBS and 1% (v/v) p/s and maintained at 37°C under 5% CO₂. Human umbilical vein endothelial cells (HUVECs) (Lonza, CC2519) were cultured in EGM-2 medium (Lonza) on 1% (w/v) gelatin-coated plates. For activation, cells were treated with 100 ng/ml lipopolysaccharide (Sigma) after 2 h rFGF1 pre-incubation. RNA samples were collected at different time points to assess the expression of inflammatory marker genes.

Statistical Analysis. All values are given as means ± SD. The two-tailed unpaired student’s t-test with Welch’s correction, nonparametric Mann-Whitney test, one-way or two-way ANOVA analysis with Holm-Sidak’s multiple comparison test were used for statistical analysis. Significance was indicated as *P < 0.05, **P < 0.01, ***P < 0.001.

RESULTS

rFGF1 has potent anti-steatotic effects in ob/ob mice.

To investigate the mechanism by which rFGF1 exerts its effects on NAFLD/NASH we treated ob/ob mice for a period of 12 days with rFGF1 (0.5 mg/kg i.p. every 3 days). Twelve days of treatment significantly reduced hepatic levels of triglycerides and liver mass, without affecting body weight (Fig. 1A-C). Histological examination using haematoxylin and eosin (H&E) staining confirmed the anti-steatotic effect of rFGF1 but also revealed that this reduction in hepatic lipids occurred in a zonated fashion (Fig. 1D). To further explore this zonation effect, we used the central vein (CV) marker glutamine synthetase (GS), which indicated pronounced reduction of steatosis in the periportal (PP) zone, while steatosis in the pericentral (PC) region was not significantly affected by rFGF1 treatment (Fig. 1E-G).

rFGF1 suppresses hepatic inflammation in ob/ob mice.

Hepatic steatosis can develop into non-alcoholic steatohepatitis (NASH), which is more serious and is characterized by hepatic inflammation and fibrosis. In addition to its potent anti-steatotic action, rFGF1 also suppressed hepatic inflammation in ob/ob mice as indicated by reduced mRNA expression of a range of hepatic inflammatory markers (Fig. 2A-D). Twelve days of treatment with rFGF1 significantly reduced the expression of the pro-inflammatory M1 markers MCP-1 and TNFα, and macrophage/
Figure 1. rFGF1 reduces hepatic steatosis in ob/ob mice. (A–C) A 12-d rFGF1 treatment (0.5 mg/kg i.p. every 72 h) of ob/ob mice does not affect body weight (A) but does reduce liver mass (B) and hepatic triglyceride levels (C) (n = 6; unpaired t-test with Welch’s correction). (D and E) Histological visualization of steatosis in serial liver sections stained wi-
Kupffer markers F4/80, CD68 and CD11c (Fig. 2A). After 5 wks of treatment with rFGF1 these markers were even further reduced and significant reductions were now
also observed for the pro-inflammatory cytokine IL1β, cell adhesion molecules E-selectin, ICAM-1 and VCAM-1, which are activated by TNFα and IL-1β, and the macrophage marker CD11b (Fig. 2B). In contrast, hepatic expression of anti-inflammatory M2 markers IL-10, CD163 and Arginase 1 (Arg1) was not affected by rFGF1 administration, except for CD206 in the 5 wk treated mice (Fig. S1A-D), indicating that rFGF1 exerts its anti-inflammatory effect mainly through suppression of pro-inflammatory M1 markers in liver. Reduced hepatic inflammation was also observed by histopathological and protein analysis, indicating lower scores on lobular inflammation (Table S1) and reduced levels of TNFα (Fig. 2C-E).

rFGF1 reduces endothelial VCAM-1 expression.

To investigate how rFGF1 suppresses hepatic inflammation we examined its potential to modulate cytokine- or endotoxin-induced inflammatory gene expression in several cell models representing different hepatic cell types (hepatocytes, macrophages and endothelial cells). We did not find a role for hepatocytes, the major parenchymal cell type in liver, in the anti-inflammatory effect of rFGF1 as it did not affect basal and even slightly increased cytokine-induced (i.e. TNFα/IL1β) inflammatory gene expression (Fig. S2). We next questioned if rFGF1 could mediate its anti-inflammatory effect through modulation of endotoxin-induced activation of macrophages or endothelial cells. We examined the effect of rFGF1 pre-incubation on the activation of RAW264.7 macrophage cells and HUVEC endothelial cells by lipopolysaccharide (LPS). In RAW264.7 cells, rFGF1 pre-treatment did not interfere with basal or endotoxin-induced inflammatory gene expression (Fig. S2). In contrast, a significant reduction in the expression of VCAM-1 was observed in HUVECs in response to LPS (Fig. 3A). Basal and endotoxin-induced gene expression of MCP-1, ICAM-1 and E-selectin was unaffected by rFGF1 pre-treatment in HUVECs (Fig. 3B-D). Since VCAM-1 has been implied in leukocyte recruitment it is possible that the anti-inflammatory effects of rFGF1 are mediated through reduced endothelial VCAM-1 expression.
The anti-steatotic effects of rFGF1 are absent in a choline-deficient model of steatosis.

Steatosis results from an imbalance in hepatic lipid metabolism. Whereas hepatic fatty acid (FA) synthesis and triglyceride accumulation occur predominantly in the pericentral zone, FA oxidation (FAO) and secretion (VLDL production) are more associated with the periportal zone (Wiegman et al., 2003). Our observation that rFGF1 primarily reduces steatosis in the periportal zone thus suggested that rFGF1 improved hepatic lipid catabolism (i.e. oxidation and/or secretion). To further investigate how rFGF1 exerts its anti-steatotic effects, we used a choline-deficient L-amino acid defined (CDAA) diet, a commonly used rodent model for steatosis (Park et al., 2011). In contrast to ob/ob mice and diet-induced obesity (DIO) models of steatosis, which have increased hepatic lipid accumulation due to excessive food intake, choline-deficiency causes a defective hepatic lipid catabolism resulting in steatosis in the absence of obesity or insulin resistance (Park et al., 2011).

Mice were challenged with the CDAA or control choline-supplemented (CSAA) diet for 3 or 6 wks and the preventive effect of rFGF1 (0.5 mg/kg i.p. every 3 days) on the
development of NAFLD/NASH was monitored. Body weights and white adipose mass of both control and rFGF1-treated mice increased at similar rates and were not significantly different as compared to the dietary control group (Fig. 4A, B). Liver mass, as a percentage of body weight, increased from ~4% to ~6% in the first 3 wks but remained stable at 6 wks (Fig. 4C). As expected, hepatic TG levels in the CDAA-challenged mice progressively increased over time as compared to the CSAA control mice but no effect of rFGF1 was observed on either liver mass or hepatic TG (Fig. 4C, D). These findings were supported by histological examination using H&E and Oil red O staining (Fig. 4E, F; Fig. S3 and S4). GS staining further indicated a clear periportal localization of the steatosis in the CDAA model similar to what has previously been described (Fig. 4G) (Anstee & Goldin, 2006). Together, these results suggest that the anti-steatotic effects of rFGF1 are dependent on the catabolic processes that are defective in the CDAA model.

rFGF1 suppresses hepatic inflammation independent of its anti-steatotic effects.

Since rFGF1 did not affect steatosis in the CDAA model, this model allowed us to investigate whether the anti-inflammatory properties of rFGF1 are dependent on its anti-steatotic properties. After a 3 wk CDAA challenge, significant reductions in the mRNA expression of MCP-1, TNFα, ICAM-1, VCAM-1 and CD11c were observed in rFGF1 treated mice as compared with the CDAA control mice (Fig. 5A). In addition, a trend towards decreased expression was observed for IL-1β and E-selectin in rFGF1-treated mice. Reduced hepatic inflammation was further confirmed by histopathological and protein analysis, indicating a reduction in the number of inflammatory foci in the liver (Fig 5B, Table S2 and reduced levels of MCP-1 protein (Fig. 5C). These data show that rFGF1 exerts its anti-inflammatory effect in the liver independently from its anti-steatotic effect. After a 6 wk CDAA challenge, mRNA expression of inflammatory markers however, were no longer reduced by rFGF1-treatment or even increased in the case of E-selectin (Fig. S5). In addition, no effect of rFGF1 on anti-inflammatory M2 marker expression was observed (Fig. S1C, D). Histopathological analysis further indicated that lobular inflammation was increased in the rFGF1-treated mice as compared to the CDAA control mice (Table S3).

Interestingly, rFGF1 also prevented the increase in plasma levels of ALT activity, a marker for liver damage, after a 3 wk CDAA challenge and a similar trend was seen
Chapter 4

A

Body weight (gram)

Time (weeks)

CSAA
CDAA
CDAA+rFGF1

B

eWAT mass

% of body weight

3 weeks
6 weeks

CSAA
CDAA
CDAA+rFGF1

C

Liver mass

% of body weight

3 weeks
6 weeks

**
*

D

Hepatic TG

μmol/g liver

3 weeks
6 weeks

* *

E

CDAA
CDAA+rFGF1

H&E

F

Oil red O

G

GS

- 110 -
Figure 4. rFGF1 does not reduce steatosis in mice with a dietary choline deficiency. (A–D) rFGF1 does not affect body weight (A), epididymal white adipose tissue (eWAT) mass (B), liver mass (C), or hepatic triglyceride (TG) levels (D) in mice challenged for 3 or 6 wk with a CDAA or on a control CSAA diet (n = 8 or 10 mice per group; one-way ANOVA). (E–G) Histological visualization of steatosis in serial liver sections after a 3-wk CDAA challenge, with (Left) or without (Right) rFGF1, stained with H&E (E), Oil red O (F), or the central vein marker GS combined with H&E (G). C, central vein; P, portal vein. (Scale bar: 300 μm).

Figure 5. rFGF1 suppresses hepatic inflammation in mice with a dietary choline deficiency. (A) Effect of rFGF1 on the expression of inflammatory genes in the livers of mice challenged for 3 wk with a CDAA diet or on a CSAA diet (n = 8 or 10; one-way ANOVA). (B) Histological visualization of inflammation in H&E-stained liver sections. Aggre-
gations of lymphocytes, indicating lobular inflammation, are indicated by arrows. C, central vein; P, portal area. (C) Western blot analysis of MCP-1 protein levels. (D) Quantitation of (C) (unpaired t test with Welch’s correction). (E) ALT activity (n = 3 or 5; one-way ANOVA).

after 6 wks (Fig. 5D, Fig. S5). rFGF1 may thus have hepato-protective properties beyond its anti-steatotic and anti-inflammatory properties. In line with this finding, it has previously been reported that FGF1/FGF2 double knockout mice exhibit increased levels of ALT after tetrachloride-induced hepatic injury (Yu et al., 2003). Together, our results show that in the CDAA model, rFGF1 can prevent liver damage as reflected by plasma ALT and that it can delay but not prevent hepatic inflammation.

rFGF1 does not induce hepatic fibrosis or proliferation.

Potential adverse effects of FGFs are fibrosis and proliferation. Previous studies have implied a role for FGF1 in promoting hepatic fibrosis. Increased expression of FGF1/FGFRc was observed in a rat model of experimental pulmonary fibrosis and in patients with idiopathic pulmonary fibrosis, respectively (Barrios et al., 1997; MacKenzie et al., 2015). Conversely, loss of FGF1 and -2 in mice resulted in decreased liver fibrosis upon exposure to carbon tetrachloride (Yu et al., 2003). To assess the effect of rFGF1 on the development of hepatic fibrosis, liver samples from 5 wk treated ob/ob mice were analyzed for the expression of fibrogenic maker genes. The expression of TGF-β1, which has been shown to accelerate liver fibrogenesis by promoting hepatic stellate cell (HSC) transformation and activation of the expression of extracellular matrix genes (Leask & Abraham, 2004), was significantly reduced in rFGF1-treated ob/ob mice as compared to control mice (Fig. 6A). The expression of collagen-α1, αSMA and TIMP-1, however, was not significantly different. Also, no significant differences in the expression of fibrogenic genes or collagen deposition were observed between control and rFGF1-treated mice after a 3 or 6 wk CDAA challenge, respectively (Fig. 6B-D, Fig. S6). Finally, we observed a significant reduction in the expression of the proliferation marker Ki-67 by rFGF1 after a 3 wk CDAA challenge whereas no difference was observed after 6 wks (Fig. 6E, F). These findings were supported by histopathological analyses (Table S4). Together, these results suggest that rFGF1 has no adverse effects on hepatic fibrosis or proliferation.
Figure 6. rFGF1 does not promote hepatic fibrosis and proliferation in ob/ob mice or in choline-deficient mice. (A and B) Fibrogenic gene expression in ob/ob mice treated for 5 wk with rFGF1 (n = 6 or 8; Mann–Whitney test) (A) and in mice challenged for 3 wk (n = 5 or 6) with a CDAA diet (n = 8–10) or on a CSAA (n = 5 or 6; one-way ANOVA) (B). (C) Histological visualization of fibrosis in liver sections stained with Sirius red from mice challenged for 6 wk with a CSAA diet or on a CDAA diet with or without rFGF1. Arrows indicate pericentral and hepatocyte collagen deposition (Scale bars: 500 μm.) (D) Quantitation of fibrosis in liver sections from mice challenged for 6 wk with a CSAA diet or on a CDAA diet with or without rFGF1 (n = 5 slides per group; one-way ANOVA). (E and F) Expression of Ki-67 in mice fed the CDAA diet for 3 wk (E) or 6 wk (F) (n = 5 or 6).
DISCUSSION

Here we show that pharmacological administration of rFGF1 effectively improves obesity-related steatosis, hepatic inflammation and damage. Our findings further suggest that these effects are at least partially independent, as the anti-inflammatory effects were observed both in the presence and absence of anti-steatotic effects.

While no pharmacological treatment has currently been approved for NAFLD/NASH, insulin sensitizers and anti-oxidative treatment strategies with vitamin E are among the best-established approaches (Ahmed et al., 2015). Both of these approaches, however, have long-term safety issues and there is only limited evidence of improvement in cirrhotic patients (Ahmed et al., 2015; Miller et al., 2005). Whereas vitamin E treatment is associated with increased mortality, TZDs have been associated with various adverse effects including weight gain, fluid retention and osteoporosis, complicating their clinical use (Tontonoz & Spiegelman, 2008; Bjelakovic et al., 2007). In addition, TZDs are contra-indicated in patients with symptomatic chronic heart failure (Nissen & Wolski, 2007). Current strategies for novel PPARγ-based treatments are therefore directed at developing selective receptor modulators (SRMs) with reduced adverse effects or at activation of selective downstream targets (Balint & Nagy, 2006).

Recently, we have identified FGF1 as a target of nuclear receptor PPARγ in visceral adipose tissue and as a critical factor in adipose function, insulin resistance and the development of type 2 diabetes (Jonker et al., 2012; Suh et al., 2014). When challenged with a high-fat diet, mice lacking FGF1 display aberrant adipose expansion, characterized by reduced angiogenesis, increased adipose-inflammation and -fibrosis and resulting in ectopic fat accumulation in the liver and in insulin resistance (Jonker et al., 2012). Conversely, pharmacological administration of rFGF1 improved hyperglycemia, insulin sensitivity and steatosis in mouse models of obesity (Suh et al., 2014).

Two other members of the FGF family, the endocrine hormones FGF15/19 and FGF21 have also been shown to improve hyperglycemia, insulin resistance and steatosis (Potthoff et al., 2012). The effects of FGF15/19 are mediated directly through activation of FGF receptor 4 (FGFR4) and its co-receptor β-klotho in the liver (Nissen & Wolski, 2007; Balint & Nagy, 2006). FGF15/19 is produced in the ileum, where its expression is controlled by the bile acid activated nuclear receptor FXR,
Effective treatment of steatosis and steatohepatitis by FGF1

and is subsequently secreted into the circulation (Holt et al., 2003; Ito et al., 2005). In the liver, FGF15/19 suppresses bile acid synthesis and gluconeogenesis (Holt et al., 2003; Inagaki et al., 2005; Potthoff et al., 2011). Although we have not observed effects of FGF1 on bile acid homeostasis, it is possible that some of its metabolic effects are mediated directly through hepatic FGFR4 activation, since FGF1 acts as a universal ligand for all FGFRs. In contrast to FGF15/19, the glycemic effects of FGF1 and FGF21 are dependent on FGFR1 activation in adipose tissue (Suh et al., 2014; Jiang et al., 2014). For FGF21, it has further been demonstrated that it can alleviate endoplasmic reticulum (ER) stress-induced hepatic steatosis by acting as a metabolic effector of the unfolded protein response (Adams et al., 2012). Whether these effects are directly mediated through FGFR activation in the liver and whether FGF1 and FGF15/19 are acting through the same pathway is not known.

In contrast to ob/ob mice and DIO models of steatosis, we did not observe an improvement in steatosis in the choline-deficient model. The difference in etiology of the steatosis in these models gives a clue in the mechanism of action of FGF1. Whereas ob/ob mice and DIO mice have increased hepatic lipid accumulation due to excessive food intake, a choline-deficiency causes a defective hepatic β-oxidation and very-low-density lipoprotein (VLDL) production resulting in steatosis in the absence of obesity or insulin resistance (Park et al., 2011; Nakae, 1999). These differences in the pathophysiology of steatosis were also clearly reflected in the zonal distribution of lipids in these models. Whereas steatosis in ob/ob mice was primarily located in the pericentral region, in the CDAA model this was mainly present in the periportal region. Hepatic zonation plays an important role in the segregation of the different metabolic pathways in the liver (Wiegman et al., 2003; Hijmans et al., 2014). Hepatic fatty acid (FA) synthesis and triglyceride accumulation occur predominantly in the pericentral zone, whereas catabolic processes such as FA oxidation (FAO) and secretion (VLDL production) on the other hand are more associated with the periportal zone (Wiegman et al., 2003). Our observation that reduction of steatosis by rFGF1 is limited to the periportal zone thus suggests that rFGF1 acts by improving hepatic lipid catabolism (i.e. oxidation and/or secretion).

Hepatic lipid metabolism and inflammation are tightly linked processes and both are known to exacerbate insulin resistance (Shoelson et al., 2006). The accumulation of toxic lipid species and their metabolites, such as saturated free fatty acids (FFAs), free cholesterol and the sphingolipid ceramide, has been shown to exert an
inflammatory response through activation of Bax protein translocation which in turn triggers lysosomal and mitochondrial permeabilization, ROS production and apoptosis (Trauner et al., 2010). This process is called lipotoxicity and promotes activation of Kupffer cells (KCs), specialized macrophages in the liver, and results in exacerbation of insulin resistance and progression of NASH (Cusi, 2012). Our results show that rFGF1 effectively suppresses hepatic inflammation both in ob/ob mice and choline deficient mice as indicated by significant reductions in the expression of the pro-inflammatory M1 markers MCP-1 and TNFα. Interestingly, the anti-inflammatory effect of rFGF1 became more pronounced with prolonged (5 wks) treatment in ob/ob mice, as evidenced by further suppression of M1 markers, but also of cell adhesion markers (E-selectin, VCAM-1, ICAM-1) and macrophage/KC markers (F4/80, CD68, CD11b and CD11c). Whereas rFGF1 also suppressed hepatic inflammation after a 3 wk challenge with a choline-deficient diet, this effect was no longer observed at 6 wks. It is possible, however, that the anti-inflammatory effect of rFGF1 is only achieved in the presence of relatively low levels of hepatic lipids (e.g. 3 wk CDAA) and that when levels of hepatic lipids become progressively higher (e.g. 6 wk CDAA), the anti-inflammatory effect of rFGF1 is mitigated due to lipotoxicity.

Our in vitro data suggests that rFGF1 does not suppress inflammation through a direct effect on hepatocytes or through macrophage activation. We did, however, find a strong suppression of VCAM-1 expression in HUVEC endothelial cells. Sinusoidal endothelial cells play a major role in hepatic inflammation through their involvement in adhesion molecule-mediated recruitment of leukocytes (Lalor et al., 2002). It was shown previously that FGF1 suppresses trans-endothelial leukocyte migration by reducing expression of several endothelial adhesion molecules, including VCAM-1 (Zhang & Issekutz, 2002). Endothelial cells in normal liver express little or no VCAM-1, whereas it is highly induced during conditions of steatohepatitis (Steinhoff et al., 1993). Based on these findings we speculate that rFGF1 in vivo decreases leukocyte recruitment by reducing endothelial VCAM-1 and thereby suppresses hepatic inflammation.

Together, our findings show that FGF1 has therapeutic potential in the treatment of NAFLD and NASH. As FGF1 is situated downstream of PPARγ, it is likely that therapeutic targeting of FGF1 will eliminate some of the adverse effects associated with TZDs that are mediated through direct activation of PPARγ.
ACKNOWLEDGEMENTS

We thank our colleagues for critical reading of the manuscript. Prof. Annette Gouw for help and suggestions on histological analysis. J.W.J. is supported by grants from The Netherlands Organization for Scientific Research (VIDI grant 016.126.338), the Dutch Digestive Foundation (grant WO 11-67) and the Dutch Diabetes Foundation (grant 2012.00.1537)
Supplementary data

Fig. S1. (A and B) Hepatic expression of M2 markers in ob/ob mice treated with rFGF1 for 12 d (n = 6) (A) or for 5 wk (n = 8) (B) (**P < 0.01; Mann-Whitney test). (C and D) Hepatic expression of M2 markers in C57BL/6 mice fed with a CDAA diet for 3 wk (n = 5) (C) or 6 wk (n = 5) (D) (*P < 0.05 vs. the CSAA group; one-way ANOVA).
Fig. S2. (A - D) Effect of rFGF1 on the mRNA expression of TNFα (A and C) and MCP-1 (B and D) in unstimulated primary hepatocytes (A and B) and in hepatocytes stimulated with IL-1β (C and D) (*P < 0.01; nonparametric Mann-Whitney test). (E and F) The expression of MCP-1 (E) and TNFα (F) in murine RAW267.4 macrophage at different time points after rFGF1 treatment and activation by LPS (n = 3; *P<0.05).
Fig. S3. Representative images showing the effect of rFGF1 on liver histology (H&E staining) (A) and lipid accumulation (Oil red O staining) (B) of male C57BL/6 mice (n = 8-10) challenged for 3 wk with a CDAA diet or on a CSAA control diet. (Scale bars: 300 µm).

Fig. S4. Representative images showing the effect of rFGF1 on liver histology (H&E staining) of male C57BL/6 mice (n = 8-10) challenged for 3 wk (A) or 6 wk (B) with a CDAA diet or on a CSAA control diet. (Scale bars: 600 µm).
Effective treatment of steatosis and steatohepatitis by FGF1

Fig. S5. Effect of rFGF1 on plasma ALT levels (A) and hepatic gene expression of inflammatory markers (B) in livers of male C57BL/6 mice (n = 8-10) challenged for 6 wk with a CDAA diet or on a CSAA control diet (n = 5; ***P < 0.001; one-way ANOVA). ns, not significant.

Fig. S6. Fibrogenic gene expression after 6 wk on a CDAA or a CSAA control diet (n = 5; *P < 0.05; one-way ANOVA).
Table S1. Histopathologic analysis of effects of rFGF1 on hepatic inflammation in ob/ob mice.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>rFGF1-treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lobular inflammation*</td>
<td>0.5 (1)</td>
<td>0.5 (3)</td>
</tr>
<tr>
<td></td>
<td>1 (4)</td>
<td>0.5 (3)</td>
</tr>
<tr>
<td></td>
<td>1 (7)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.5 (2)</td>
<td>0.5 (3)</td>
</tr>
<tr>
<td></td>
<td>1 (7)</td>
<td>1 (4)</td>
</tr>
<tr>
<td></td>
<td>0.5 (2)</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Average</td>
<td>0.75</td>
<td>0.58</td>
</tr>
<tr>
<td>Ballooning#</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Average</td>
<td>1.58</td>
<td>1.25</td>
</tr>
</tbody>
</table>

* Lobular inflammation is scored from 0 to 3, 0=none; 1=<2 average inflammatory foci per 200x field; 2=2-4 foci; 3=>4 foci; number in () indicates total foci of 5 random fields at 200x.

Ballooning score (0-2), 0=none; 1=few balloon cells; 2=many cells/prominent ballooning.

Table S2. Histopathologic analysis of effects of rFGF1 (3 weeks) on hepatic inflammation in choline-deficient mice.

<table>
<thead>
<tr>
<th></th>
<th>CSAA</th>
<th>CDAA</th>
<th>CDAA + rFGF1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lobular inflammation</td>
<td>0</td>
<td>1 (6)</td>
<td>0.5 (3)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.5 (3)</td>
<td>1 (5)</td>
</tr>
<tr>
<td></td>
<td>1 (4)</td>
<td>2 (11)</td>
<td>1 (6)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1 (5)</td>
<td>0.5 (3)</td>
</tr>
<tr>
<td></td>
<td>2 (14)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>0.25</td>
<td>1.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Ballooning</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>0</td>
<td>1.1</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Table S2. Histopathologic evaluation of the effect of rFGF1 on hepatic inflammation in mice challenged for 3 weeks with a choline-deficient diet, (CDAA = choline-deficient L-amino acid defined) or a choline-supplemented control diet (CSAA = choline-supplemented L-amino acid defined). Lobular inflammation and hepatocyte ballooning scores for each mouse are listed in the table, and the average value of each parameter is indicated under the dash line. Scoring was performed in the same way as described in Table S1.

Table S3. Histopathologic analysis of effects of rFGF1 (6 weeks) on hepatic inflammation in choline-deficient mice.

<table>
<thead>
<tr>
<th></th>
<th>CSAA</th>
<th>CDAA</th>
<th>CDAA + rFGF1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lobular inflammation</td>
<td>1 (3)</td>
<td>2 (9)</td>
<td>2 (16)</td>
</tr>
<tr>
<td></td>
<td>1 (2)</td>
<td>2 (10)</td>
<td>3 (23)</td>
</tr>
<tr>
<td></td>
<td>1 (1)</td>
<td>1 (5)</td>
<td>2 (16)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2 (11)</td>
<td>3 (20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 (8)</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>0.75</td>
<td>1.6</td>
<td>2.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CSAA</th>
<th>CDAA</th>
<th>CDAA + rFGF1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballooning</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>0.5</td>
<td>1.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Table S3. Histopathologic evaluation of the effect of rFGF1 on hepatic inflammation in mice challenged for 6 weeks with a choline-deficient diet, (CDAA = choline-deficient L-amino acid defined) or a choline-supplemented control diet (CSAA = choline-supplemented L-amino acid defined). Lobular inflammation and hepatocyte ballooning scores for each mouse are listed in the table, and the average value of each parameter is indicated under the dash line. Scoring was performed in the same way as described in Table S1.
Table S4. Histopathologic analysis of effects of rFGF1 (3 and 6 weeks) on proliferation in choline-deficient mice.

<table>
<thead>
<tr>
<th></th>
<th>CSAA</th>
<th>CDAA</th>
<th>CDAA + rFGF1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>2.0</td>
<td>7.6</td>
<td>4.8</td>
</tr>
<tr>
<td>6 week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>11.0</td>
<td>8.6</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Table S4. Histopathologic evaluation of the effect of rFGF1 on hepatic proliferation in mice challenged for 3 or 6 weeks with a choline-deficient diet, (CDAA = choline-deficient L-amino acid defined) or a choline supplemented control diet (CSAA = choline supplemented L-amino acid defined). Proliferation is expressed as number of Ki-67 positive nuclei within 4 microscopic fields at 100x magnification per mouse liver.
Table S5: qPCR primer sequences.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward primer</th>
<th>Reverse primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP-1</td>
<td>GGCTCAGCCAGATGCAATTA</td>
<td>AGCCTACTCATGGGATCATCTT</td>
</tr>
<tr>
<td>MCP-1 rat</td>
<td>TGCTCAGGCAAGTCATTAAT</td>
<td>CCGACTCATGGGATCATCTT</td>
</tr>
<tr>
<td>TNFα</td>
<td>GTAGCCCACTGCTAGCAACC</td>
<td>AGTTGGTGTCTTTGAGATCCATG</td>
</tr>
<tr>
<td>IL-1β</td>
<td>ACCCTGCAGCTGGAGAGTGT</td>
<td>TTGACTCTATCCTTGGAGACAAAAAC</td>
</tr>
<tr>
<td>E-selectin</td>
<td>AGATACCTTTCGGAAGAAAGCAAAGAAA</td>
<td>GTAAGAAGGCACTGGTAGTCTT</td>
</tr>
<tr>
<td>MCP-1</td>
<td>TGTCTCAGCCAGATGCAATTA</td>
<td>AGCCTACTCATGGGATCATCTT</td>
</tr>
<tr>
<td>TNFα</td>
<td>GTAGCCCACTGCTAGCAACC</td>
<td>AGTTGGTGTCTTTGAGATCCATG</td>
</tr>
<tr>
<td>IL-1β</td>
<td>ACCCTGCAGCTGGAGAGTGT</td>
<td>TTGACTCTATCCTTGGAGACAAAAAC</td>
</tr>
<tr>
<td>E-selectin</td>
<td>AGATACCTTTCGGAAGAAAGCAAAGAAA</td>
<td>GTAAGAAGGCACTGGTAGTCTT</td>
</tr>
<tr>
<td>MCP-1 rat</td>
<td>TGTCTCAGCCAGATGCAATTA</td>
<td>AGCCTACTCATGGGATCATCTT</td>
</tr>
<tr>
<td>TNFα</td>
<td>GTAGCCCACTGCTAGCAACC</td>
<td>AGTTGGTGTCTTTGAGATCCATG</td>
</tr>
<tr>
<td>IL-1β</td>
<td>ACCCTGCAGCTGGAGAGTGT</td>
<td>TTGACTCTATCCTTGGAGACAAAAAC</td>
</tr>
<tr>
<td>E-selectin</td>
<td>AGATACCTTTCGGAAGAAAGCAAAGAAA</td>
<td>GTAAGAAGGCACTGGTAGTCTT</td>
</tr>
</tbody>
</table>

Adiponectin AGGACATCTCCTGGAAGAAAGAAA | GTAAGAAGGCACTGGTAGTCTT |
Collagen-α1 TGTTCAGCTTGTGAGCCCTTC | GGAAGCTTCTCTGGAGAGAG |
αSMA ACTGGGAGCACTGGAAAGAG | GTGCTCTGCAGCAGTTC |
TIMP-1 CCTGCCCTAGCAGAAGGAC | TCACTCTTGAGTTGCAAAG |
U36B4 CTGGTGGCCGAAATAGCGTCCTC | GGAAGCTTCTCTGGAGAGAG |
U36B4 rat GGGCTCTATTAGGATGACAA | TAGTTGAGCTCCAGTGGGC |
IL-10 TGAGCAGCTTAAAGGGTCTTGGG | CAGGGAAATTCAATGCTCCTT |
CD206 GCTATGGAGCGAGGGGAGGATAT | CAGGAGACTTGAGATGGAAGA |
CD163 GAAGGAGAGGAGAGGGAGGATAT | CAGGAGACTTGAGATGGAAGA |
Arg1 ATGAAGAGCTGGGGCTTGGTG | CGAGGAGACTTGAGATGGAAGA |
REFERENCES

