Development of motor control
Schellekens, Johannes Maria Hubertus

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1985

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
SUMMARY

The aim of this thesis is to study the role and efficiency of motor control and anticipation processes in the development of children with and without disturbances in the motor system.

Chapter I is a general introduction to the subject of this thesis. In the first part of this chapter the rationale for extending knowledge in the field of motor development is given. Generally, it is found that motor development and disturbances in the motor system are manifest in the speed and accuracy of goal directed movements. The question is what processes determine speed and accuracy of such responses, and how they contribute to the ontogeny of skilled motor performance? In the second part of this chapter the general aim and the contents are described.

Chapter II is a selective survey of developmental theories and data relevant to the ontogeny of motor control and coordination. Organismic theories describe development as a process of differentiation and integration of abilities determined by the interaction between genetical and experiential factors. During development, children learn not only the invariant features of objects and situations, but also the properties of the neuromuscular system. This process is characterized by an increasing attunement to task situations. Information theories describe development as the improvement of information processing capacity. This is reflected by the increase in speed and accuracy of movements. It is hypothesized that improving attunement of motor actions to task situations is reflected in the increasing ability to preprogram movements accurately according to task demands, even in time pressure conditions. This may account for the increasing speed and accuracy of responses with development.

Chapter III is dedicated to the existing literature on the field of motor control and anticipation processes relevant to the performance of goal directed movements. Motor control theories distinguish roughly two types of movements, namely continuous or open-loop controlled movements and discontinuous or closed-loop controlled movements. The former type is determined completely by the initial impulse. This is preprogrammed and accurately attuned to the target. However, when on the basis of feedback monitoring it is established that the initial impulse does not fit the task demands and the movement does not arrive at the target, the initial impulse is succeeded by one or more corrective impulses. Such corrective impulses appear as discontinuities in the velocity-time signal of the discontinuous movement nearby the target. Extra force impulses lengthen the duration of the movement. The ability to predict the outcomes of neuromuscular activities is called "effector anticipation". Successful effector anticipation is reflected by an accurate attunement of the preprogrammed initial impulse and the absence of corrective impulses nearby the target. In such continuous movements peripheral feedback becomes redundant. The control of continuous movements spares the processing capacity of the sensori-motor system. Accurate effector anticipation allows visual "receptor anticipation" during the execution of movements. This means that information with respect to succeeding motor activities in a sequence of goal directed movements can be perceived and processed in advance. Successful receptor anticipation shortens the latencies between succeeding movements.

Chapter IV deals with the experimental study of motor control processes and effector anticipation in simple goal directed movements of 5-9 year old children and adults. They carried out a reciprocal tapping task, in which time pressure and movement complexity was manipulated following Fitts' law by
varying the distance between response buttons. It appeared that adults mainly used continuous movements. In children, additional force-impulses were always found after the initial impulse. Therefore, it was concluded that the proficiency of preprogramming or effector anticipation was better in adults than in children. Accuracy of the initial impulse was unaffected when distance was manipulated. Time pressure diminished the duration of the movement. This latter effect was highly correlated with a decrease of the number of force impulses.

Chapter V is concerned with the experimental study of receptor-effector anticipation. Children of 5-9 old years and adults carried out a serial two-choice tapping task. The subjects made alternating movements between a home button and one of two possible target buttons. Pressing the home button elicited an imperative visual stimulus which indicated the next target. In half of the movements, the imperative stimulus was precued during the movement from target to home button. In the other half there was no precuing. Distance between home and target buttons was manipulated. Children as well as adults took advantage of target precueing and were thus able to receptor anticipation. This could be concluded from the fact that target precueing shortened the time on the home button. Subjects took more advantage from target precueing in the 39 cm distance condition than in the 19 cm condition. Perception and processing of the precue interfered with the execution of the movement in an age dependent way. From movement analysis it appeared that children used more discontinuous movements.

Chapter VI is dedicated to the experimental examination of effector anticipation in MND children. A tapping task was applied to explore further the relationships between response time and spatial-temporal organization of movements in children with MND as compared to optimal controls. Differences were found with respect to inter-response intervals as well as to the organization of the movements. Children with MND had longer overall response times than controls, more movement elements per tap and shorter first movement elements. Further, the participation of shoulder and trunk movements in the movement organization was larger and indicated a more immature movement pattern. The observed differences between children with MND and controls may be due to information processing limitations and increased attentional demands for the execution of movements in MND children.

Chapter VII deals with the conclusion that the role and efficiency of motor control processes are changing during development. It seems that the increase in motor control efficiency depends on improvement of sensori-motor capacity. Several factors which are related to capacity are discussed.