Details of Mannitol Transport in Escherichia coli Elucidated by Site-Specific Mutagenesis and Complementation of Phosphorylation Site Mutants of the Phosphoenolpyruvate-Dependent Mannitol-Specific Phosphotransferase System

Weeghel, R.P. van; Hoek, Y.Y. van der; Pas, H.H.; Elferink, Maria; Keck, W.; Robillard, G.T.

Published in: Biochemistry

DOI: 10.1021/bi00221a006

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date: 1991

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Details of Mannitol Transport in *Escherichia coli* Elucidated by Site-Specific Mutagenesis and Complementation of Phosphorylation Site Mutants of the Phosphoenolpyruvate-Dependent Mannitol-Specific Phosphotransferase System†

R. P. van Weeghel,† Y. Y. van der Hoek,‡ H. H. Pas,† M. Elferink,‡ W. Keck,‡ and G. T. Robillard*,†

Department of Physical Chemistry and Institute BIOSON and Department of Biochemistry, University of Groningen, Nijenborgh 16, 9747 AG Groningen, The Netherlands

Received May 1, 1990; Revised Manuscript Received October 22, 1990

ABSTRACT: The mannitol transport protein (EIImtl) carries out translocation with concomitant phosphorylation of mannitol from the periplasm to the cytoplasm, at the expense of phosphoenolpyruvate (PEP). The phosphoryl group which is needed for this group translocation is sequentially transferred from PEP via two phosphorylation sites, located exclusively on the C-terminal cytoplasmic domain, to mannitol. Oligonucleotide-directed mutagenesis was used to investigate the precise role of these sites in phosphoryl group transfer, by producing specific amino acid substitutions. The first phosphorylation site, His-554 (P1), was replaced by Ala, which renders the EIImtl completely inactive in PEP-dependent mannitol phosphorylation, but not in mannitol/mannitol 1-phosphate exchange. The P2 site mutant, EIImtl-C384S, was inactive both in the mannitol phosphorylation reaction and in the exchange reaction, due to replacement of the essential Cys-384 by Ser. Although EIImtl and EIImtl-C384S were both catalytically inactive in the PEP-dependent phosphorylation, EIImtl-C384S was able to restore up to 55% of the wild-type mannitol phosphorylation activity with the EIImtl mutant, indicating a direct phosphotransfer between two subunits. These phosphorylation data together with the data obtained from mannitol/mannitol phosphate exchange kinetics, after mixing EIImtl and EIImtl-C384S, indicated the formation of functionally stable heterodimers, which consist of an EIImtl and an EIImtl monomer.

The bacterial phosphotransferase system (PTS) mediates transport with concomitant phosphorylation of hexoses and hexitols. It consists of two general phosphocarriers, EI and HPr, and several sugar-specific transport proteins, the enzyme II or enzyme II/III pairs, which become phosphorylated during sugar uptake (Postma & Lengeler, 1985; Robillard & Lolkema, 1988). The mannitol-specific transport protein (EIImtl), an integral membrane protein, carries out mannitol translocation and phosphorylation from the outside to the inside of the cell at the expense of phosphoenolpyruvate (PEP) as illustrated in Scheme I.

Scheme I

\[
\begin{align*}
\text{PEP} + \text{HPr} & \rightarrow \text{P-HPr} + \text{pyruvate} & \text{(1)} \\
\text{P-HPr} + \text{EIImtl} & \rightarrow \text{P-His554-EIImtl} + \text{HPr} & \text{(2)} \\
\text{P-His554-EIImtl} & \rightarrow \text{P-Cys384-EIImtl} & \text{(3)} \\
\text{P-Cys384-EIImtl} + \text{mtl}_{\text{out}} & \rightarrow \text{EIImtl} + \text{mtl}_{\text{in}} & \text{(4)}
\end{align*}
\]

A mannitol/mannitol 1-phosphate exchange reaction (Scheme II) has also been shown to be catalyzed by EIImtl.

Scheme II

\[
\begin{align*}
\text{mtl}_{\text{out}} + \text{mtl}_{\text{in}} & \rightarrow \text{EIImtl} \\
\text{EIImtl} & \rightarrow \text{EIImtl} + \text{mtl}_{\text{in}} + \text{mtl}_{\text{out}}
\end{align*}
\]

† This research was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Scientific Research.

* To whom correspondence should be addressed at the Department of Chemistry, University of Groningen.

† Department of Physical Chemistry and Institute BIOSON.

‡ Department of Biochemistry.

1 Abbreviations: PTS, phosphotransferase system; PEP, phosphoenolpyruvate; EI, enzyme I; EIImtl, mannitol-, N-acetylglucosamine-, glucose-, and β-glucoside-specific enzyme II of the PTS; EIImtl, glucose-specific enzyme III of the PTS; DTT, dithiothreitol; EDTA, ethylenediaminetraacetic acid; decyl-PEG, decyl(poly(ethylene glycol)) 300; ISO, inside-out.
1990), confirm the location of P1 (His-554) on a fused EII*-like domain. In the following paper, we report the overexpression, purification, and characterization of the EII*-like domain of E. coli EII*mt (van Weeghel et al., 1991). It can be produced as a stable protein which retains the ability to phosphorylate the second site at a considerable rate. The second phosphorylation site, P2, was located on a peptide covering the region Lys-379 to Met-393, which contained Cys-384, Asp-385, and Ser-390 and -391, all of which were potential sites for phosphorylation. The pH dependence of the hydrolysis of this phosphorylated peptide proved that the second phosphorylation site was an S-phosphocysteine (Pas & Robillard, 1988).

Whether phosphoryl group transfer between sites P1 and P2 occurs under physiological conditions within one subunit or via an intermolecular transfer in the native enzyme is unknown. Vogler et al. (1988) and Vogler and Lengeler (1988) reported that the phosphoryl group could be passed between different EII species, raising the possibility of a mechanistically significant intermolecular phosphoryl group transfer. These observations were supported in the case of E. coli EII*mt when Stephan et al. (1989) and White and Jacobson (1990) demonstrated an intermolecular phosphotransfer between a truncated EII*mt, missing the extreme C-terminal part, and an inactivated EII or large C-terminal fragment both containing the first phosphorylation site, His-554. In keeping with the results of Pas and Robillard (1988), a free Cys-384 was necessary for the activity to be observed.

This paper investigates the precise role of the phosphorylation sites in the phosphoryl group transfer within one subunit or between two subunits of the EII*mt dimer, by producing site-directed EII mutants, and comparing the activities of these mutants with native EII*mt.

Experimental Procedures

Materials

- d-[1-14C]Mannitol (59 mCi/mmol) and d-[1-2H]mannitol (12 mCi/mmol) were purchased from the Radiochemical Centre, Amersham, England. Restriction endonucleases, E. coli DNA polymerase (Klenow fragment), T4 DNA ligase, and T4 polynucleotide kinase were obtained from Boehringer Mannheim. Polyclonal antibodies against EII*mt were raised in rabbits with purified EII*mt as described by Pas et al. (1987). Goat anti-rabbit IgG-horseradish peroxidase conjugate was purchased from Bio-Rad. EI and HPr were purified as described previously (Dooeyewaard et al., 1979). The sodium salt of mannitol 1-phosphate was prepared from the barium salt as described by Roosien et al. (1984). The mismatch oligonucleotides, obtained from Eurosequence BV Groningen, were prepared on an Applied Biosystems Model 380 B DNA synthesizer, completely deprotected and used unpurified. All other chemicals were reagent grade and were obtained from commercial sources.

Methods

Bacterial Strains. The following strains of *Escherichia coli* were used: JM101, Δ(lac-proAB) supE, thi. [F', traD36, proA*B*], lacI*ZΔM15] (Yanish-Perron et al., 1985); BMH71-18 MutL, Δ(lac-proAB), supE, thi. [F', proA*B*, lacI*ZΔM15], mutL::Tn10 (Kramer et al., 1984): HB2154, Δ(lac-proAB), thi. [F', proA*B*, lacI*ZΔM15] (Carter et al., 1985); ASL-1, F, lacY1, galT6, xyl-7, thi-1, hisG1, argG6, metB1, rpsL104, mtlA2, recA (van Weeghel et al., 1990).

Oligonucleotide-Directed Mutagenesis. The mutagenic primers used to replace His-554, Cys-384, and Asp-385 in EII*mt are listed in Table I. The gene encoding mannitol-specific EII (mtA) has been subcloned and overexpressed in *E. coli* (van Weeghel et al., 1990). The whole gene with its own promoter was inserted into a phagemid mutagenesis vector, pMa5-8 (Stanssens et al., 1989). The resulting plasmid, pWAMa, produced high levels of phage particles in the medium, when the *E. coli* strain BMH 71-18 MutL was super-infected with M13KO7 helper phage at a multiplicity of 20:1 when the bacterial cells were in the early log phase.

Isolation of single-stranded DNA (ssDNA) and oligonucleotide-directed mutagenesis were performed on ssDNA of pWAMa, following the procedure of the gapped duplex method with the pMac5-8 vector system, as described by Stanssens et al. (1989). The gapped duplex DNA (gdDNA) was made by mixing the linearized vector pMe5-8 with ssDNA of pWAMa (pMa5-8 type). Formation of gdDNA was checked by agarose gel electrophoresis of an aliquot of the DNA mixture. After annealing of the phosphorylated mismatch primer to the gdDNA, the gap is filled-in, in vitro, by DNA polymerase and T4 DNA ligase. The resulting heteroduplex with the incorporated primer was transfected into the suppressor (su*) strain BMH71-18 MutL. An aliquot of the transformation mixture was plated on selective media to determine the efficiency of transformation. The remainder of the transformation mixture was used to inoculate 10 mL of 2XTY (16 g of Bacto tryptone, 10 g of yeast extract, and 5 g of NaCl per liter) medium containing the appropriate antibiotic. After overnight growth, plasmid DNA was isolated by using a small-scale purification method (Maniatis et al., 1982) and used to transform a suppressor (su*) strain such as HB2154. For selection of transformants, transformation mixtures were plated on 2XTY plates containing the appropriate antibiotic (chloramphenicol, 25 μg/mL). The entire mtA gene encoding the H554A, C384S, or D3851 mutation was sequenced by the dideoxyribonucleotide sequencing method (Sanger et al., 1977) using synthetic primers complementary to appropriate regions along the gene.

Growth of Cells and Preparation of Membranes. *E. coli* strain ASL-1, harboring the expression plasmids encoding wild-type EII*mt*, H554A, C384S, and D3851, respectively, was grown overnight in 2XTY medium (10 g of Bacto tryptone, 16 g of yeast extract, and 5 g of NaCl per liter) with the appropriate antibiotic. For preparation of inside-out (ISO) vesicles, cells were collected and disrupted by passage through a French pressure cell at 10000 psi. The suspension was centrifuged at 20000g for 10 min, to remove unbroken cells. The supernatant was recentrifuged at 20000g for 60 min, after which the supernatant was discarded and the pellet re-suspended in buffer containing 50 mM Tris-HCl, pH 7.5, 1

| Table I: Nucleotide and Amino Acid Replacements in mtA Encoding Enzyme EII*mt |
|-----------------|--------------------|----------------|-------------------|
| EII*mt mutant | mutagenic primer* | new restriction site | amino acid replacement |
| H554A | 5'-CAACCGTGCCGGCTGGCACC-3' | *NaeI* | His-554 → Ala |
| C384S | 5'-CCCGGCTCGCTACAGCGATG-3' | *NheI* | Cys-384 → Ser |
| D3851 | 5'-CCCATACGGCGATACAGCGA-3' | | Asp-385 → Ile |

*Underlining indicates the nucleotides changed.
mM DTT, and 1 mM EDTA (1 mL/g of starting cells, wet weight) and stored in aliquots in liquid nitrogen until used.

Mannitol Transport and Fermentation. EIImtl permease activity was assayed qualitatively by transforming the EIImtl-deficient strain ASL-1 with different expression plasmids, followed by growth and fermentation on mannitol-containing McConkey indicator plates (Difco Bacto Agar base, Difco Lab).

EIImtl Activity Assays. PEP-dependent mannitol phosphorylation activity was measured as described by Robillard and Blaauw (1987). The assay mixture for the PEP-dependent phosphorylation contained 25 mM Tris-HCl, pH 7.5, 5 mM MgCl₂, 5 mM PEP, 5 mM DTT, and 0.35% decyl-PEG. The general phosphocarriers EI (0.6 μM) and HPr (3 μM) were present in saturating amounts, and ISO vesicles containing wild-type EIImtl, EII-H554A, EII-C384S, and EII-D385I were added in different concentrations (1 mM up to 0.5 μM) to the assay mixture. The reaction mixtures were preincubated at 30 °C for 10 min; then reactions were started with 20 μM [14C]mannitol. The buffer of the mannitol 1-phosphate/mannitol exchange assay was the same as for the PEP-dependent assay, except that 1 mM mannitol 1-phosphate was substituted for PEP, 0.5 μM [3H]mannitol was used, and the general phosphocarriers, EI and HPr, were omitted.

In the complementation assays, PEP-dependent and exchange activities were measured under the same assay conditions as described above by adding different amounts of the EIImtl mutant permease (3.4, 6.9, 17.3, 34.4, 68.8, and 137.5 nM) to the reaction mixture containing 5.6 nM EII-H554A mutant. The EIImtl concentrations in the ISO vesicles were determined by measuring the specific mannitol binding using flow dialysis. Measurements were done at various mannitol concentrations, and the number of binding sites was determined by extrapolation from Scatchard plots. The EIImtl concentration was calculated assuming one high-affinity binding site per dimer (Pas et al., 1988). Activities were calculated as a function of time at various enzyme concentrations and were linear with respect to both parameters.

Flow Dialysis. Binding of [3H]mannitol to EIImtl was measured with flow dialysis as described (Loikema et al., 1990).

Protein Determination. Protein in the membrane vesicles was measured according to the method of Bradford (1976) with bovine serum albumin as a standard.

RESULTS

Mutagenesis, DNA Sequencing, and Expression. The mtlA gene encoding the mannitol-specific EIImtl was subcloned onto a phagemid vector to yield the plasmid pWAMA which was used, after transforming it into *E. coli* JM101, to isolate dsDNA and ssDNA needed for gapped-duplex mutagenesis with amber selection (Figure 1). Together with the replacements of specific amino acids, new restriction sites were introduced into the gene for easy identification of the mutated plasmids. After the mutagenesis reactions were performed, plasmid DNA was isolated from randomly picked colonies and used for restriction analysis for the presence of the new sites and corresponding amino acid substitutions (Table I). A few clones of each mutant containing mutant plasmid DNA were infected with helper phage for the production of ssDNA. Subsequently, phages containing mutated mtlA were isolated, and their ssDNA was sequenced with appropriate primers (Sanger et al., 1977). The amino acid substitutions, corresponding restriction sites, and primers are listed in Table I. In codon 554, the histidine was replaced by Ala, while in codons 384 and 385 the Cys and Asp were replaced by Ser and Ile, respectively. The entire mtlA gene of all mutants was also sequenced; with the exception of the desired substitutions, the gene sequence was identical with that reported by Lee and Saier (1983).

In vivo mannitol transport and fermentation catalyzed by mutated EIImtl were monitored in *E. coli* ASL-1 (mtlA+). The strain was transformed with the expression plasmids encoding wild-type EIImtl or the mutated enzyme, EIImtl-H554A, EIImtl-C384S, and EIImtl-D385I, and analyzed qualitatively on McConkey indicator plates containing the appropriate antibiotic and 0.2% d-mannitol. After growth overnight, transformants harboring wild-type EIImtl were dark red, indicating the uptake and fermentation of the sugar. As expected, transformants of the two phosphorylation site mutants, EIImtl-H554A (P1) and EIImtl-C384S (P2), were white, indicating that these enzymes were not able to transport and phosphorylate mannitol needed for fermentation. Contrary to our expectations, EIImtl-D385I transformants were also white on the indicator plates, suggesting a negative mannitol fermentation phenotype. Although, no fermentation on indicator plates was detectable for these transformants, differences became apparent when the membranes were isolated and assayed for mannitol phosphorylation in vitro.

In order to compare the specific activities of the mutants and wild-type EIImtl in vitro, it was essential to quantitate the EIImtl content in the membranes. EIImtl concentration was established by analyzing small aliquots of ISO vesicles by flow dialysis. Data obtained by this procedure showed some differences in the expression levels of the various mutated forms of EIImtl, even though they were expressed from the same promoter (Figure 1). The amount of wild-type EIImtl, EIImtl-H554A, and EIImtl-C384S in the ISO vesicle preparations was 1.7, 2.8, and 0.7 μM, respectively. The concentration of EIImtl-D385I could not be accurately determined by using this mannitol binding method due to nonlinear Scatchard plots.

![FIGURE 1: Oligonucleotide-directed mutagenesis following the gapped-duplex method with amber selection using the pMac5-8 system.](image-url)

PEP-Dependent Phosphorylation and Transphosphorylation of Mannitol in Vitro. Membrane preparations from ASL-1 harboring different EIImtl mutants were tested for their ability to catalyze PEP-dependent phosphotransferase, via P1 and P2 (Scheme I and Figure 2), or to catalyze mannitol/mannitol phosphate exchange via P2 (Scheme II). Table II summarizes the results of the experiments. The two phosphorylation site mutants, EIImtl-H554A and EIImtl-C384S, which showed no mannitol fermentation on McConkey plates, showed only background PEP-dependent phosphorylation activity in vitro. These results were expected since these sites

2 Site-directed mutants are designated as follows: The one-letter amino acid code is used followed by a number indicating the position of the residue in the wild-type permease, then followed by a second letter denoting the amino acid replacement at this position.
TABLE II: PEP-Dependent Phosphorylation and Exchange Activities of Different Enzyme II Mutants in Vitro

<table>
<thead>
<tr>
<th>EIImt with amino acid replacement</th>
<th>plasmid</th>
<th>PEP-dependent phosphorylation</th>
<th>exchange</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild type</td>
<td>pWAMa</td>
<td>855</td>
<td>9.7</td>
</tr>
<tr>
<td>H554A</td>
<td>pWAMc7</td>
<td>0.12</td>
<td>12.0</td>
</tr>
<tr>
<td>c384S</td>
<td>pWAMc5</td>
<td>0.20</td>
<td>0.048</td>
</tr>
<tr>
<td>D385I</td>
<td>pWAMc1</td>
<td>+a-d</td>
<td>+a-d</td>
</tr>
</tbody>
</table>

*aSee Table 1. *EIImt mutants are all expressed from the same vector system as depicted in Figure 1. The conditions and protein concentrations used are specified under Experimental Procedures. The concentration of EIId385I could not be accurately determined by using the mannitol binding method due to nonlinear Scatchard plots. Consequently, quantitative statements cannot be made.

have been identified chemically as the phosphorylation sites.

The Cys-384 peptide has an aspartic acid at position 385 which, in principle, could also function as a phosphorylation site, as is the case in Na+/K+-ATPase (Post & Kume, 1973) and the CheY protein (Sanders et al., 1989). Considering the novelty of the phosphocysteine observation (Pas & Robillard, 1988a), replacement of the Asp seemed like a prudent control experiment. The choice of Ile as a replacement for Asp-385 was dictated by the occurrence of the sequence Ala-Cys-Ile in EIImt, EIImt, and EIImt in stretches homologous to the phosphorylation site peptide containing an Ala-Cys-Asp sequence in EIImt and a similar peptide in EIImt. Table II shows that the activity of EIId385I could be measured and, therefore, Asp-385 does not appear to be essential for catalytic activity.

The presence of the second phosphorylation site, Cys-384, is a prerequisite for exchange between, mannitol and mannitol 1-phosphate (Scheme II and Figure 2). The exchange activity of the wild-type EIImt, under the conditions specified under Experimental Procedures, was 9.7 nmol min⁻¹ (nmol of EIImt⁻¹), while EIIC384S, as expected, was completely inactive in this in vitro assay (Table II). Under the same conditions, the rate of exchange of the EIIMH554A permease was increased up to 12.0 nmol min⁻¹ nmol⁻¹. Membranes containing EIIMH385I were also active in the exchange reaction.

Complementation of PEP-Dependent Phosphorylation Activity. Figure 2 indicates two possible routes of phosphoryl group transfer between sites P1 and P2: a direct transfer between His-554 (P1) and Cys-384 (P2). In the EIIMH554A mutant, the His-554 is replaced by alanine, while in the EIIC384S mutant the Cys-384 is replaced by a serine.

Table III: PEP-Dependent Phosphorylation Activities of Different Enzyme II Mutants in Vitro by Complementation

<table>
<thead>
<tr>
<th>[EIIMH554A] (nM)</th>
<th>[EIIC384S] (nM)</th>
<th>sp act.⁴ PEP-dependent phosphorylation [nmol of mlP min⁻¹ (nmol of EIIMH554A)⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>5.6</td>
<td>0.0</td>
</tr>
<tr>
<td>5.6</td>
<td>3.4</td>
<td>0.0</td>
</tr>
<tr>
<td>5.6</td>
<td>17.3</td>
<td>137.2</td>
</tr>
<tr>
<td>5.6</td>
<td>34.4</td>
<td>212.1</td>
</tr>
<tr>
<td>5.6</td>
<td>68.8</td>
<td>281.7</td>
</tr>
<tr>
<td>5.6</td>
<td>137.5</td>
<td>371.2</td>
</tr>
</tbody>
</table>

⁴The activities are corrected for background, 0.12 nmol of mlP min⁻¹ (nmol of EIIMH554A)⁻¹ and 0.2 nmol of mlP min⁻¹ (nmol of EIIC384S)⁻¹.

DISCUSSION

Dimeric forms of EIImt have been observed and reported to be important for the structure and function of the enzyme (Leonard & Saier, 1983; Roossien & Robillard, 1984; Stephan & Jacobson, 1986; Pas et al., 1988; Lolkema & Robillard, 1990). Figure 2 presents a schematic representation of the dimer protein and shows the residues identified as the two phosphorylated intermediates. His-554, which is located in
an EIII-like domain (Pas et al., 1988; Grisafi et al., 1989; van Weeghel et al., 1991), receives its phosphoryl group from phospo-HPr and passes it on to the second phosphorylation site, Cys-384. From there, the phosphoryl group is coupled to mannitol. This is the normal mannitol transport and phosphorylation sequence followed in vivo (Scheme I). The enzyme is also capable of catalyzing the exchange reaction (Scheme II) in the absence of other PTS components. For this reaction, it is assumed that mannitol 1-phosphate binds to the normal product-leaving site and phosphorylates Cys-384, after which the same or another molecule of mannitol dephosphorylates the enzyme forming mannitol-1-P again. Conceptually, the active-site residue, His-554, is not necessary for this reaction.

The results presented here support the conclusions of Pas and Robillard (1988) that Cys-384 is important for phosphorylation of mannitol. These results are in agreement with data reported by Nuoffer et al. (1988), where they inactivated the glucose permease in the PEP-dependent phosphorylation reaction upon replacing the activity-linked cysteine with Ser, and with results presented by Grisafi et al. (1989), where they produced and characterized different classes of EII mutated C-terminal deletion mutants. The only class of truncated mannitol permeases which retain phosphorylation activity were those with the Cys-384 and His-554 preserved. The His to Ala substitution in EII-H554A led to the complete inactivation of the in vivo and in vitro PEP-dependent phosphorylation activity, because phosphoglucone transfer from phospho-HPr to EII is unable to occur. In principle, the mannitol/ mannitol phosphate exchange activity of EII-H554A would not have to be reduced if the His-554 phosphorylation site were not necessary for this reaction. The exchange activity listed in Table II confirms this proposal. The increase in specific activity to 12.0 nmol min⁻¹ nmol⁻¹, compared to the 9.7 nmol min⁻¹ nmol⁻¹ wild-type EII indicates that the domain carrying His-554 interacts with and influences the activity of the domain carrying the Cys-384. Grisafi et al. (1989) observed increased activities in more than half of the deletion mutants in which segments extending from the C-terminus (637) into residue 520 had been deleted; however, since the EII concentration of their mutants was not determined, quantitative statements could not be made.

Complementation of the PEP-Dependent Phosphorylation Activity of the EII-H554A and EII-C384S Permeases. The present data clearly demonstrate an intermolecular phosphotransfer between subunits of the two permeases. This result is consistent with observations made by Stephan et al. (1989) and White and Jacobson (1990), who showed phosphotransfer between a truncated EII, missing the first phosphorylation site, and a proteolytic and partially purified C-terminal fragment or an expressed cytoplasmic domain of EII. It is also consistent with the results of Vogler et al. (1988) and Vogler and Lengeler (1988). They reported that EII and EII, whose C-terminal domains show considerable homology with EIII, could replace the EIII, in EII, glucose transport and phosphorylation. Furthermore, addition of EIII to a truncated EII restored the activity of the mutated EII.

The mannitol phosphorylation rates using P1 and P2 site mutants show that intermolecular phosphotransfer occurs at a considerable rate. The calculated V₅₀ of 475 nmol min⁻¹ (nmol of EII-H554A)⁻¹ is half of that of the wild-type [855 nmol min⁻¹ (nmol of EII)]. In the following paper (van Weeghel et al., 1991), we demonstrate the phosphotransfer between a purified domain (CI) containing the first phosphorylation site, His-554 (Figure 2), and EII-H554A described in this paper. The Kₐ and V₅₀ were 26.4 µM and 212 nmol min⁻¹ (nmol of EII-H554A)⁻¹, respectively, which lead to the conclusion that there is a distinct binding site for the CI domain on the CII domain involved in transferring the phosphoryl group to Cys-384. The results of the domain study and the present study with intact EII mutants differ in that the PEP-dependent phosphorylation activity of EII-H554A could be restored by much lower concentrations of CI-EII-C384S mutant (Kₐ = 42 nM) than of purified CI domain (Kₐ = 26.4 µM). Furthermore, the V₅₀ was twice as high with the intact mutants. Although this is not proof of the formation of stable heterodimers, it shows that the phosphotransfer between intact enzymes is much better, probably due to a stronger and more selective association between the intact proteins.

Complementation of the Mit/Mut-P Exchange Activity of EII-H554A and EII-C384S. EII concentration-dependent kinetics have suggested that subunit association (dimers or oligomers) is essential for exchange activity (Leonard & Saier, 1983; Roossien et al., 1984; Lolkema & Robillard, 1990). If we assume that exchange occurs only with stable EII dimers, the activity in Table IV would be due to EII-H554A homodimers and EII-H554A/EII-C384S heterodimers. When the exchange activity is expressed in terms of the concentration of the EII dimers, we see an increase by a factor of 1.3-1.5. The simplest explanation for the necessity of dimers for the exchange activity is that one subunit binds mannitol phosphate while the other binds mannitol. Since phosphotransfer occurs via Cys-384, both of the subunits but only one of the

Table IV: Exchange Activities of Different Enzyme II Mutants in Vitro by Complementation

<table>
<thead>
<tr>
<th>ASL'</th>
<th>H554A (nM)</th>
<th>C384S (nM)</th>
<th>H554A (homodimer)</th>
<th>C384S (homodimer)</th>
<th>H554A/C384S (heterodimer)</th>
<th>exchange act. [nmol min⁻¹ (nmol of EII⁻¹)⁺] containing EII-H554A</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>34.4</td>
<td>5.6</td>
<td>24.4</td>
<td>5.6</td>
<td>0.78</td>
<td>10.8</td>
</tr>
<tr>
<td>5.6</td>
<td>3.4</td>
<td>3.4</td>
<td>1.28</td>
<td>3.4</td>
<td>1.39</td>
<td>9.3</td>
</tr>
<tr>
<td>5.6</td>
<td>6.9</td>
<td>2.51</td>
<td>8.94</td>
<td>6.9</td>
<td>1.28</td>
<td>9.3</td>
</tr>
<tr>
<td>5.6</td>
<td>17.3</td>
<td>1.39</td>
<td>13.06</td>
<td>17.3</td>
<td>1.39</td>
<td>9.3</td>
</tr>
<tr>
<td>5.6</td>
<td>34.4</td>
<td>0.78</td>
<td>29.58</td>
<td>34.4</td>
<td>0.78</td>
<td>10.8</td>
</tr>
<tr>
<td>++</td>
<td>5.6</td>
<td>5.6</td>
<td>9.63</td>
<td>5.6</td>
<td>9.63</td>
<td>10.8</td>
</tr>
<tr>
<td>5.6</td>
<td>6.18</td>
<td>7.8</td>
<td>8.98</td>
<td>6.18</td>
<td>7.8</td>
<td>12.0</td>
</tr>
</tbody>
</table>

*These are theoretical values calculated by assuming identical equilibrium constants for the formation of homo- and heterodimers and assuming that all enzyme is in the dimer form. The concentration of EII-H554A in the different iso- and vesicles was determined by flow isometric experiments as described under Experimental Procedures. Buffer conditions and protein concentrations used in the complementation assays are described under Experimental Procedures. The concentration of total protein in the experiments using ASL ISO vesicles lacking EII was identical with the concentration of total protein in the experiments using ISO vesicles containing 34.4 nM EII-C384S.
Site-Specific Mutants of EII

cysteines would be involved in each turnover of the homodimer. In the heterodimers, only one Cys-384 is present per dimer, thus allowing every cysteine to participate in every turnover. This would result in twice as much mannitol phosphate being formed per unit time. The maximum stimulation expected would be a factor of 2. That the maximum stimulation is not achieved is understandable since nonproductive complexes in which mannitol phosphate binds to the “incorrect” subunit are expected.

ACKNOWLEDGMENTS

We thank H. Enequist for the nucleotide sequence work.

Registry No. Mannitol, 69-65-8; enzyme II^ml, 37278-09-4.

REFERENCES