A Raman and FIR spectroscopic study of the solid solution (N(CH3)4)2ZnCl4-xBrx
Loosdrecht, P.H.M. van; Janner, A.

Published in:
Journal of Physics%3A Condensed Matter

DOI:
10.1088/0953-8984/3/41/010

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1991

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
A Raman and FIR spectroscopic study of the solid solution
(N(CH₃)₄)₂ZnCl₄₋ₓBrₓ

P H M van Loosdrecht† and A Janner‡
† Research Institute of Materials, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands
‡ Institute of Theoretical Physics, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands

Received 19 March 1991, in final form 31 May 1991

Abstract. Polarized Raman and far-infrared spectra (10–350 cm⁻¹) of the solid solution (N(CH₃)₄)₂ZnCl₄₋ₓBrₓ are presented for several compositions (x = 0, 1, 2, 2.9 and 4) in the high- (300 K) and low- (60 K) temperature phases of the crystals. Apart from the internal modes of the ZnCl₄⁻ and ZnBr₄⁻ ions, several new active internal modes are found in the spectra, originating from the mixed (ZnCl₄₋ₓBrₓ)²⁻ ions (n = 1, 2, 3 and 4). The spectra are in fair agreement with a simple 'free' ion model for the vibrational modes of the (ZnCl₄₋ₓBrₓ)²⁻ ions. From the intensities of the tetrahedral ν₁ modes, the relative concentrations of the various (ZnCl₄₋ₓBrₓ)²⁻ ions in the crystals are estimated. Using these relative concentrations the value of x in the crystals is calculated, and found to be in good agreement with the stoichiometries of the crystal growth solutions. A pronounced low-frequency mode is observed in the spectra which scales with the average moment of inertia of the (ZnCl₄₋ₓBrₓ)²⁻ ions, and is therefore assigned to a librational mode of these ions.

1. Introduction

The solid solution (N(CH₃)₄)₂ZnCl₄₋ₓBrₓ belongs to the A₂BX₄ family of dielectrics, having in general an orthorhombic (β-K₂SeO₄) high-temperature phase. At lower temperature, different sequences of modulated phases are found for the members of this family, among which an incommensurate one is often found. The many common structural features among the members leads to the assumption that the modulation in this family has a common origin (Janssen 1986, Godefroy 1987). In fact, for many members the phases (both commensurate and incommensurate) can be described to a very good approximation as different three-dimensional intersections of a four-dimensional structure, with a single superspace group symmetry (the prototype symmetry group).

A few years ago, Colla et al (1984) determined the x–T phase diagram of the solid solution (N(CH₃)₄)₂ZnCl₄₋ₓBrₓ (tetramethylammonium-tetra(chloro,bromo)zincate, hereafter denoted by TZCB). They found a rich variety of phases and phase transitions. The phase transitions in this system result mainly from modulated rotations (θₓ, 0, 0, θᵧ) and translations (0, tᵧ, 0) of the N(CH₃)₄⁺ and of the (ZnCl₄₋ₓBrₓ)²⁻ (hereafter denoted by ZCB²⁻) tetrahedra. At high temperature (T > 293 K) the phase has space group symmetry Pnma for all compositions. At lower temperature the pure
The chloride compound exhibits phase transitions (Sawada et al 1978) to respectively an incommensurate phase, an orthorhombic, two monoclinic and finally an orthorhombic phase again. The pure bromide compound, however, only exhibits one phase transition to a monoclinic low-temperature phase (Gesi 1982, Trouelain et al 1985). The modulated incommensurate phase present in the \(x = 0 \) compound disappears at \(x \approx 3 \). Near \(x \approx 3 \), the wavevector of the modulation continuously changes from an incommensurate to a commensurate value. Indeed, this is exceptional, as usually one observes a discontinuous jump of the order of \(10^{-2} \) to the rational value in the modulation parameter. The continuity of the modulation parameter is interesting in view of a possible additional electromagnetic propagation mode in incommensurate structures with a nearly commensurate modulation, as predicted by van Beest (1986).

The purpose of the present paper is to obtain a better insight into the basic vibrational properties of TZCB. In order to study these properties we have performed Raman and far-infrared (FIR) spectroscopic experiments on several solid solutions in their high- and low-temperature phases. An extensive Raman investigation of the pure Cl compound has already been performed by Meekes et al (1988). We have concentrated our attention on the region of \(ZCB_{2n}^{2-} \) vibrational modes, not only because of their relation to the phase transitions in this material, but also in order to obtain a better understanding of the distribution of Cl and Br in this system. The Cl,Br distribution is expected to influence both the selection rules and the intensities in Raman and FIR experiments, as will be shown in sections 3 and 4.

This paper is organized as follows. In section 2 the experiments are described and the resulting spectra are presented. The activity of the internal \(ZCB_{2n}^{2-} \) modes is discussed in terms of the free tetrahedral ion symmetry modes in section 3. In section 4 the spectra presented in section 2 are discussed. Finally, in section 5 some conclusions are given.

2. Experimental procedure

The crystals used in the experiments are grown from a seed in an aqueous solution of a stoichiometric mixture of \((\text{N}((\text{CH}_3))_2)Y\) and \(\text{ZnY}_2\) (\(Y = \text{Cl}, \text{Br}\)) by a slow convection method (Arend et al 1986). In this way, optically transparent crystals (\(\sim 1 \text{ cm}^3\)) were obtained from a solution with a known bromide concentration \((x)\). The actual Br concentration is expected to be somewhat higher than this value. The crystals are oriented using their rich morphology (Dam and Janner 1986, Vogels 1990). The unit-cell dimensions for a crystal with \(x = 2.9 \) are determined by x-ray diffraction to be \(a = 12.49 \text{ Å}, b = 9.24 \text{ Å} \) and \(c = 15.90 \text{ Å} \), which is consistent with the results of Arend et al (1986).

For the polarized Raman experiments, the crystals are cut and polished to platelets (dimension \(\sim 2 \times 3 \text{ mm}^2, 0.5-1 \text{ mm thick} \)). The platelets are mounted in an Oxford cryostat (temperature stabilization better than 1 K). The Raman spectra are recorded in a standard way (90° geometry) using the 514.5 nm line of an Ar+ laser (unfocused, power \(< 250 \text{ mW}\)) as the exciting source.

The TZCB crystals have a strong absorption in the FIR region, making it very difficult to measure the absorption directly on single crystals. In order to be able to obtain FIR absorption spectra, we have therefore powdered the crystals and embedded them in a polyethylene platelet (\(\sim 0.35 \text{ mm thick} \)). In this way, samples are obtained with a known low molar concentration of the crystal (\(\sim 5\%\)). The unpolarized
FIR transmission spectra were measured at room temperature using a Bruker FT-IR spectrometer.

2.1. FIR experiments

FIR transmission spectra of the powdered samples embedded in a polyethylene matrix were measured relative to the transmission of pure polyethylene. Some typical spectra at room temperature for \(x = 0, 1, 2.9 \) and 4 are shown in figure 1. As \(x \) increases some modes shift in frequency and new modes appear in the spectra, although the modes of the mixed tetrahedra are not resolved in this case. The structure at 456 cm\(^{-1}\) present in all spectra is due to the tetrahedral \(\nu_4 \) symmetry modes of the \(\text{N}(\text{CH}_3)_4^+ \) ions (Edsall 1937). The \(\nu_3 \) and \(\nu_4 \) modes of \(\text{ZnCl}_4^{2-} \) and \(\text{ZnBr}_4^{2-} \) are clearly visible as broad absorption lines in the spectra.

![Figure 1. Room temperature FIR transmission spectra of powdered TZCB crystals \((x = 0, 1, 2.9 \) and 4) embedded in a polyethylene matrix. A pure polyethylene sample has been taken as a reference.](image)

2.2. Raman experiments

Polarized Raman spectra are measured for \(x = 0, 1, 2, 2.9 \) and 4 in the high- and low-temperature phases. As already mentioned, we focused on the frequency range of the internal \(\text{ZCB}_n^{2-} \) modes \(\nu_1, \ldots, \nu_4 \) (10–350 cm\(^{-1}\)) (Morris et al. 1963). There are two regions of interest in the spectra. The first one (10–150 cm\(^{-1}\)) contains the external modes and the \(\nu_2 \) and \(\nu_4 \) internal \(\text{ZCB}_n^{2-} \) modes, whereas the second one (150–350 cm\(^{-1}\)) contains the \(\nu_1 \) and \(\nu_3 \) internal modes of the \(\text{ZCB}_n^{2-} \) tetrahedra. The internal modes of the \(\text{N}(\text{CH}_3)_4^+ \) ions lie at higher frequencies (Edsall 1937). The results of the Raman experiments can be found in figure 2(a) \((T = 300 \text{ K}) \) and 2(b) \((T \approx 60 \text{ K}) \). Raman spectra of different crystals are generally difficult to compare quantitatively due to the variations of for instance the optical quality of the samples. In order to get a better quantitative comparison of the spectra, we have therefore normalized the spectra of the crystals with a different composition in figure 2(a) and 2(b) with respect to the integrated intensity of the 150–350 cm\(^{-1}\) region in \(A_g \) geometry of the same crystal, thereby assuming that the scattering efficiency of the \(\text{ZCB}_n^{2-} \) tetrahedra is approximately the same for all \(n \).

In the monoclinic low-temperature phases, domains differing in monoclinic angle, and a rotation of the indicatrix around the unique axis are observed under a polarization microscope. Due to the rotation of the indicatrix, light polarized along one
of the two non-unique axes becomes elliptical, resulting in a mixing of the scattering polarizations.

In the spectra of the mixed crystals new modes appear due to the mixed character of the ZCB\(^{2-}\) anions. Also some modes shift in frequency as function of the composition and/or the temperature. This is illustrated by the measurement of the lattice mode at \(\sim 24\) cm\(^{-1}\) for several temperatures (figure 3(a)) and by the comparison of the frequencies of this mode for different mixing ratios (figure 4).
Raman and spectroscopic study of \((N(CH_3)_4)_xZnCl_{4-x}Br_x\)

Figure 3. (a) Stokes and anti-Stokes A_2 Raman spectra of the \(\sim 24 \text{ cm}^{-1}\) mode and the quasi-elastic scattering in TZCB for \(x = 1\) at various temperatures. (b) Temperature dependence of the \(\sim 24 \text{ cm}^{-1}\) mode in an \(x = 1\) crystal. The mode is insensitive to the phase transition to the incommensurate phase. A hardening of this mode is observed after the phase transition to the monoclinic \(P2_1/n11\) phase.

Figure 4. Composition dependence of the \(\sim 24 \text{ cm}^{-1}\) mode at \(T = 300 \text{ K}\) (●) and at \(T = 60 \text{ K}\) (○). The mode scales with the average mass of the outer atoms of the heavy \(ZCB^{2-}\) tetrahedra. This is shown by the broken curves which are fits of the data for a chain of classical harmonic rotators, with frequency \(\nu^2 \sim I^{-1}\) (\(I = \text{moment of inertia}\)).

3. Raman and IR activity of the \((ZnCl_{4-x}Br_x)^2-\) modes

Before we turn to the actual activity of the \(ZCB^{2-}\) modes, we will first make some remarks on the structure of the TZCB crystals. At room temperature the structure of TZCB is isomorphic for all \(x\). The space group is \(Pnma\) \((Z = 4)\). The unit-cell dimensions change continuously from \(a = 12.268 \text{ Å}, b = 8.946 \text{ Å}\) and \(c = 15.515 \text{ Å}\) for \(x = 0\) to \(a = 12.681 \text{ Å}, b = 8.238 \text{ Å}\) and \(c = 16.025 \text{ Å}\) for \(x = 4\) (Arend et al 1986). The structure is built up from more or less rigid \(N(CH_3)_4\) and \(ZCB^{2-}\)-tetrahedra positioned at \((x, \frac{1}{2}, z)\) with site symmetry \(C_s\) in the pure crystals. On lowering the temperature, the TZCB crystals undergo several structural phase transitions, resulting
mainly in rotations \((\theta_x, 0, \theta_z)\) and translations \((0, t_y, 0)\) of the tetrahedra. Due to the rotations, the site symmetry of the tetrahedra changes from \(C_4\) to \(C_1\) (the mirror plane \(m_y\) is lost). The low-temperature phases have been determined for the \(x = 0\) (Sawada 1978), \(x = 2.2\) (Colla 1987) and \(x = 4\) (Trouelan 1985) compounds. The space groups of the \(x = 0\) and \(x = 4\) compounds are respectively orthorhombic \(P2_12_12_1\) \((Z = 12, T < 161\) K) and monoclinic \(P112_1/\alpha\) \((Z = 4, T < 287\) K). For the mixed crystals we assume that the low-temperature structures are those found in the phase diagram by Colla et al. (1984), that is \(P112_1/\alpha 1\) \((Z = 8, T < 210\) K) for \(x = 1\) and \(x = 2\) crystals, and \(P112_1/\alpha\) \((Z = 4, T < 273\) K) for \(x = 2.9\) crystals.

3.1. Free ion approximation

Since we consider the structure as being built up from rigid tetrahedra, we can discriminate between the internal tetrahedra modes and the external vibration modes (including the vibrational and librational modes of the rigid tetrahedra). The validity of this assumption will be considered later, when we discuss the experimental results. We only consider phonons with wavevector \(k = 0\).

Here we restrict ourselves to a discussion of the internal \(ZCB_n^{2-}\) modes. We first consider the 'free' \(ZCB_n^{2-}\) anions, neglecting the crystal field and the coupling between the ions. The point group of the \(ZCB_n^{2-}\) anions depends on the value of \(n\). For \(n = 0\) and \(n = 4\) ions the point group is \(T_d\), for \(n = 1\) and \(n = 3\) ions \(C_{3v}\), and for the \(n = 2\) ions \(C_{2v}\). In figure 5 the correlation diagram of the vibrational modes for these various point groups is given. Since \(C_{2v}\) is not a subgroup of \(C_{3v}\), the correlations cannot be determined by a direct subduction. Instead, the correlation is found by a projection of the \(C_{3v}\) modes onto the \(C_{2v}\) modes.

![Figure 5](image-url)
Figure 5. Correlation diagram of the symmetry modes of the free \(ZCB_n^{2-}\) tetrahedra in different compositions. \((T_d: n = 0 \text{ or } 4, C_{3v}: n = 1 \text{ or } 3 \text{ and } C_{2v}: n = 2)\).

![Figure 6](image-url)
Figure 6. Zn–Y stretching \((\delta_\gamma)\) and Y–Zn–Y bending \((\delta_\beta)\) coordinates in a tetrahedral ZnY\(_4\) ion, where Y stands for Cl, Br.

Figure 5 shows that the degenerate modes in the pure ions split up in the mixed cases. One can gain some more insight into this splitting by considering a simple valence-bond model for the ions, which we discuss briefly now. In this model we
consider the change of mass upon substituting a Cl atom by a Br atom. The valence bond potential is taken to be

\[V = \sum_{i=1}^{4} \lambda_i (\delta r_i)^2 + \sum_{j=1}^{6} \mu_j (\delta \beta_j)^2 \]

where \(\delta r_i \) and \(\delta \beta_j \) are respectively the Zn-Y stretching and Y-Zn-Y bending co-ordinates (see figure 6). The force constants \(\lambda_i, \mu_j \) are determined from the \(\nu_1 \) and \(\nu_2 \) \(\text{ZCB}_n^{2-} \) mode frequencies in the pure compounds using (for \(T_d \) symmetry)

\[\nu_1^2 = \frac{\lambda}{m} \quad \text{(Zn-Cl, Zn-Br stretching)} \]
\[\nu_2^2 = \frac{\mu}{3m} \quad \text{(Cl-Zn-Cl, Br-Zn-Br bending)} \]

with \(m \) the mass of either a Cl, or a Br atom. For the Cl-Zn-Br bending force constant a linear interpolation between the two pure cases is used. The resulting force constants are shown in table 1. The model uses only two (\(T_d \) symmetry) or four (\(C_{2v} \) and \(C_{3v} \) symmetry) independent force constants, whereas the actual problem has more (4 for \(T_d \), 6 for \(C_{3v} \) and 9 for \(C_{2v} \) symmetry). This leads for instance to a higher frequency for the \(\nu_3 \) modes of the ions. Despite the restrictions of the model, we think that it gives a clear qualitative picture of the vibrational properties of the heavy tetrahedra. The frequencies of the symmetry modes of the various ions are determined by solving the dynamical matrix of the model. The results of this calculation are shown in figure 7. Three groups of modes are found for the tetrahedra, based on the symmetry modes \(\nu_1, \ldots, \nu_4 \) of the pure ions. The \(\nu_3 \) group at 310–390 cm\(^{-1} \), the \(\nu_1 \) group at 180–280 cm\(^{-1} \) and the \(\nu_2, \nu_4 \) group at 80–130 cm\(^{-1} \). In all groups, the frequency generally decreases as \(n \) is increased, which is expected because of the greater mass of the Br atoms. The splitting of the modes expected from group theory is clearly observed in the model (figure 7). The \(\nu_1 \) modes seem to give the best opportunity to measure it because of the relatively large splitting of these modes, whereas the \(\nu_2 \) and \(\nu_4 \) modes are probably too closely spaced. If \(\text{TZCB} \) is a true solid solution, then all the different anions \(\text{ZCB}_n^{2-} \) will in general be present in the crystals, and all the modes presented in figure 7 are expected to be observable as internal modes in Raman and FIR experiments. We return to this model in the next section, where the results of the Raman and FIR experiments are discussed.

| Force constants used in the valence-bond model, calculated from the frequencies of the \(\nu_1 \) and \(\nu_2 \) modes in the pure compounds. |
|-------------------|------------------|
| Zn-Cl stretching (\(\nu_1 = 278 \text{cm}^{-1} \)) | \(\lambda = 160 \text{ N/m} \) |
| Zn-Br stretching (\(\nu_1 = 170 \text{cm}^{-1} \)) | \(\lambda = 136 \text{ N/m} \) |
| Cl-Zn-Cl bending (\(\nu_2 = 116 \text{cm}^{-1} \)) | \(\mu = 9 \text{ N/m} \) |
| Br-Zn-Cl bending (\(\nu_2 = 56 \text{cm}^{-1} \)) | \(\mu = 5 \text{ N/m} \) |
| Cl-Zn-Br bending | \(\mu = 7 \text{ N/m} \) |

3.2. Tetrahedral modes in the crystals

We now turn to the activity of the internal \(\text{ZCB}_n^{2-} \) modes in the crystals. In table 2 the activities of these modes in the high-temperature \(Pnma \) phase are given. This
Table 2. Raman and infrared activity of the internal ZCB_{2}^{2-} modes in the high-temperature $Pnma$ phase of the TZCB crystals. The site symmetry of the ions is C_{4}.

<table>
<thead>
<tr>
<th>$Pnma$ ($Z=4$) site symmetry C_{4}</th>
<th>D_{2h}</th>
<th>ν_1</th>
<th>ν_2</th>
<th>$\nu_3+\nu_4$</th>
<th>activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{g}</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>(a,a),(b,b),(c,c)</td>
<td></td>
</tr>
<tr>
<td>B_{1g}</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>(b,c)</td>
<td></td>
</tr>
<tr>
<td>B_{2g}</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>(a,c)</td>
<td></td>
</tr>
<tr>
<td>B_{3g}</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>(a,b)</td>
<td></td>
</tr>
<tr>
<td>A_{u}</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B_{1u}</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>B_{2u}</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>B_{3u}</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>c</td>
<td></td>
</tr>
</tbody>
</table>

The above differences in site symmetry, and thus in selection rules, gives a means to determine whether there is some kind of ordering, leaving the mirror m_{y} intact. This is for instance the case if the substitution of Cl by Br preferentially takes place.
on the Y site of the tetrahedra with the smallest thermal motions (Colla et al 1987), with Zn–Y in the mirror plane, and the bond along a.

At low temperatures the site symmetry of the tetrahedra is always C_1, leading to an activity of all modes in all geometries. However, detectable in the spectra is the number of different frequencies of a given mode, due to the presence of a different number of tetrahedra in the primitive cell of the compounds, and the mixed character of the tetrahedra. The activity of the ZCB^2- modes are given in table 3(a) for $x = 0$, in table 3(b) for $x = 1$ and $x = 2$, and in table 3(c) for the $x = 2,9$ and $x = 4$ compounds.

Table 3. Raman and infrared activity of the internal ZCB^2- modes in the low-temperature phases of the various ZCB crystals. The site symmetry is C_1 in all cases. (a) $x = 0$ crystals, space group $P2_12_12_1$ ($Z = 12$). (b) $x = 4$ and $x = 2.9$ crystals, space group $P112_1/a$ ($Z = 4$). (c) $x = 1$ and $x = 2$ crystals, space group $P12_1/a1$ ($Z = 8$).

	Site symmetry	Activity
D_2	ν_1, ν_2, $\nu_3+\nu_4$	a, ν_1, ν_2, $\nu_3+\nu_4$
A	3 6 18 (a,a), (b,b), (c,c)	a_x, 2 2 6 (a,a), (b,b), (c,c), (a,b)
B_1	3 6 18 a,(b,c)	b_g, 2 2 6 (a,c), (b,c)
B_2	3 6 18 b,(a,c)	a_u, 2 2 6 c
B_3	3 6 18 c,(a,b)	b_u, 2 2 6 a,b

	Site symmetry	Activity
C_{2h}	ν_1, ν_2, $\nu_3+\nu_4$	a, ν_1, ν_2, $\nu_3+\nu_4$
A_x	2 4 12 (a,a), (b,b), (c,c), (a,c)	a_x, 2 4 12 (a,a), (b,b), (c,c), (a,c)
B_4	2 4 12 (a,b), (b,c)	b_4, 2 4 12 b
A_u	2 4 12 b	a_u, 2 4 12 a,b

4. Interpretation of the spectra

In the first part of this section the FIR and Raman spectra presented in section 2 are discussed in terms of the internal modes of the ZCB$^2-$ ions. A discussion of the external modes will be given in the second part of this section.

4.1. Internal (ZnCl$_{4-n}$Br$_n$)$^{2-}$ modes

4.1.1. FIR spectra. Three broad absorption bands are observed in the FIR spectra of the pure compounds, of which two are assigned to the ν_3 and ν_4 internal ZCB$^{2-}$ modes (see figure 1). For the pure Cl compound the absorption maxima of these modes are found at approximately $\nu_3 = 275$ cm$^{-1}$ and $\nu_4 = 130$ cm$^{-1}$, for the Br compound the frequencies are respectively 200 cm$^{-1}$ and 90 cm$^{-1}$.

The low-frequency absorption band in the spectra is assigned to the external vibrational modes. Due to the weak coupling to the lattice of the internal modes, the tetrahedral symmetry of the ions is almost conserved. Hence, the ν_1 and ν_2 modes are expected to be only weakly absorbing in FIR experiments. In the pure compounds, the ν_2 modes are not observed. In the Cl compound this results from the (near) degeneracy of these modes with the ν_4 modes, whereas in the Br compound the ν_2 modes coincide with the external modes.
The frequencies of the fully symmetric ν_1 modes nearly coincide with those of the ν_3 modes, and are not observed in the spectra. The spectra of the mixed crystals show absorbing bands at the ν_3 frequencies for both pure compounds. These bands result from the ν_3 modes of the pure ions, as well as from the ions with a mixed character. This can be concluded from the valence-bond model (figure 7) and the relative strong intensity of the 200 \text{ cm}^{-1} band in the $x = 1$, and the 278 \text{ cm}^{-1} band in the $x = 2.9$ spectra.

The ν_4 absorption band shifts toward lower frequency as x increases, consistent with the valence-bond model. In the spectrum of the $x = 2.9$ compound two absorption dips are observed at 92 cm$^{-1}$ and 109 cm$^{-1}$. The structure at 92 cm$^{-1}$ is mainly due to the ν_3 modes of the ZnBr$_2^{2-}$ ions. As will be shown later on, the ions with a mixed character present in the $x = 2.9$ crystals are mainly the ZnClBr$_3^{2-}$ ions. We therefore assign the structure at 109 cm$^{-1}$ to the ν_3 internal modes of the ZnClBr$_3^{2-}$ ions.

4.1.2. Raman spectra of the pure compounds. Before we turn to the spectra of the mixed crystals, we will first examine the spectra of the pure compounds, starting with the $x = 4$ compound. In the high-temperature Raman A_g spectrum (figure 2(a), upper curve), the four internal modes of the ZnBr$_4^{2-}$ anions are all clearly observed as more or less sharp peaks in the spectrum. In table 4 we have compared the frequencies of these modes with the frequencies measured for the anions in an aqueous solution (Morris et al 1963). Since there are only slight differences between these two, we can conclude that the effects of the crystal field on the intra-molecular forces in ZnBr$_4^{2-}$ are fairly small. This can also be concluded from the small FWHM (full width at half maximum) of the modes, which indicates only a small splitting of the modes due to the crystal field. In the $x = 4$ Raman B_{1g}, B_{2g} and B_{3g} spectra at 300 K (figure 2(a)) we again observe all the internal ZnBr$_4^{2-}$ modes. For the ν_2, ν_3 and ν_4 modes this is expected from the selection rules (table 2). The ν_1 mode, however, should be inactive in B_{1g} and B_{2g} symmetry. The fact that in these cases also a non-zero intensity is found is probably due to the large degree of rotational freedom (Colla 1987) of the ZnBr$_4^{2-}$ tetrahedra around the a- and c-axis, effectively lowering the site symmetry from C_4 to C_1.

<table>
<thead>
<tr>
<th>Ion</th>
<th>ν_1 (\text{cm}^{-1})</th>
<th>ν_2 (\text{cm}^{-1})</th>
<th>ν_3 (\text{cm}^{-1})</th>
<th>ν_4 (\text{cm}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnCl$_2^{2-}$/H$_2$O</td>
<td>275</td>
<td>97</td>
<td>306</td>
<td>104</td>
</tr>
<tr>
<td>[N(CH$_3$)$_4$]$_2$ZnCl$_4$</td>
<td>278</td>
<td>116</td>
<td>275</td>
<td>127</td>
</tr>
<tr>
<td>ZnBr$_2^{2-}$/H$_2$O</td>
<td>172</td>
<td>66</td>
<td>208</td>
<td>88</td>
</tr>
<tr>
<td>[N(CH$_3$)$_4$]$_2$ZnBr$_4$</td>
<td>170</td>
<td>56</td>
<td>210</td>
<td>88</td>
</tr>
</tbody>
</table>

*From the FIR data.

In the $x = 4$ low-temperature spectra (figure 2(b)), all modes are active in all geometries, consistent with the selection rules (table 3(c)). A single ν_1 mode is observed in all geometries and the six different ν_3 and ν_4 modes are better resolved. It is not clear whether the ν_2 modes (2 in each geometry) are resolved due to the coincidence with the external modes.
Raman and spectroscopic study of \((N(CH_3)_4)_xZnCl_{4-x}Br_x\)

For the \(x = 0\) compound there are some degeneracies which blur the above picture a bit. The \(\nu_2\) and \(\nu_3\) modes are strongly overlapping and the \(\nu_1\) modes are (nearly) degenerate with the \(\nu_3\) modes. The latter can be concluded from a comparison of \(\nu_1\) modes in the Raman spectra (figure 2(a) and 2(b), lower curves) with the \(\nu_3\) modes in the FIR spectrum (figure 4, lower curve). The comparison of the observed frequencies of the ZnCl\(^{2-}\) internal modes with those of the ions in an aqueous solution (Morris et al 1963) in table 4 shows that in this case the differences are rather large, indicating a non-negligible effect of the crystal field on the intra-molecular forces. This makes the subdivision into external and internal modes in this compound questionable.

In the high-temperature Raman spectra (figure 2(a)) again a non-zero intensity is found in the \(\nu_1\) region in all geometries. Indeed, part of the intensity in the \(B_{1g}\) and \(B_{3g}\) spectra can be explained by the activity of the \(\nu_3\) mode, as proposed by Meekes et al (1988). The large intensity in these geometries indicates, however, that it is also partly due to the activity of the \(\nu_1\) modes, again resulting from the large thermal factors of the ZnCl\(^{2-}\) anions.

In the \(x = 0\) low-temperature spectra (figure 2(b)) the different modes are as expected active in all geometries. The \(\nu_1\) mode is split up into several peaks, reflecting the larger number of formula units in the unit cell in this case (see also table 3(a)). It is not clear whether part of the structure in the \(\nu_1\) region results from the (weak) activity of the \(\nu_3\) modes.

4.1.3. Raman spectra of the mixed compounds. We now turn to the spectra of the mixed crystals. In the Raman spectra (figure 2(a) and 2(b)) additional peaks appear in the spectra, which are not observed in the spectra of the pure compounds. This is clearest in the region of \(\nu_1\), \(\nu_3\) modes (150-350 cm\(^{-1}\)). These extra modes are due to the presence of mixed (ZnCl\(_{4-x}\)Br\(_x\))\(^{2-}\) ions in the crystals, indicating that the compounds are true solid solutions, and not just a mixture of the two pure crystals. The peaks in the \(\nu_1\), \(\nu_3\) region of the \(A_g\) Raman spectra at \(T = 300\) K (figure 2(a)) are fitted to Lorentzian shaped modes. The results of these fits can be found in table 5. The additional modes observed in the \(\nu_1\), \(\nu_3\) region are assigned to the \(\nu_1\) modes (neglecting the \(\nu_3\) modes, which generally have a low intensity) of respectively the ZnCl\(_3\)Br\(^{2-}\) ion (183 cm\(^{-1}\)), the ZnCl\(_2\)Br\(^{2-}\) ion (191 cm\(^{-1}\)) and the ZnCl\(_{2-x}\)Br\(_x\)\(^{2-}\) ion (202 cm\(^{-1}\)), based on the qualitative model presented earlier and the results obtained by Delwaulle (1955) for the mixed anions in an aqueous solution. The FWHM of these \(\nu_1\) modes increases as the number of Cl atoms in the ion increases (see figure 8), indicating that the ions become more sensitive to the crystal field. This is possibly connected to the large number of phases found for low \(x\) values (the anharmonicity of the potential increases as \(x\) decreases).

Table 5. Frequencies and relative intensities resulting from fits of the \(\nu_1\) modes in the \(A_g\) Raman spectra at \(T = 300\) K to Lorentzian shaped peaks.

<table>
<thead>
<tr>
<th>(x=0)</th>
<th>(x=1)</th>
<th>(x=2)</th>
<th>(x=2.9)</th>
<th>(x=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu) (cm(^{-1}))</td>
<td>(I_0) (cm(^{-1}))</td>
<td>(\nu) (cm(^{-1}))</td>
<td>(I_0) (cm(^{-1}))</td>
<td>(\nu) (cm(^{-1}))</td>
</tr>
<tr>
<td>(173)</td>
<td>131.1</td>
<td>(171)</td>
<td>43.0</td>
<td>(170)</td>
</tr>
<tr>
<td>(184)</td>
<td>9.7</td>
<td>(183)</td>
<td>33.0</td>
<td>(182)</td>
</tr>
<tr>
<td>(192)</td>
<td>28.1</td>
<td>(191)</td>
<td>17.8</td>
<td>(192)</td>
</tr>
<tr>
<td>(202)</td>
<td>7.6</td>
<td>(202)</td>
<td>7.4</td>
<td>(205)</td>
</tr>
<tr>
<td>(278)</td>
<td>100</td>
<td>(276)</td>
<td>54.6</td>
<td>(276)</td>
</tr>
</tbody>
</table>
Using the intensities listed in table 5, an estimate can be made of the relative concentrations \(\rho_n(x) \) of the various \(\text{ZCB}_n^2^- \) anions in the different \(\text{TZCB} \) crystals, which in turn can be used to estimate the value of \(x \). In order to do this, we assume that the intensity of the peaks is only proportional to the concentration of scatterers in the crystal, and therefore one has an equal scattering efficiency for the various \(\text{ZCB}_n^2^- \) anions. A problem arises for the \(\text{ZnCl}_3\text{Br}_2^- \) ion, because the \(\nu_1 \) mode of this ion is (almost) degenerate with the \(\nu_3 \) modes of the \(\text{ZnBr}_4^2^- \) ion. The influence of the \(\nu_3 \) modes can be estimated using the intensity ratio \(I_0(\nu_3)/I_0(\nu_1) \) of \(\text{ZnBr}_4^2^- \) in the spectra of the \(x = 4 \) compound and the intensity \(I_0(\nu_1) \) of \(\text{ZnBr}_4^2^- \) in the spectra of the mixed crystals. The estimated values of \(\rho_n(x) \) are listed in table 6. This table shows that the \(\text{ZnCl}_3\text{Br}_2^- \) anion is only present in very low concentrations in the mixed crystals. From the Raman results of Benhmida et al. (1987) we conclude that the concentration of this ion is only appreciable for very low values of \(x \). It seems that there is a preference to form either the pure anions or mixed ions with more than one \(\text{Br} \) atom. Table 6 also shows the calculated values \(x_{\text{calc}} \) of the composition of the crystals. These values lie within 10% of those of the growth solutions, which is a fair agreement in view of the method used to obtain \(x_{\text{calc}} \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>2.9</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>54.7</td>
<td>28.9</td>
<td>11.0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>7.5</td>
<td>6.6</td>
<td>3.5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>28.1</td>
<td>18.0</td>
<td>4.1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>9.7</td>
<td>33.3</td>
<td>37.0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>13.2</td>
<td>44.4</td>
<td>100</td>
</tr>
<tr>
<td>(x_{\text{calc}})</td>
<td>0</td>
<td>0.93</td>
<td>1.95</td>
<td>3.00</td>
<td>4</td>
</tr>
</tbody>
</table>

Until now we have been discussing mainly the \(\nu_1 \) modes of the mixed ions in the Raman high-temperature \(\text{A}_x \) spectra. The other modes of the mixed ions are not directly observed in the Raman spectra. For the \(\nu_1 \) modes this is due to their near degeneracy with the \(\nu_1 \) modes of the tetrahedra. In the FIR spectra we observed two bands in the \(\nu_1,\nu_3 \) region, originating mainly from the \(\nu_3 \) modes. In our model
(figure 7) the ν_3 frequencies are generally too high. Qualitatively, however, the model predicts two groups of ν_3 modes for the mixed crystals, approximately at the ν_3 frequencies of the pure ions, as is also observed in the FIR spectra.

The ν_2 and ν_4 modes generally overlap with each other, and with the external modes in both the Raman and FIR spectra. In the mixed crystals the ν_2 and ν_4 structure is broadened due to the splitting of the modes, and it shifts towards lower frequency as x increases (see also figure 7). Using the polarized Raman spectra and the selection rules of the ν_1 modes in the $Pnma$ phase of the mixed crystals, one can in principle determine whether the site symmetry of the ions is C_4 or C_1, and thus obtain some insight in a possible ordering of the substitution of Cl by Br (see section 3). Unfortunately, the large thermal factors of the ions already effectively lowers the site symmetry to C_1 in the pure compounds, as it follows from the ν_1 presence in the B_{1g} and B_{3g} spectra. Therefore the site symmetry of the ions in the mixed crystals is also expected to be C_1, regardless of any ordering in the substitution.

4.2. External modes

In the high-temperature FIR and Raman spectra the external modes are observed as broad structures at low frequencies. The only resolved peak is found at $\sim 24 \text{ cm}^{-1}$ in the Raman spectra (see figures 2(a) and 3). The composition dependence of this mode (see figure 4) suggests that it is a librational mode of the ZCB_2^{-} ions. This is shown by the dashed curves in figure 4, which give the $k = 0$ frequency dependence of a chain of harmonically coupled rotators with the same moments of inertia as an average ZCB_2^{-} ion in the corresponding crystal. On the other hand, the pure librational modes of the crystals in the $Pnma$ phase are expected to be only Raman active in either A_g and B_{2g} or B_{1g} and B_{3g} geometry, whereas figure 2(a) shows that this mode is mainly active in A_g and B_{1g} geometry. Figure 3 shows the temperature dependence of this mode in a $x = 1$ compound. The mode is insensitive to the phase transition to the incommensurate phase at $T_I \approx 291 \text{ K}$, which is mainly a modulated rotation of the heavy tetrahedra around the b-axis. After the transition to the monoclinic $P2_1/n11$ phase at $T_m = 282 \text{ K}$ a hardening of the mode is observed.

Another interesting feature in the high-temperature Raman spectra is the broadening of the Rayleigh wings observed predominantly in the A_g and B_{1g} spectra. The temperature dependence in figure 3(a) shows that this broadening decreases as the temperature decreases. Indeed, in the low-temperature spectra (figure 2(b)) this broadening has disappeared. This broadening possibly results from quasi elastic scattering from the $N(CH_3)_4^+$ ions due to the large rotational freedom of these ions at higher temperatures (Pauling 1930, Frenkel 1935). At low temperatures this freedom freezes out (Blinc 1979).

5. Conclusions

We have presented polarized Raman spectra and FIR transmission spectra of the solid solution $(N(CH_3)_4)_2ZnCl_{4-x}Br_x$ for $x = 0, 1, 2, 2.9$ and 4 at $T \approx 60 \text{ K}$ and $T \approx 300 \text{ K}$. In the spectra new modes appear, which are not present in the spectra of the pure Cl and Br crystals. These modes are assigned to the internal modes of the ZCB_n^{-} ions, in agreement with a simple valence-bond model. The thermal motions of the heavy tetrahedra effectively lower the site symmetry in the high-temperature phase from C_4 to C_1. It is therefore not possible to determine from the selection rules whether there
are preferred ion sites for the substitution of Cl by Br. The appearance of all the \(\nu_1 \) mixed ion modes in the spectra indicate, however, that there are no preferred sites for the substitution.

The most interesting features in the spectra for further investigation are the \(\sim 24 \text{ cm}^{-1} \) mode of the \(\text{ZnCl}_n^{2-} \) ions, which given its temperature dependence (hardening in the lock-in phase) could be coupled to the soft mode which is responsible for the incommensurate phase. Another interesting feature is the broadening of the Rayleigh wing, possibly caused by quasi-elastic light scattering from the \(\text{N(CH}_3)_4^+ \) ions. This broadening is expected to change discontinuously at the various phase transitions of the crystals. From the temperature and composition dependence of these modes one can gain some more insight into the mechanisms of the phase transitions in this system.

Acknowledgments

We would like to express our thanks to Dr H Meekes and Dr Th Rasing for valuable discussions on the subject, and Professor H van Kempen for his support. This work is part of the research program of the Stichting voor Fundamenteel Onderzoek der Materie (FOM).

References

Colla E 1987 PhD Thesis ETH Zürich, Switzerland
Dam B and Janner A 1986 Acta Crystallogr. B 42 69
Edsal John T 1937 J. Chem. Phys. 5 225
Frenkel J 1935 Acta Phys. Chem. 3 23
Janssen T 1986 Ferroelectrics 66 203
Godefroy G 1989 Phase Transitions 14 139
Pauling L 1930 Phys. Rev. 36 430