α2-Adrenergic regulation of galanin and norepinephrine release from canine pancreas

Scheurink, Anton J.W.; Mundinger, Thomas O.; Dunning, Beth E.; Veith, Richard C.; Taborsky, Jr.

Published in:
The American Journal of Physiology - Regulatory, Integrative and Comparative Physiology

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1992

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

You might find this additional information useful...

Medline items on this article's topics can be found at
http://highwire.stanford.edu/lists/artbytopic.dtl
on the following topics:
 Oncology .. Galanin
 Oncology .. Noradrenaline
 Medicine .. Norepinephrine
 Physiology .. Pancreas
 Physiology .. Nerves
 Medicine .. Clonidine

Additional material and information about American Journal of Physiology - Regulatory, Integrative and Comparative Physiology can be found at:
http://www.the-aps.org/publications/ajpregu

This information is current as of September 16, 2009.
α2-Adrenergic regulation of galanin and norepinephrine release from canine pancreas

ANTON J. W. SCHEURINK, THOMAS O. MUNDINGER, BETH E. DUNNING, RICHARD C. VEITH, AND GERALD J. TABORSKY, JR.

Divisions of Endocrinology, Metabolism, and Nutrition, and Geriatric Research, Seattle Veterans Affairs Medical Center and Departments of Medicine, Psychiatry and Behavioral Sciences, and Psychology, University of Washington, Seattle, Washington 98105

Scheurink, Anton J. W., Thomas O. Mundinger, Beth E. Dunning, Richard C. Veith, and Gerald J. Taborsky, Jr. α2-Adrenergic regulation of galanin and norepinephrine release from canine pancreas. Am. J. Physiol. 262 (Regulatory Integrative Comp. Physiol. 31): R819–R825, 1992.—We found previously that electrical stimulation of the mixed autonomic pancreatic nerves (MPNS) in anesthetized dogs elicits marked release from canine pancreas. E2-Adrenergic regulation of galanin and norepinephrine release from canine pancreas with yohimbine increased and stimulation of presynaptic 2-adrenoceptors. Blockade of presynaptic α2-adrenoceptors was highly correlated with that of NE. It is concluded that presynaptic α2-adrenergic mechanisms modulate not only NE but also pancreatic galanin release, suggesting that galanin is co-released with NE from noradrenergic nerves in the endocrine pancreas.

MATERIALS AND METHODS

Animals and surgical procedures. Anesthesia was induced in overnight-fasted adult dogs of mixed breed (25–42 kg) by an intravenous bolus of an ultra-short-acting barbiturate, thiamylal (Surital, 20 mg/kg; Parke-Davis, Morris Plains, N.J.). Animals were then intubated and ventilated with halothane (0.6–0.9% in 100% O2) for maintenance of surgical anesthesia. After cannulation of a femoral artery and vein for blood pressure recording, blood sampling, and intravenous drug infusion, a midline laparotomy was performed to expose the duodenum and adjacent lobe of the pancreas. An extracorporeal shunt was introduced between the superior pancreatic duodenal vein (SPDV) and the portal vein, which contained a port for sampling of pancreatic venous blood and an electromagnetic flow probe for continuous monitoring of pancreatic venous blood flow. The mixed autonomic pancreatic nerves that course in the sheath of connective tissue surrounding the superior pancreatic duodenal artery (SPDA) were isolated immediately before their entrance into the pancreatic parenchyma and placed in a bipolar electrode (Harvard Apparatus, South Natick, MA). A 1-h recovery period followed these surgical procedures before experimentation.

Experimental procedure. Activation of the mixed autonomic pancreatic nerves was achieved by electrical stimulation (8 Hz, 1 ms, 10 mA, 10 min) of the sheath of connective tissue surrounding the SPDA. Blood samples for determination of NE were taken immediately before (t = 0 min) and twice during...
nerve stimulation (t = 5 and 10 min). Blood samples for determination of GLIR were taken before (t = -5 and 0 min), three times during (t = 2.5, 5, and 10 min), and at 5 and 15 min after (t = 15 and 25 min) nerve stimulation. Within an experiment, a waiting period of at least 35 min occurred between consecutive nerve stimulations.

Blood sampling and chemical determinations. Blood samples were obtained simultaneously from the femoral artery and SPDV and were immediately placed on ice in tubes containing glutathione and ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) for NE measurements and a mixture of proteolytic enzyme inhibitors (6) for GLIR determination. Plasma NE was measured by a single isotope enzymatic method (24), and GLIR concentrations were determined by radioimmunoassay using synthetic porcine galanin standards and a non-COOH-terminally directed antiserum raised in rabbits against synthetic porcine galanin linked to bovine thyroglobulin (9, 11). Samples were centrifuged (4°C × 20 min), and plasma was stored at −80°C (NE) or −20°C (GLIR).

Data analysis and statistics. Pancreatic outflow of NE was calculated according to the following formula that included a 75% extraction of arterial NE by the pancreas (2, 9): NE output = ([NE]spdv - 0.25 [NE]FA) × (1 - hematocrit) × blood flow SPDV. Pancreatic galanin outflow was calculated according to a modified version of this formula that corrected for 65% extraction of galanin by the pancreas and for the void volume of galanin in basal GLIR (9): GLIR output = (GLIR]spdv - [GLIR]basal FA - 0.65 ([GLIR]FA - [GLIR]basal FA) × (1 - hematocrit) × (blood flow)SPDV. [GLIR]basal FA was defined as the mean of the FA levels at t = −10 min before the first nerve stimulation. Data were expressed as means ± SE. Wilcoxon matched pairs signed rank tests were used to compare the levels of galanin and NE within an experiment with the baseline values at t = 0 min. Two-way analysis of variance and the Mann-Whitney U test were applied to determine significant differences between the results of an experiment and the data in the control experiment (experiments 2 and 3). Three-way analysis of variance was used to test differences in outflow between consecutive nerve stimulations in the control experiment. The criterion of significance was set at P < 0.05.

EXPERIMENTS AND RESULTS

Experiment 1: control experiment. The aim of the control experiment was to determine the effect of three consecutive stimulations of the mixed autonomic pancreatic nerve on the outflow of pancreatic NE and galanin. The results are presented in Figs. 1 and 2. Baseline outflow of GLIR and NE was 0.11 ± 0.04 and 3.2 ± 0.8 pmol/min, respectively, and did not change significantly between consecutive stimulations. Stimulation of the mixed pancreatic nerve led to an increased outflow of both GLIR and NE during all three nerve stimulations. Maximal outflow rates were 0.63 ± 0.08 pmol/min for GLIR and 90.7 ± 24.5 pmol/min for NE, both at t = 5 min during the first nerve stimulation. GLIR and NE outflow rates were significantly lower during the second and third nerve stimulation in comparison with the first one (respectively, maximal 0.40 ± 0.10 t = 10 min and 0.35 ± 0.19 pmol/min at t = 5 min for GLIR and 58.6 ± 16.6 at t = 5 min and 45.2 ± 7.2 pmol/min at t = 10 min for NE).

Plasma levels of GLIR and NE in the femoral artery were 0.06 ± 0.01 and 1.03 ± 0.21 pmol/ml, respectively, immediately before the first nerve stimulation (t = 0) and did not change during or after the nerve stimulations.

Experiment 2: effects of α2-adrenergic antagonism. The aim of the second experiment was to determine whether potentiation of pancreatic NE spillover via blockade of α2-adrenoceptors was accompanied by enhanced pancreatic galanin outflow. The α2-selective adrenoceptor antagonist yohimbine (50 µg·kg−1·min−1) was administered intravenously for 10 min starting 15 min before the second nerve stimulation. The results are presented in Table 1 and Figs. 3 and 4. In this second experiment, the first stimulation of the mixed autonomic nerve increased the outflow of GLIR and NE (baseline GLIR 0.15 ± 0.03 and NE 3.6 ± 1.3 pmol/min vs. stimu-
Fig. 2. Effect of 3 consecutive mixed pancreatic nerve stimulations (MPNS) on pancreatic outflow of norepinephrine (NE) (A) and arterial NE levels (B). Data are expressed as in Fig. 1.

Table 1. Baseline outflow of GLIR and NE before and after treatment with α₂-selective adrenoceptor antagonist yohimbine (50 μg·kg⁻¹·min⁻¹, n = 6) and α₂-selective adrenoceptor agonist clonidine (20 μg/kg, n = 4)

<table>
<thead>
<tr>
<th></th>
<th>GLIR Outflow, pmol/min</th>
<th>NE Outflow, pmol/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0.15±0.03</td>
<td>3.6±1.3</td>
</tr>
<tr>
<td>Yohimbine</td>
<td>0.29±0.07</td>
<td>13.1±4.5</td>
</tr>
<tr>
<td>Experiment 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control 1</td>
<td>0.11±0.04</td>
<td>3.2±0.8</td>
</tr>
<tr>
<td>Control 2</td>
<td>0.08±0.03</td>
<td>3.9±1.0</td>
</tr>
<tr>
<td>Clonidine</td>
<td>0.10±0.05</td>
<td>0.8±0.2</td>
</tr>
</tbody>
</table>

Values are means ± SE. GLIR, galanin-like immunoreactivity; NE, norepinephrine.

Fig. 3. Effect of intravenous administration of the α₂-selective adrenoceptor antagonist yohimbine (50 μg·kg⁻¹·min⁻¹) on pancreatic outflow of galanin-like immunoreactivity (A, ○, n = 6) and arterial galanin levels (B, ○, n = 6), before, during, and after pancreatic nerve stimulation (MPNS). ○, Data from control experiment. Data are averages ± SE. Nerve stimulation is indicated by horizontal bar at the bottom of each graph. Yohimbine was infused for 10 min starting 15 min before the second nerve stimulation. * P < 0.05, significant change from values at comparable time points in control experiment.

Experiment 3: effects of α₂-adrenergic agonism. The aim of the third experiment was to determine whether inhibition of pancreatic NE outflow via activation of α₂-adrenoceptors was accompanied by decreased outflow of pancreatic galanin. The α₂-selective adrenoceptor agonist clonidine (20 μg/kg) was intravenously administered by a single injection after two consecutive nerve stimulations, 15 min before a third nerve stimulation. The results are depicted in Table 1 and in Figs. 5 and 6. Administration of clonidine led to a slight but nonsignificant reduction in stimulated pancreatic outflow of both GLIR and NE (maximal stimulated outflow reduced from 0.42 ± 0.18 to 0.20 ± 0.04 pmol/min for GLIR, and from 59.4 ± 30.3 to 27.2 ± 13.0 pmol/min for NE). Femoral artery levels of NE were markedly decreased after administration of clonidine (from 1.24 ± 0.34 to 0.10 ± 0.03 pmol/ml; the decrease was significant at all time points). In contrast, arterial GLIR levels remained unchanged.

Correlation between NE and galanin outflow. The data obtained in experiments 2 and 3 were used to calculate the correlation between galanin and NE outflow, and their modulation by α₂-adrenoceptor mechanisms. For each
individual dog (n = 10) the average outflow was calculated from the samples taken at t = 5 and 10 min during nerve stimulation. Figure 7 shows the correlation between the absolute outflow of galanin and NE during nerve stimulation after administration of yohimbine or clonidine. In Fig. 8, each point represents the change in stimulated outflow of galanin and NE, induced by administration of yohimbine or clonidine, and is expressed as percent change in outflow before and after drug treatment. The correlations (r = 0.84 and r = 0.86, respectively) were highly significant (P < 0.001).

DISCUSSION

Stimulation of the sympathetic nerves to the pancreas inhibits insulin and increases glucagon release (3, 28, 31), responses that are presumably mediated by the sympathetic neurotransmitter norepinephrine. However, pancreatic arterial infusions of different doses of NE failed to reproduce the inhibition of basal insulin release seen during sympathetic pancreatic nerve stimulation in anesthetized dogs (3). Furthermore, combined α- and β-adrenoceptor blockade had little effect on these neurally induced changes of pancreatic islet hormone secretion (8). Because galanin-like immunoreactivity has been localized in pancreatic islet nerves (1, 7), and because galanin is a sympathetic neurotransmitter, released during stimulation of the thoracal splanchnic nerves (9), and because synthetic galanin potently inhibited insulin release (7, 19), galanin became a candidate mediator of the nonadrenergic, sympathetic influences on the islets (10). On that basis, we hypothesized that galanin is a functional sympathetic neurotransmitter in the endocrine pancreas, coreleased with NE from noradrenergic nerve endings (10). Our recent findings that stimulation of the mixed pancreatic nerve leads to the release of quantities of galanin sufficient to influence islet function (11) is compatible with this hypothesis.

In the present experiments, electrical stimulation of the mixed pancreatic nerves elicited an increase of both NE and galanin spillover into the superior pancreatic duodenal vein, and the pancreatic release of galanin paralleled that of NE in several circumstances. Furthermore, consecutive nerve stimulation elicited similar temporal secretory patterns of NE and galanin. NE and galanin spillover were significantly lower during the second and third stimulation compared with the first. These similar changes show that electrical nerve stimulation equally affected the release of NE and galanin and seem to confirm the hypothesized co-release of NE and galanin from the sympathetic nerves innervating the endocrine pancreas.

The main goal of the present study was to investigate whether the outflow of pancreatic galanin during sympathetic nerve stimulation is subject to the same presynaptic adrenergic regulatory mechanisms that have been established for NE. This would strongly suggest that NK and galanin are co-released. Precedence for such presynaptic adrenergic regulation of sympathetic cotransmitters...
was already obtained for neuropeptide Y, co-released with NE from sympathetic nerves innervating cardiovascular endothelial cells (20, 21, 30). In experiment 2, administration of the α₂-selective adrenoceptor antagonist yohimbine significantly increased the baseline and stimulated spillover of both NE and galanin. Pharmacological and physiological studies (17, 22, 26, 29) provided evidence that the changes in NE spillover are mainly due to blockade of inhibitory α₂-adrenoceptors on the presynaptic nerve endings of the peripheral sympathetic nerve system rather than to a central action of yohimbine (25). In addition, it is unlikely that any effect of yohimbine to change centrally directed sympathetic outflow would have much influence on neurotransmitter release induced by direct electrical stimulation. The strikingly identical alterations in NE and galanin spillover after α₂-adrenoceptor blockade therefore suggest that the release of galanin during activation of the sympathetic nervous system is equally modulated by presynaptic regulatory mechanisms, which may be considered a strong argument for co-release of galanin with NE from the sympathetic nerve endings.

The concentrations of NE and GLIR in the femoral artery did not change after electrical stimulation of the pancreatic nerve. This is in agreement with previous findings (9) and indicates that pancreatic outflow does not significantly contribute to the concentrations of sympathetic neurotransmitters in the general circulation. However, blockade of α₂-adrenoceptors markedly increased arterial plasma levels of NE and GLIR (experiment 2), both before and during nerve stimulation. With regard to NE, these results suggest an enhanced spillover of NE from other, nonpancreatic sympathetic nerve endings in the body. In particular, areas that make a major contribution to the systemic NE levels, such as the endothelial cells in the vasculature, must have potentiated their NE release in response to the systemic administration of yohimbine (12-14). The increased arterial GLIR concentrations point to extrapancreatic sources of galanin, influenced by α₂-adrenoceptor blockade. This finding confirms a previous report (9) of increases of nonpancreatic galanin in arterial plasma. In that study (9), general stimulation of the peripheral sympathetic nervous system caused a significant increase in circulating galanin. It was suggested that the gastrointestinal tract, the liver, and/or the adrenals may have been primarily
endings that reduce neurotransmitter outflow released endogenous NE may have already activated the which is in accordance with the idea that sympathetically spillover of NE and galanin during nerve stimulation, responsible for the increase in arterial galanin levels (4, 9, R824)

atic galanin remains unclear.

or alternatively, the decrease in plasma NE concentrations in the femoral artery in the present experiment could also be explained by a centrally mediated reduction in sympathetic activity, since clonidine is known to decrease sympathetic outflow via both central (16, 18) as well as peripheral (32) pathways. The central effect of clonidine is likely to be dominant, since the administration of clonidine also markedly suppressed epinephrine in the femoral artery in the present study (Table 2), and the adrenal chromaffin cells are not thought to possess α2-adrenergic inhibitory receptors analogous to those on the sympathetic nerve endings.

The present experiments do not exclude that galanin might be released from nonadrenergic sympathetic pancreatic nerves containing solely neuropeptides that are influenced by adrenergic presynaptic regulatory mechanisms identically to the noradrenergic nerves. The possibility that sympathetic activation and consequently NE outflow might have had a postsynaptic effect on an endogenous source of galanin in the endocrine pancreas leading to increase in galanin secretion seems less probable, since combined administration of α- and β-adrenergic antagonists could not prevent the reduction in insulin secretion caused by activation of the sympathetic nervous system (8).

In summary, the main findings of the present study were 1) stimulation of the mixed pancreatic nerve led to a simultaneous increase of both NE and galanin spillover into the pancreatic vein, and similar secretory patterns occurred during consecutive stimulation; 2) pancreatic NE and galanin spillover were both markedly increased after administration of the α2-selective adrenoceptor antagonist yohimbine and modestly decreased after α2-adrenergic stimulation with clonidine; and 3) yohimbine produced parallel changes in the systemic levels of both NE and galanin. Together with available anatomical data (1, 7), these results suggest colocalization and co-release of galanin and NE from sympathetic pancreatic nerves and therefore support the hypothesis that galanin is a sympathetic cotransmitter in the canine endocrine pancreas.

The authors thank Rix Kuester, David Federighi, Dave Flatness, and Jiri Wade for excellent technical assistance.

This study was supported by grants from the Dutch Diabetic Research Foundation, the Research Service of Veterans Affairs, and the National Institute of Diabetes and Digestive and Kidney Diseases (DK-12629 and DK-17047).

Received 23 July 1990; accepted in final form 19 November 1991.

REFERENCES

Table 2. Plasma epinephrine concentrations in the femoral artery before (t = 0 min) and during (t = 5 and 10 min) pancreatic nerve stimulation with and without administration of 20 μg/kg clonidine (experiment 3)

<table>
<thead>
<tr>
<th>Time, min</th>
<th>Plasma Epinephrine, pmol/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
</tr>
<tr>
<td>0</td>
<td>0.89±0.48</td>
</tr>
<tr>
<td>5</td>
<td>1.03±0.52</td>
</tr>
<tr>
<td>10</td>
<td>1.02±0.48</td>
</tr>
</tbody>
</table>

Values are averages ± SE; n = 4 in both groups. * Significant (P < 0.05) decrease in plasma epinephrine levels compared with control group.

