

University of Groningen

Oxygen Reserve Index (ORI): Validation of a new variable

Scheeren, T.W.L.; Spanjersberg, R.; Struys, M.M.R.F.

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Scheeren, T. W. L., Spanjersberg, R., & Struys, M. M. R. F. (2016). Oxygen Reserve Index (ORI): Validation of a new variable. Poster session presented at Euroanaesthesia, London, United Kingdom.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 22-06-2025

Oxygen Reserve Index (ORI): Validation of a new variable

T.W.L. Scheeren, R. Spanjersberg, M.M.R.F. Struys

Dept. of Anesthesiology, University of Groningen, University Medical Center Groningen,

Groningen, The Netherlands

Background: Monitoring a patient's oxygen status during anaesthesia using pulse oximetry is essential. However, pulse oximetry is limited in the normoxic and hyperoxic range, when oxygen saturation is >97%. In this range, the new Oxygen Reserve Index (ORI), a relative indicator of the partial pressure of oxygen in arterial blood (PaO₂) in the range of 100 to 200 mmHg, may serve clinicians as an early warning of an impending hypoxic state.¹

Methods: 20 healthy volunteers (age 24±6 yr, BMI 24±3 kg m⁻²) were breathing via a tight fitting facemask standardized oxygen concentrations ranging from mild hypoxia $(FiO_2 0.14)$ to hyperoxia $(FiO_2 1.0)$ (fig. 1, 2). measured noninvasively by ORI was multiwave pulse co-oximetry (Rainbow SET, Masimo Corp.) to differentiate between normoxic and hyperoxic states by scaling the measured absorption information between 0.00 and 1.00. These ORI values were compared with PaO2 values obtained from repeated arterial blood samples. In this preliminary analysis, we examined correlation between changes in ORI (ΔORI) PaO_2 (ΔPaO_2). Furthermore, and performed regression analysis to compare absolute ORI and PaO2 values as well as Δ ORI and Δ PaO₂ values, respectively.

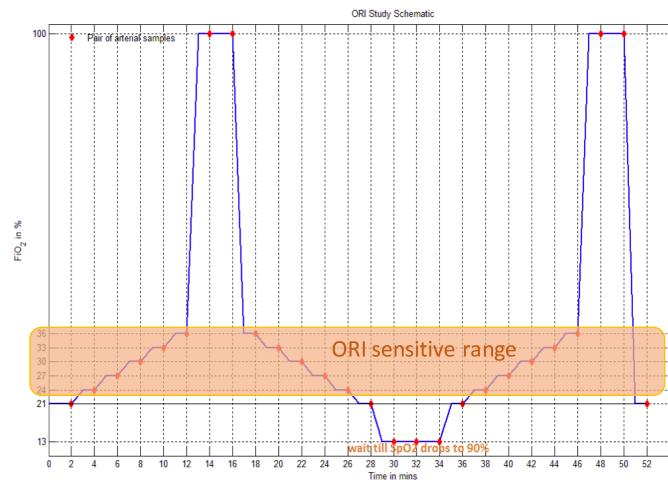


Fig. 1 Study flow chart

Results: Sensitivity and specificity as well as concordance of Δ ORI vs. Δ PaO₂ were high (mostly above 90%, for details see table 1). Absolute ORI and PaO₂ values were positively correlated (r²=0.63; p<0.001, fig. 3A). The same holds true for Δ ORI and Δ PaO₂ values (r² = 0.59; p<0.001, fig. 3B).

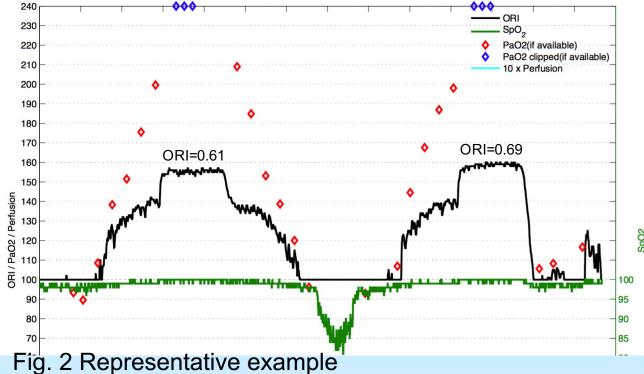


Table 1 Sensitivity/Specificity and Concord

Table 1 Sensitivity/Specificity and Concordance for ΔORI vs. ΔPaO ₂				
PaO ₂ ref (mmHg)	Samples [n]	Sensitivity	Specificity	Concordance
110	710	80.85	99.25	98.03
120	892	95.92	91.24	92.26
130	941	91.61	92.85	92.45
140	1029	92.98	93.19	93.10
150	1047	95.82	91.35	93.70
160	1071	94.84	89.35	92.62
170	1088	94.60	90.89	93.29
180	1028	94.84	90.03	93.39
190	1035	94.83	85.36	92.27

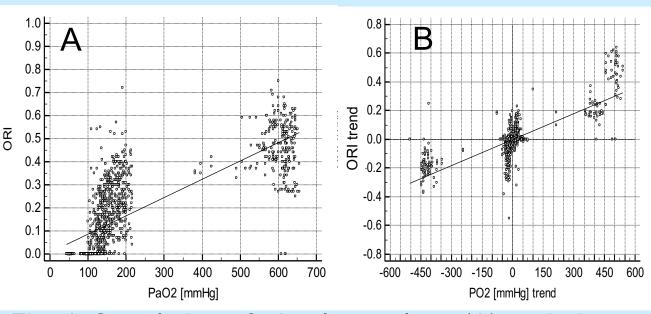


Fig. 3 Correlation of absolute values (A) and changes (trend)(B) of ORI and PaO₂, respectively.

Conclusion: In the flat part of the haemoglobin-oxygen binding curve, where oxygen saturation is >97%, a decrease in ORI indicates a falling PaO₂ prior to oxygen desaturation. As such, the non-invasive and continuously available ORI may offer additional information at maximum SpO₂ values and help guide clinicians in estimating the body's oxygen reserve.

Reference: ¹Szmuk P, et al. Anesthesiology 2016;124:779-86 Acknowledgement: Research funding by Masimo Corp.