The 2-aminotetralin system as a structural base for new dopamine- and melatonin-receptor agents
Copinga, Swier

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1994

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
CHAPTER 2
SYNTHESIS OF 5,6-(OH)2-PTAT: A POTENTIAL MIXED D1/D2-RECEPTOR AGONIST*

2.1 INTRODUCTION

In vivo studies performed during the 1980's showed that animals with normosensitive dopamine receptors display locomotor activity and stereotyped behaviour through functional synergism between D1 and D2 receptors,** while animals with supersensitive dopamine receptors display such behaviours through functionally uncoupled D1 and D2 receptors (see 1.4.3) [1]. If this concept is extrapolated to man, it implies that in conditions with normosensitive or slightly supersensitive dopamine receptors, as is probably the case in the early stages of Parkinson's disease, stimulation of both D1 and D2 receptors would be needed for a good clinical result. On the contrary, in conditions with supersensitive dopamine receptors, as is probably the case in the later stages of Parkinson's disease, selective stimulation of either D1 or D2 receptors would be sufficient for a clinical effect [1,2]. Based on this hypothesis, we initiated a study to develop a novel mixed D1/D2-receptor agonist, which could ultimately be used clinically in conditions where stimulation of both D1 and D2 receptors is needed.

2.2 5,6-(OH)2-PTAT: A POTENTIAL MIXED D1/D2-RECEPTOR AGONIST

Typically, the development of dopamine-receptor agonists has proceeded along two main routes, *i.e.* rigidification of the dopamine molecule (1) and molecular dissection of the classical dopamine-receptor agonist apomorphine (7), as exemplified in Chart 2.1 for 5,6-dihydroxy- and 5-hydroxy-2-aminotetralins, important classes of dopamine-receptor agonists [3-8]. 5,6-Dihydroxy-2-aminotetralin (5,6-(OH)2-AT, 8), suggested by Pinder and colleagues to be the dopaminergic pharmacophore in apomorphine (7) [9], can be viewed as a combination of both approaches [10-12]. Based on structural

* This chapter is partially based on:
** As described in 1.2.4 the dopamine-receptor family has expanded recently by the use of molecular cloning techniques. Five different dopamine receptors, termed D1 through D5, have so far been documented. Based on molecular biological properties and present pharmacological characterization these dopamine receptors can be classified in two dopamine-receptor subfamilies, *i.e.* “D1-like” receptors (D1 and D5) and “D2-like” receptors (D2, D3 and D4). Consequently, this study dealing with D1 and D2 receptors, may involve any or all of the members within these particular subfamilies of dopamine receptors.
Chart 2.1 5,6-Dihydroxy- and 5-hydroxy-2-aminotetralins: dopamine-receptor agonists resulting from rigidification of the dopamine molecule (I), molecular dissection of apomorphine (7) and structural modification of the lead compounds dopamine (I), apomorphine (7) and 5,6-dihydroxy-2-aminotetralin (5,6-(OH)₂-AT, 8).
modifications of dopamine (1) and apomorphine (7), which led to compounds with dopaminergic activity -e.g. m-tyramine (2) [13,14], N-n-propynorapomorphine (9) [15-19], and 11-hydroxy-N-n-propynoraporphine (11) [16,20]-, 5,6-dihydroxy-2-(N,N-di-n-propylamino)tetralin (5,6-(OH)2-DPAT, 10) [11,12,21] and 5-hydroxy-2-(N,N-di-n-propylamino)tetralin (5-OH-DPAT, 12) [22,23] were developed from 5,6-(OH)2-AT (8). Pharmacological evaluation of these two 2-aminotetralins in dopamine-receptor subtype-selective bioassays revealed that 5,6-(OH)2-DPAT (10) is a mixed D1/D2-receptor agonist and that 5-OH-DPAT (12) has a lower activity at D1 receptors than 5,6-(OH)2-DPAT (10) and a higher activity at D2 receptors than 5,6-(OH)2-DPAT (10) [24,25]. Beaulieu and colleagues even designated 5-OH-DPAT (12) as a selective D2-receptor agonist due to the fact that this 2-aminotetralin failed to display appreciable D1-receptor agonist activity [26]. These data are indicative of the importance of the catechol function of 2-aminotetralins, such as 5,6-(OH)2-DPAT (10), for activity at D1 receptors.

Structure-activity-relationship studies, set up to elucidate the receptor-preferred conformation of dopamine at D1 and D2 receptors, showed that of the mono-hydroxylated 2-(N,N-di-n-propylamino)tetralins 5-OH-DPAT (12), mimicking rigidly the α-rotameric conformation of dopamine,* is the most active one at both subtypes of dopamine receptors, followed by 7-OH-DPAT, mimicking rigidly the β-rotameric conformation of dopamine,* and finally 6-OH-DPAT, a compound only with a para-hydroxy [24,25]. 8-OH-DPAT, a compound without a meta- or para-hydroxy, shows no dopaminergic activity at all, but acts as a potent and selective 5-HT1A-receptor agonist [4,24,25,27]. In addition, these studies revealed that of the dihydroxylated 2-(N,N-di-n-propylamino)tetralins 5,6-(OH)2-DPAT (10), an α-rotameric dopamine-receptor agonist, displays higher activity at both D1 and D2 receptors than 6,7-(OH)2-DPAT, a β-rotameric dopamine-receptor agonist [24,25].

Based on the above described structure-activity relationships and the fact that N-n-propyl-N-phenethyl-2-(3-hydroxyphenyl)ethylamine (RU 24213, 6) [28], developed from 11-hydroxy-N-n-propynoraporphine (11) through molecular dissection and from N,N-di-n-propyl-2-(3-hydroxyphenyl)ethylamine (4) [29,30] and N-n-propyl-N-phenethyl-2-(3,4-dihydroxyphenyl)ethylamine (5) [28,31] through structural modification, behaves pharmacologically as a selective D2-receptor agonist [32], Horn and co-workers, in search of clinically applicable, selective D2-receptor agonists, developed 5-hydroxy-2-[N-n-propyl-N-2-(phenyl)ethylamino]tetralin (N-0434, 13), first described by a combination of Swedish research groups [22], and 5-hydroxy-2-[N-n-propyl-N-2-(2-thienyl)ethylamino]tetralin (N-0437, 14), in which the 2-(phenyl)ethylamine side chain of N-0434 (13) is replaced isostERICALLY by a 2-(2-thienyl)ethylamine side chain, as extremely potent and selective D2-receptor agonists [26,33-40].

* See footnote on α- and β-rotameric conformations of dopamine on page 25.
Considering the pharmacological profiles of 5,6-(OH)₂-DPAT (10), a mixed D₁/D₂-receptor agonist, and N-0437 (14), a selective D₂-receptor agonist, in combination with the importance of a catechol function, present in many selective D₁-receptor agonists, e.g. SKF 38393 (15), for D₁-receptor activity (see 1.3.2), we suggested 5,6-dihydroxy-2-[N-n-propyl-N-2-(2-thienyl)ethylamino]tetralin (5,6-(OH)₂-PTAT, 16), the catechol analogue of N-0437 (14), as a potential mixed D₁/D₂-receptor agonist, as outlined in Chart 2.2.

Chart 2.2 Chemical structures of 5,6-(OH)₂-PTAT (16), a potential mixed D₁/D₂-receptor agonist, and 5,6-(OCH₃)₂-PTAT (19) and 5,6-OCH₂O-PTAT (20), potential prodrugs of 5,6-(OH)₂-PTAT (16). 10: 5,6-(OH)₂-DPAT, 14: N-0437, 15: SKF 38393, 17: N-0724, and 18: (−)-MDO-NPA.
Due to the presence of a catechol function, 5,6-(OH)₂-PTAT (16) will be rapidly metabolized, or stated differently, will have a low biostability and, notably, a short duration of action. These shortcomings may be circumvented by the development of a prodrug. The prodrug approach is based on the concept of metabolic activation, i.e. the active parent compound is liberated from the prodrug by enzymatic activity. As outlined in Chart 2.2, we proposed 5,6-dimethoxy-2-[N-n-propyl-N-2-(2-thienyl)ethylamino]-tetralin (5,6-(OCH₃)₂-PTAT, 19) and 5,6-methylenedioxy-2-[N-n-propyl-N-2-(2-thienyl)ethylamino]tetralin (5,6-OCH₂O-PTAT, 20) as potential prodrugs of 5,6-(OH)₂-PTAT (16), analogous to 5-methoxy-2-[N-n-propyl-N-2-(2-thienyl)ethylamino]tetralin (N-0724, 17), a possible prodrug of N-0437 (14) [41], and (-)-10,11-methylenedioxy-N-n-propylaporphine ((-)-MDO-NPA, 18), an orally effective, long-acting prodrug of (-)-NPA (9) [42-44]. These prodrugs of 5,6-(OH)₂-PTAT (19 and 20) can probably metabolically be activated by the oxidative ether-cleavage action of a cytochrome-P450 isoenzyme [45,46].

2.3 SYNTHESIS OF 5,6-DISUBSTITUTED 2-[N-N-PROPYL-N-2-(2-THIENYL)ETHYLAMINO]TETRALINS

2.3.1 5,6-DIMETHOXY- AND 5,6-DIHYDROXY-2-[N-N-PROPYL-N-2-(2-THIENYL)ETHYLAMINO]TETRALIN

In 1969 Sprenger and colleagues reported for the first time the synthesis of a 5,6-dimethoxy-2-(dialkylamino)tetralin [47]. Important intermediates in this synthetic route were 5,6-dimethoxy-1-tetralone, prepared in seven steps from 2-hydroxy-3-methoxy-benzaldehyde according to the method of Elmore and King [48], and 5,6-dimethoxy-2-amino-1-tetralone, prepared from 5,6-dimethoxy-1-tetralone in three steps including a Neber rearrangement. Cannon and colleagues showed that the ether links in this compound can be cleaved to obtain a 5,6-dihydroxy-2-(dialkylamino)-tetralin [10].

In 1975 McDermed and co-workers demonstrated that 5,6-dimethoxy-2-tetralone (25) offers greater versatility as an intermediate to synthesize a wide variety of 5,6-dimethoxy- and 5,6-dihydroxy-2-aminotetralins [11]. They prepared 5,6-dimethoxy-2-tetralone (25), synthesized earlier through isomerization of 5,6-dimethoxy-1-tetralone [49], in four steps, as outlined in Scheme 2.1. This synthesis included as the first step the oxidation of 2,6-dihydroxynaphthalene (21) to 6-hydroxy-1,2-naphthoquinone (22) by the use of Fremy’s radical [50,51], a difficult reaction to perform. Subsequently, this naphthoquinone 22 was reduced to 1,2,6-trihydroxynaphthalene (23) by sodium hydrosulfite. The trihydroxynaphthalene 23 was not isolated due to its sensitivity to air oxidation, but was immediately methylated to the known trimethoxynaphthalene 24 [52]. This compound 24 was converted to 5,6-dimethoxy-2-tetralone (25) by a Birch reduction and an acid hydrolysis, for the first time utilized sequentially by Robinson and co-workers [53].
In 1977 5,6-dimethoxy-2-tetralone (25) was prepared differently by Cannon and colleagues via a multi-step synthetic pathway [12], as outlined in Scheme 2.2. The most important reaction in this pathway was the acid-catalyzed cyclisation of β-ketosulfoxide 31 to 1-methylthio-2-tetralone 32, involving a Pummerer rearrangement, as described by Oikawa and Yonemitsu [54].
In 1978 Horn and co-workers described a facile synthesis of 5,6-dihydroxy-2-aminotetralin (8), also involving as key intermediate 5,6-dimethoxy-2-tetralone (25) [55]. They prepared this tetralone 25 in three steps from commercially available 1,6-dibromo-2-hydroxynaphthalene (34) via 1,2,6-trimethoxynaphthalene (24), as McDermed and colleagues did [11]. This synthetic route to 5,6-dimethoxy-2-tetralone (25), as outlined in Scheme 2.3, was found in practice to be more convenient than the above-mentioned methods of McDermed and colleagues and Cannon and colleagues [11,12].

![Scheme 2.3](image)

Scheme 2.3 Reagents: (a) Br₂, CH₃COOH; (b) (CH₃)₂SO₄, NaOH; (c) NaOCH₃, CuI, 2,4,6-trimethylpyridine; (d) Na, C₂H₅OH, H₂O, 36% HCl.

In view of the synthesis of 5,6-dimethoxy- (5,6-(OCH₃)₂-PTAT, 19) and 5,6-dihydroxy-2-[N-n-propyl-N-2-(2-thienyl)ethylamino]tetralin (5,6-(OH)₂-PTAT, 16) the method, which was used previously by our group [55], was chosen to prepare the key intermediate 5,6-dimethoxy-2-tetralone (25) (Scheme 2.3). Difficulties were encountered in this synthetic route at different stages. The first two steps, i.e. the bromination of hydroxynaphthalene 33 [56-58] and the methylation of dibromohydroxynaphthalene 34 [57], were uneventful. Contrarily, the methoxylation of 1,6-dibromo-2-methoxy-naphthalene (35), using sodium methoxide in the presence of copper(I) iodide by a method of Bacon and co-workers [59,60], gave very unpredictable results. If the methoxylation, an aromatic nucleophilic substitution, succeeded, the yield was often very low. Major by-products, resulting from competition between reductive and nucleophilic substitution, were 2-methoxynaphthalene and 2,6-dimethoxynaphthalene. These by-products were removed by purification through column chromatography. The highest yield, as described in the experimental section (see 2.4.2), was approximately 60% of pure 1,2,6-trimethoxynaphthalene (24). In attempting to improve the results of this reaction, the solvent 2,4,6-trimethylpyridine was replaced by dimethylformamide or a mixture of toluene and dimethylformamide (13:4), as performed by the group of Cannon [61,62]. Although the workup procedure of the reaction was now less laborious,
these replacements failed to give better results. The conversion of pure 1,2,6-trimethoxynaphthalene (24) by a Birch reduction and an acid hydrolysis [53] to the desired 2-tetralone 25 always produced 6-methoxy-2-tetralone as a by-product. Removal of this impurity by bisulfite adduct formation, followed by vacuum distillation or column chromatography, was not successful. In the best case, the yield was almost 70% of crude 5,6-dimethoxy-2-tetralone (25), containing significant amounts of 6-methoxy-2-tetralone (see 2.4.2). If this crude tetralone was used in the next reactions to prepare 5,6-(OCH3)2-PTAT (19) and 5,6-(OH)2-PTAT (16), the impurity, resulting from 6-methoxy-2-tetralone, could be removed by the column chromatography of the residual oil, which was yielded by the reductive alkylation of contaminated secondary 2-aminotetralin 46 (see 2.4.4 and Scheme 2.5).

Due to the encountered difficulties in the synthetic route to 5,6-dimethoxy-2-tetralone (25) via 1,2,6-trimethoxynaphthalene (24), an alternate synthetic pathway, as outlined in Scheme 2.4, was attempted. This pathway was used previously by Nichols and co-workers to synthesize 5,6-methylenedioxy- and 6,7-methylenedioxy-2-tetralone [63]. Although cinnamic acid 28 is commercially available, this acid was synthesized for economic reasons from 2-hydroxy-3-methoxybenzaldehyde (26) in two steps, namely a methylation [64] and a condensation, i.e. the Doebner modification of the Knoevenagel reaction [63,65-67]. Cinnamic acid 28 was almost converted quantitatively to α-diazoketone 37 via propanoic acid 29 and acyl chloride 36 [63,68,69]. The next step in this synthetic pathway is the crucial conversion of α-diazoketone 37, reported

![Scheme 2.4 Reagents: (a) (CH3)2SO4, KOH; (b) CH3(COOH)2, pyridine, piperidine; (c) Pd-on-C (10%), H2; (d) SOCl2; (e) CH2N2; (f) [Rh(CH3COO)2]2, CF3COOH.](image-url)
earlier by Elmore and King [48], to 2-tetralone 25 via a rhodium(II) acetate-catalyzed cycloaddition, i.e. an intramolecular Buchner reaction, followed by a transformation under influence of trifluoroacetic acid. This conversion, as reported firstly by McKervey and colleagues [70,71] and recently reinvestigated by Cordi and colleagues [72], is very interesting from a mechanistic point of view. The postulated mechanism, as outlined in Chart 2.3, involves initially an intramolecular attack of a rhodium(II) carbenoid [73,74] onto the benzene ring of α-diazoketone 37 to form cyclopropanated tricyclic intermediate 38, a norcaradiene-like intermediate. This intermediate 38 is in equilibrium with 3,8a-dihydroazulen-1(2H)-one 39. Under acidic conditions, cyclopropanated tricyclic intermediate 38 can be protonated to ion 40, which rearranges by the opening of a C–C bond to allow re-aromatization. This re-aromatization gives 3,4-dihydro-2-naphthalenol 41, which tautomerizes to 5,6-dimethoxy-2-tetralone (25). The overall yield of this six-step synthesis of 5,6-dimethoxy-2-tetralone (25) was almost 50%. Although this synthetic route had two steps more than the above-described one via 1,2,6-trimethoxynaphthalene (24), the overall yield was higher (50% vs. 30%) and above all the desired 2-tetralone 25 was completely pure.

![Chart 2.3](image)

Chart 2.3 Postulated mechanism for rhodium(II) acetate-catalyzed cyclisation, followed by a rearrangement under acidic conditions [70-72].
The synthetic route, used to obtain 5,6-(OCH₃)₂-PTAT (19) from 5,6-dimethoxy-2-tetralone (25), consisted of three steps, as outlined in Scheme 2.5. The first step was an acid-catalyzed condensation between 2-tetralone 25 and n-propylamine, yielding imine 42 [11,55]. This imine 42 was instantaneously catalytically hydrogenated in the second step to secondary 2-aminotetralin 43 [11,55]. Subsequently, the third step involved a reductive N-alkylation of secondary 2-aminotetralin 43 with 2-thiopheneacetic acid in the presence of trimethylamineborane in refluxing xylene [36], according to the method of Trapani and co-workers [75]. These three steps, yielding 5,6-(OCH₃)₂-PTAT (19), were straightforward. Ultimately, the conversion of 5,6-(OCH₃)₂-PTAT (19) to 5,6-(OH)₂-PTAT (16) comprised a demethylation, as outlined in Scheme 2.5. This demethylation was difficult to perform. Initially, the ether cleavage was attempted with 48% hydrobromic acid [10,12,76]. This method failed because complete ether cleavage was accompanied by total N-dethienylethylation. A milder method of ether cleavage was tried by using boron tribromide in dichloromethane [36,77]. However, complete demethylation of both methoxy groups could not be accomplished. Thus, this reaction always gave the two possible hydroxy-methoxy-2-aminotetralins as by-products, which were difficult to separate from catechol 16. Finally, the ether cleavage succeeded, albeit in low yield (26%), by using boron tribromide-methyl sulfide complex as demethylating agent [78,79]. The hydrochloride salt of 5,6-(OH)₂-PTAT (16) could only be obtained by working under an atmosphere of nitrogen and was stored in a vacuum desiccator until use.

Scheme 2.5 Reagents: (a) n-C₃H₇NH₂, p-TsO-H₂O; (b) PtO₂, H₂; (c) (CH₃)₃N-BH₃, 2-thiopheneacetic acid, (d) BB₃(CH₃)₂S.
2.3.2 5,6-METHYLENEDIOXY-2-[N-N-PROPYL-N-2-(2-THIENYL)ETHYLAMINO]-TETRALIN

Key intermediate in the synthesis of 5,6-methylenedioxy-2-[N-n-propyl-N-2(2-thienyl)ethylamino]tetralin (5,6-OCH₂O-PTAT, 20) was 5,6-methylenedioxy-2-tetralone (50). This 2-tetralone 50 was synthesized from 2-hydroxy-3-methoxybenzaldehyde (26) via α-diazoketone 49, as described previously by Nichols and co-workers [63]. As outlined in Scheme 2.6, the first step of this synthetic pathway involved the demethylation of 2-hydroxy-3-methoxybenzaldehyde (26) by the use of 48% hydrobromic acid in glacial acetic acid in accordance with the method of Pauly and colleagues [80,81]. The 37% yield of this reaction was lower than the previously described yields [81,82]. The next step, the conversion of 2,3-dihydroxybenzaldehyde (44) to 2,3-methylenedioxybenzaldehyde (45), was accomplished by the method of Tomita and Aoyagi [83]. The methylenation, involving two sequential, aliphatic nucleophilic substitutions [84], was carried out using dibromomethane as methylenating agent (instead of diiodomethane [82]) in the presence of potassium carbonate as ionizing base, copper(II) oxide as catalyst, and dimethylformamide as solvent [85-87]. Subsequently, methylenedioxybenzaldehyde 45 was converted to 5,6-methylenedioxy-
2-tetralone (50) by the same sequence of smoothly executed reactions as used for the conversion of 2,3-dimethoxybenzaldehyde (27) to 5,6-dimethoxy-2-tetralone (25) (see 2.3.1 and Scheme 2.4) [63,67,88,89]. The crucial reaction in this sequence, the conversion of α-diazoketone 49 to the desired 2-tetralone 50, proceeded in modest yield.

5,6-OCH3O-PTAT (20) was obtained from 5,6-methylendioxy-2-tetralone (50) in three straightforward steps, as outlined in Scheme 2.6. These three steps involved a condensation, a catalytic hydrogenation and a reductive N-alkylation, as already described for the synthesis of 5,6-(OCH3)2-PTAT (19) from 5,6-dimethoxy-2-tetralone (25) (see 2.3.1 and Scheme 2.5) [11,36,55,75].

2.4 EXPERIMENTAL SECTION

2.4.1 GENERAL ASPECTS

Melting points were determined in open glass capillaries on an Electrothermal digital melting-point apparatus and are uncorrected. IR spectra were recorded on a Philips PU 9706 spectrophotometer or on a Beckman AccuLab 2 spectrophotometer, and only the important absorptions are given. 1H NMR spectra were recorded on a 60 MHz Hitachi Perkin-Elmer R-24 B spectrometer or on a 300 MHz Varian VXR-300 spectrometer. Chemical shifts (δ) are reported in ppm (parts per million) relative to (CH3)4Si as an internal standard or via δ(CDC13) (7.24) or δ[(CD3)2SO] (2.49). Chemical-ionisation (CI) mass spectra, using NH3 as reactant gas, were obtained with a Finnegan 3300 system. Elemental analyses for new substances were performed by the Department of Chemistry, University of Groningen, The Netherlands. Where elemental analyses are indicated, obtained results were within 0.4% of theoretical values.

2.4.2 PREPARATION OF 5,6-DIMETHOXY-2-TETRALONE VIA 1,2,6-TRIMETHOXYNAPHTHALENE

1,6-Dibromo-2-naphthalenol (34)
To a vigorously stirred solution of 2-naphthol (33) (144.0 g, 1.00 mol) in glacial acetic acid (0.75 l) was added dropwise over a period of 1.5 h a solution of bromine (105 ml, 2.05 mol) in glacial acetic acid (360 ml). After the addition was complete, the reaction mixture was refluxed until the evasion of hydrogen bromide, which was removed by a constant stream of nitrogen and absorbed in H2O, stopped (after approx. 1.5 h). During cooling of the reaction mixture a pink solid precipitated. To the cooled reaction mixture was added slowly ice-water until the formation of precipitate ended. After stirring for 2 h, the pink solid was collected by suction filtration and dissolved in CH2Cl2. This solution was washed with a 2.5% aqueous solution of Na2S2O3 and saturated aqueous solutions of NaHCO3 and NaCl and dried over Na2SO4. Removal of the solvent under reduced pressure yielded 284.0 g (0.94 mol, 94%) of naphthalenol 34 as a slightly pink solid: mp 104-106 °C ([56] mp 106 °C, 80% acetic acid; [57] mp 106 °C, benzene); IR (cm⁻¹, KBr) 3420 (OH), 1580 (Ar), 920, 870, 800 (ArH); 1H NMR (60 MHz, CDC13) δ 5.90 (s, 1H, OH), 7.15-8.00 (m, 5H, ArH); 1H NMR (60 MHz, CDC13/D2O) δ 7.15-8.00 (m, 5H, ArH).

1,6-Dibromo-2-methoxy-naphthalene (35)
Dimethyl sulphate (40 ml, 0.42 mol) was added dropwise over a period of 30 min to a vigorously stirred solution of naphthalenol 34 (100.1 g, 0.332 mol) in 2N NaOH (250 ml). The temperature of the reaction
mixture raised to 35 °C and a cream-coloured precipitate appeared. After 15 min 2N NaOH (100 ml) was added to the reaction mixture and the basic reaction mixture was stirred for 1 h at 55 °C. Subsequently another amount of dimethyl sulphate (15 ml, 0.16 mol) was added dropwise over a period of 10 min. The basic reaction mixture was stirred for 30 min at 55 °C and heated at reflux for 1 h. After cooling, the reaction mixture was extracted with CH2Cl2 (3 x 100 ml). The CH2Cl2 layer was washed with 2N NaOH (3 x 100 ml) and a saturated solution of NaCl (1 x 100 ml) and dried over MgSO4. After removal of the solvent under reduced pressure, recrystallization (hexane) yielded 78.0 g (0.247 mol, 74%) of methoxynaphthalene 35 as light-gray crystals: mp 102-103 °C [157] mp 102 °C, (Et2O); IR (cm⁻¹, KBr) 1580 (Ar), 890, 870, 840, 795; ¹H NMR (60 MHz, CDCl3) δ 4.00 (s, 3H, OCH3), 7.10-8.25 (m, 5H, ArH).

1,2,6-Trimethoxynaphthalene (24) Freshly cut sodium (16.5 g, 0.7 g atom) was added under an atmosphere of nitrogen to dry MeOH (200 ml). When dissolution was complete, the warm solution was diluted with dry 2,4,6-trimethylpyridine (100 ml), and subsequently vacuum-dried CuI (20.6 g, 108 mmol) and methoxynaphthalene 35 (30.0 g, 99.4 mmol) were added. The reaction mixture was diluted with an additional amount of dry 1,2,6-trimethoxynaphthalene 24 as a nearly white powder: mp 54-55 °C; [11] mp 55 °C, [52] mp 55 °C, MeOH/light petroleum; [55] mp 54-55 °C; ¹H NMR (60 MHz, CDCl3) δ 3.85 (s, 6H, OCH3); 3.95 (s, 3H, OCH3), 4.00 (s, 3H, OCH3), 7.00-8.25 (m, 5H, ArH); MS (CI with NH3) m/z 219 (M+1).

3,4-Dihydro-5,6-dimethoxy-2(1H)-naphthalenone (5,6-Dimethoxy-2-tetralone, 25) Trimethoxynaphthalene 24 (10.9 g, 50 mmol) was dissolved in boiling absolute EtOH (125 ml) under mechanically stirring. Sodium (9.0 g, 0.4 g atom), cut in little pieces, was added as rapidly as possible (30 min) to the nitrogen flushed solution. After addition of another amount of absolute EtOH (25 ml), refluxing was continued until all the sodium had disappeared (1 h). The reaction mixture was cooled in an ice bath and then diluted with chilled H2O (40 ml) and 36% HCl (45 ml) added dropwise as rapidly as possible to avoid the formation of "tetralone-blue". The yellow reaction mixture was stirred for 1 h at reflux temperature. After cooling, the reaction mixture was extracted with Et2O (50 ml) and the H2O/EtOH layer was concentrated under reduced pressure until only H2O remained. This H2O/EtOH layer was extracted with Et2O (3 x 50 ml) and the Et2O extracts were combined. The resulting Et2O layer was washed with a saturated aqueous solution of NaCl (3 x 50 ml) and dried over MgSO4. After in vacuo evaporation of the solvent, a viscous, brown/orange oil was afforded, which solidified in the refrigerator. From the crude oil a NaHSO3 adduct was prepared. Decomposition of this adduct by an aqueous solution of Na2CO3 yielded, after extraction with Et2O, drying over MgSO4 and evaporation of the solvent under reduced pressure, 7.0 g (34 mmol, 68%) of tetralone 25, contaminated with 6-methoxy-2-tetralone, as a yellow solid: IR (cm⁻¹, neat) 2840 (OCH3), 1710 (C=O); ¹H NMR (60 MHz, CDCl3) δ 2.50 (t, 2H, CH2), 3.15 (t, 2H, CH2), 3.50 (s, 2H, CH2), 3.75 (s, 3H, OCH3) δ 3.80 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 6.80 (s, 2H, ArH) (δ49) ¹H NMR (CDCl3); MS (CI with NH3) m/z 177 (M+30+1), 207 (M+1), 224 (M+18). Attempts to remove 6-methoxy-2-tetralone
by vacuum distillation or column chromatography (silica gel 60 (Merck) using CH₂Cl₂ as the eluent) failed.

2.4.3 PREPARATION OF 5,6-DIMETHOXY-2-TETRALONE VIA 1-DIAZO-4-(2,3-DIMETHOXYPHENYL)-2-BUTANONE

2,3-Dimethoxybenzaldehyde (27)
2-Hydroxy-3-methoxybenzaldehyde (26) (38.0 g, 0.250 mol) was melted by warming on a water-bath. To this vigorously stirred melt was added dropwise a solution of KOH (20.5 g, 0.365 mol) in H₂O (30 ml) at such a rate that the addition was complete after 15 min. 30 Seconds after the beginning of this addition dimethyl sulphate (30.0 ml, 0.317 mol) was added dropwise at the same rate. After 5 min the external heating was stopped and the pale reddish-brown reaction mixture continued to reflux gently from the heat of the reaction. When the colour of the reaction mixture changed to green (indication of an acid reaction), the rate of addition of the alkali was slightly increased. When the additions were complete, the brown reaction mixture was poured into a porcelain basin and allowed to cool overnight without disturbance. The resulting crystalline aldehyde 27 was collected by suction filtration and washed by resuspension and disturbance. The resulting crystalline aldehyde 27 was recrystallized from 2-butanol to provide white crystals: mp 50-51°C. IR (cm⁻¹, KBr) 1685 (C=O), 3.90 (s, 3H, OCH₃), 7.10-7.60 (m, 3H, ArH).

(E)-3-(2,3-Dimethoxyphenyl)-2-propenoic Acid (28)
A well stirred mixture of aldehyde 27 (21.6 g, 0.130 mol), malonic acid (27.0 g, 0.259 mol), and pyridine (1.9 ml) in pyridine (60 ml) was heated for 2 h at 80°C and then refluxed for 2 h at 115°C. The mixture was chilled and poured under stirring into an excess of cold aqueous 1N HCl (0.80 l). The flocculent white precipitate was collected by suction filtration and washed with resin suspension and stirring for 15 min in cold H₂O (300 ml). The precipitate was collected by suction filtration and dried in a vacuum desiccator. The yield was 26.0 g (0.125 mol, 96%) of cinnamic acid 28. An analytical sample was recrystallized from 2-butanol to provide white crystals: mp 181-182°C (lit66) mp 179-180°C, 2-butanol; 68°C mp 180-181°C, benzene; 69°C mp 180°C, EtOAc; IR (cm⁻¹, KBr) 1690 (C=O), 1635 (C=C); ¹H NMR (60 MHz, CDCl₃) δ 3.70 (s, 3H, OCH₃), 7.15-7.60 (m, 3H, ArH). 1O H, =CHO, J = 17 Hz), 10.95 (s, 1H, CH=CHO).

3-(2,3-Dimethoxyphenyl)propanoic Acid (29)
Cinnamic acid 28 (15.9 g, 76.4 mmol) was dissolved in 96% EtOH (500 ml) and hydrogenated overnight over 10% Pd-on-C (1.5 g) in a Parr apparatus under a H₂ pressure of 3.5 atmospheres. The mixture was filtered and the solvent was evaporated in vacuo to yield 15.7 g (74.8 mmol, 98%) of propanoic acid 29 as a light-yellow solid. An analytical sample was recrystallized from benzene to provide white crystals: mp 68-69°C (lit65) mp 68°C, H₂O; 69°C mp 69-70°C, benzene/petroleum (bp 50-60°C), IR (cm⁻¹, KBr) 1700 (C=O); ¹H NMR (60 MHz, CDCl₃) δ 2.50-3.15 (m, 4H, CH₂CH₂), 3.90 (s, 6H, OCH₃), 6.65-7.15 (m, 3H, ArH), 10.9 (bs, 1H, OH); ¹H NMR (60 MHz, CDCl₃) δ 2.40-3.15 (m, 4H, CH₂CH₂), 3.90 (s, 3H, OCH₃), 7.95 (s, 1H, OCH₃), 6.80-7.25 (m, 3H, ArH).

3-(2,3-Dimethoxyphenyl)propanoyl Chloride (36)
Thionyl chloride (2.45 ml, 33.6 mmol) was added under an atmosphere of nitrogen to a stirred solution of propanoic acid 29 (6.40 g, 30.5 mmol) in benzene (200 ml). After refluxing for 4 h and cooling of the
reaction mixture, the volatiles were evaporated under reduced pressure to yield the crude acyl chloride 36, which was purified by vacuum distillation. The yield was 6.55 g (28.6 mmol, 94%) of acyl chloride 36 as a colourless, viscous oil: bp 97-98 °C (0.005 mbar); [68] bp 165-166 °C (15 mmHg); [48] bp 106-107 °C (2 mmHg); IR (cm⁻¹, neat) 2840 (OCH₃), 1800 (C=O); IH NMR (60 MHz, CDCl₃) δ 2.90-3.40 (m, 4H, CH₂CH₂), 3.90 (s, 6H, OCH₃), 6.65-7.10 (m, 3H, ArH).

I-Diazo-4-(2,3-dimethoxyphenyl)-2-butanone (37)
A solution of acyl chloride 36 (6.52 g, 28.5 mmol) in anhydrous Et₂O (75 ml) was added dropwise over a period of 15 min to a stirred solution of freshly prepared CH₂N₂ (approx. 3.8 g) (caution: highly explosive and highly toxic gas) in dry Et₂O (185 ml) at 5 °C and under an atmosphere of nitrogen. After the reaction mixture had reached room temperature, it was allowed to stand overnight under an atmosphere of nitrogen. Removal of the solvent under reduced pressure yielded 6.60 g (28.2 mmol, 99%) of α-diazoketone 37 as a yellow oil: IR (cm⁻¹, neat) 2850 (OCH₃), 2105 (CHN₂), 1645 (C=O); IH NMR (60 MHz, CDCl₃) δ 2.50-3.15 (m, 4H, CH₂CH₂), 3.90 (s, 6H, OCH₃), 5.25 (s, 1H, CHN₂), 6.70-7.15 (m, 3H, ArH).

3,4-Dihydro-5,6-dimethoxy-2(1H)-naphthalenone
(5,6-Dimethoxy-2-tetralone, 25)
α-Diazoketone 37 (6.57 g, 28.0 mmol) was dissolved in CH₂Cl₂ (50 ml) and this solution was added over a period of 10 min to a rapidly stirred solution of [Rh(CH₃COO)₂]₂ (50 mg) in CH₂Cl₂ (40 ml) under an atmosphere of nitrogen. After refluxing for 10 min, 1 drop of CF₃COOH was added and refluxing was continued for 15 min. After cooling, the reaction mixture was washed with saturated aqueous solutions of NaHCO₃ and NaCl and dried over MgSO₄. In vacuo evaporation of the CH₂Cl₂ yielded a brown-orange oil. The crude oil was purified by vacuum distillation to yield 3.80 g (18.4 mmol, 66%) of tetralone 25 as a light-yellow oil, which crystallized on standing: bp 105-110 °C (0.01 mbar). An analytical sample was recrystallized from hexane to provide white needles: mp 63-64 °C (lit. mp 61-63 °C, hexane; [1] mp 62-64 °C, cyclohexane; [49] mp 64-65 °C, cyclohexene), IR (cm⁻¹, neat) 2840 (OCH₃), 1710 (C=O), IH NMR (60 MHz, CDCl₃) δ 2.50-3.15 (m, 4H, CH₂, J = 7 Hz), 3.85 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 6.80 (s, 2H, ArH) (49) IH NMR (CDCl₃), MS (CI with NH₃) m/z 207 (M+1), 224 (M+18).

2.4.4 Preparation of 5,6-Dimethoxy- and 5,6-Di hydroxy-2-[N-N-propyl-N-2(2-thienyl)ethylamino]tetralin with 5,6-Dimethoxy-2-tetralone as Starting Material

1,2,3,4-Tetrahydro-5,6-dimethoxy-N-n-propyl-2-naphthalenamine
(5,6-Dimethoxy-2-n-propylanilino)tetralin, 43)
Under an atmosphere of nitrogen, a solution of tetralone 25 (3.30 g, 16.0 mmol), n-propylamine (1.60 ml (1.15 g), 19.5 mmol), and a couple of p-toluenesulphonic acid monohydrate crystals in dry benzene (50 ml) was refluxed for 5 h under continuous removal of H₂O using a Dean-Stark apparatus. The benzene and the excess n-propylamine were removed under reduced pressure and the residue, i.e. crude imine 42, was dissolved in absolute EtOH (75 ml). After transferring the solution to a Parr hydrogenation flask, PtO₂ (approx. 30 mg) was added as a catalyst and the mixture was hydrogenated overnight under a H₂ pressure of 3 atm. The catalyst was filtered off and the solvent was evaporated under reduced pressure to yield amine 43 as a dark brown oil. After converting the crude amine to its HCl salt by the use of dry ethereal HCl, the salt was dissolved in EtOH and decolourized with charcoal. Recrystallization (EtOH/Et₂O) gave 2.34 g (8.2 mmol, 51%) of 43-HCl as fine white platelets: mp 239-241 °C dec (11).
trimethylamineborane, H2O (1 x 50 ml), H2O (1 x 50 ml) and a saturated aqueous solution of NaCl (1 x 50 ml) and dried over Na2SO4. After removal under reduced pressure of the xylene, the residual oil was purified by column chromatography on silica gel 60 (Merck) using a mixture of secondary amine 43 (1.50 g, 6.01 mmol), 2-thiopheneacetic acid (2.56 g, 18.0 mmol) and trimethylamineborane to precipitate the HCl salt by treatment with dry ethereal HCl. Recrystallization (2-PrOH) yielded 1.56 g (3.94 mmol, 66%) of 19-HCl as white crystals: mp 189.5-191.0 °C dec; IR (cm−1, KBr) 2700-2200 (NH+); 1H NMR (300 MHz, CD2OD) δ 1.06 (t, 3H, CH3), 3.76 (s, 3H, OCH3), 3.81 (s, 3H, OCH3), 6.87 (dd, 2H, ArH, J = 9 Hz), 6.97-7.33 (m, 3H, ArH); MS (CI with NH3) m/z 360 (M+1) (M: free amine); Anal. calcd. for C21H29N02S.HCl: C 63.70, H 7.64, N 3.54, S 8.10; found C 63.69, H 7.59, N 3.72, S 7.92.

1,2,3,4-Tetrahydro-5,6-dimethoxy-N-n-propyl-N-[2-(2-thienyl)ethyl]-2-naphthalenamine
(5,6-Dimethoxy-2-[N-n-propyl-N-2-(2-thienyl)ethylamino]-tetralin, 5,6-(OCH3)2-PTAT, 19)
A mixture of secondary amine 43 (1.50 g, 6.01 mmol), 2-thiopheneacetic acid (2.56 g, 18.0 mmol) and trimethylamineborane (1.30 g, 17.8 mmol) in dry xylene (60 ml) was refluxed under an atmosphere of nitrogen for 4 h. After cooling, the reaction mixture was washed with aqueous 10% NaHCO3 (3 x 50 ml), H2O (1 x 50 ml) and a saturated aqueous solution of NaCl (1 x 50 ml) and dried over Na2SO4. After removal under reduced pressure of the xylene, the residual oil was purified by column chromatography on silica gel 60 (Merck) using a mixture of EtOAc and petroleum ether 40-60 (1/4) as the eluent. The fractions containing pure tertiary amine 19 (determined by TLC) were combined and the solvent was evaporated under reduced pressure. The residual pure tertiary amine 19 was dissolved in dry Et2O and precipitated as its HCl salt by treatment with dry ethereal HCl. Recrystallization (2-PrOH) yielded 1.56 g (3.94 mmol, 66%) of 19-HCl as white crystals: mp 189.5-191.0 °C dec; IR (cm−1, KBr) 2700-2200 (NH+); 1H NMR (300 MHz, CD2OD) δ 1.06 (t, 3H, CH3), 3.76 (s, 3H, OCH3), 3.81 (s, 3H, OCH3), 6.87 (dd, 2H, ArH, J = 9 Hz), 6.97-7.33 (m, 3H, ArH); MS (CI with NH3) m/z 360 (M+1) (M: free amine); Anal. calcd. for C21H29N02S.HCl (395.99): C 63.70, H 7.64, N 3.54, S 8.10; found C 63.69, H 7.59, N 3.72, S 7.92.

BBr3-Me2S (1.40 g, 4.5 mmol) was added to a solution of 19-HCl (0.75 g, 1.9 mmol) in 1,2-dichloroethane (25 ml), under an atmosphere of nitrogen. After refluxing for 0.5 h, the reaction mixture was washed with a saturated aqueous solution of NaHCO3 and the 1,2-dichloroethane layer was dried over MgSO4. After evaporation under reduced pressure almost all the 1,2-dichloroethane, Et2O was added under stirring and some crystals precipitated. The liquid was decanted and treated with dry ethereal HCl to precipitate the HCl-salt of 16. After removal of almost all the solvent, very dry Et2O was added and this mixture was stirred under an atmosphere of nitrogen for 5 min. This treatment was repeated twice before careful suction filtration under an atmosphere of nitrogen yielded 0.18 g (0.5 mmol, 26%) of 16-HCl as a slightly pink solid: IR (cm−1, KBr) 3500-3000 (OH), 2800-2200 (NH+); 1H NMR (300 MHz, CD2OD) δ 1.05 (t, 3H, CH3), 6.50 (d, 1H, ArH, J = 8 Hz), 6.66 (d, 1H, ArH, J = 8 Hz), 6.95-7.31 (m, 3H, ArH); MS (CI with NH3) m/z 332 (M+1) (M: free amine); Anal. calcd. for C19H23N02S·HCl (367.94): C 62.02, H 7.12, N 3.81, S 8.71; found C 61.97, H 7.09, N 4.01, S 8.67.

2.4.5 PREPARATION OF 5,6-METHYLENEDIOXY-2-TETRALONE VIA 1-DIAZO-4-(2,3-METHYLENEDIOXYPHENYL)-2-BUTANONE

2,3-Dihydroxybenzaldehyde (44)
To a solution of 2-hydroxy-3-methoxybenzaldehyde (26) (75.3 g, 0.495 mol) in glacial acetic acid (450 ml) was added 48% HBr (450 ml). The stirred reaction mixture was heated to boiling as rapidly as possible and a distillate was slowly removed at a temperature of approx. 115 °C. After 6 h the reaction was discontinued (250 ml distillate) and the reaction mixture was cooled. The cooled reaction mixture was poured into a vigorous stirred mixture of ice (750 g) and water (500 ml) and the resulting aqueous layer was extracted three times with Et2O. Subsequently the Et2O extracts were combined, washed with saturated aqueous solutions of NaHCO3 and NaCl and dried over MgSO4. After evaporation of the solvent under reduced pressure, the solid residue was dissolved in CH2Cl2. After removal by filtration of

81
in a vacuum desiccator afforded 25.3 g (0.183 mol, 37%) of aldehyde 44 as fine yellow needles: mp 109-111 °C ([80] mp 108 °C, [86] mp 105-107 °C, benzene; [93] mp 105-106 °C, benzene); IR (cm⁻¹, KBr) 3350 (OH), 1660 (C=O), 1H NMR [60 MHz, (CD₂)₂SO] δ 6.65-7.30 (m, 3H, ArH), 9.95 (bs, 2H, (OH)₂), 10.25 (s, 1H, CHO).

2.3-Methylenedioxybenzaldehyde (45)
A mixture of aldehyde 44 (19.5 g, 170 mmol), CH₂Br₂ (29.6 g, 170 mmol), K₂CO₃ (20.0 g, 145 mmol) and CuO (1.3 g) in DMF (130 ml) was heated under an atmosphere of nitrogen at 130 °C for 2.5 h. After cooling to room temperature, the mixture was diluted with H₂O (400 ml) and toluene (200 ml). The solids were removed by filtration through Celite and were washed with toluene. The filtrate was separated into an aqueous layer and a toluene layer, and then the aqueous layer was extracted with toluene (3 x 200 ml). The toluene layers were combined, washed with H₂O (3 x 250 ml) and dried over MgSO₄. After evaporation of the toluene under reduced pressure, purification of the residue by vacuum distillation yielded 12.6 g (83.9 mmol, 59%) of aldehyde 45 as a light-yellow oil, which crystallized in the receiver: mp 34-35 °C (0.01 mbar). An analytical sample was recrystallized from EtOH/hexane to provide light-yellow crystals: mp 34-35 °C (51) mp 32-34 °C, Et₂O; [86] mp 32-33 °C, [87] mp 35-36 °C, [88] mp 34 °C, EtOH or Et₂O; [89] mp 35 °C, petroleum ether (bp 40-60 °C), [94] mp 33-34 °C, Et₂O/light petroleum; IR (cm⁻¹, neat) 1690 (CHO); 1H NMR [60 MHz, CDCl₃] δ 6.15 (s, 2H, OCH₂O), 6.85-7.25 (m, 3H, ArH), 10.10 (s, 1H, CHO).

(E)-3-(2,3-Methylenedioxyphenyl)-2-propenoic Acid (2,3-Methylenedioxy-trans-cinnamic Acid, 46)
This cinnamic acid 46 was prepared from aldehyde 45 (12.4 g, 82.6 mmol) by essentially the same procedure as described for the preparation of cinnamic acid 28 from aldehyde 27. The yield was 15.3 g (79.6 mmol, 96%) of cinnamic acid 46. An analytical sample was recrystallized from 2-butane to provide white crystals: mp 193-195 °C ([63] mp 194-195 °C, MeOH; [82] mp 194-196 °C, MeOH; [88] mp 194 °C, H₂O/MeOH or H₂O/EtOAc, [94] mp 194-196.5 °C); IR (cm⁻¹, KBr) 1710 (C=O), 1640 (C=C); 1H NMR [50 MHz, (CD₂)₂SO] δ 6.15 (s, 2H, OCH₂O), 6.55 (d, 1H, =CHCO, J = 16 Hz), 6.85-7.25 (m, 3H, ArH), 7.55 (d, 1H, =CHAr, J = 16 Hz) (63) 1H NMR (CDCl₃)).

3-(2,3-Methylenedioxyphenyl)propanoic Acid (47)
This propanoic acid 47 was prepared from cinnamic acid 46 (7.9 g, 41.1 mmol) by essentially the same procedure as described for the preparation of propanoic acid 29 from cinnamic acid 28. The yield was 7.6 g (39.1 mmol, 95%) of propanoic acid 47 as a green crystalline product. An analytical sample was recrystallized from CH₂Cl₂/hexane to provide white crystals: mp 77-79 °C ([63] 79-80 °C, benzene; [82] 80-82 °C, [89] mp 76-78 °C, ether/petroleum ether (bp 40-60 °C), [94] mp 78-79 °C), IR (cm⁻¹, KBr) 1700 (C=O), 1H NMR (60 MHz, CDCl₃) δ 2.70 (t, 2H, CH₂CO, J = 8 Hz), 2.95 (t, 2H, CH₂Ar, J = 8 Hz), 5.90 (s, 2H, OCH₂O), 6.70 (s, 3H, ArH), 9.60 (bs, 1H, OH)) (63) 1H NMR (CDCl₃)).

3-(2,3-Methylenedioxyphenyl)propanoyl Chloride (48)
This acyl chloride 48 was prepared from propanoic acid 47 (7.5 g, 38.6 mmol) by essentially the same procedure as described for the preparation of acyl chloride 36 from propanoic acid 29. The yield was 7.8 g (36.7 mmol, 95%) of acyl chloride 48 as a colourless, viscous oil: bp 88-89 °C (0.005 mbar) (63) no bp reported), IR (cm⁻¹, neat) 2800 (OCH₂O), 1800 (C=O), 1H NMR (60 MHz, CDCl₃) δ 3.00 (t, 2H, CH₂CO, J = 7 Hz), 3.25 (t, 2H, CH₂Ar, J = 7 Hz), 5.95 (s, 2H, OCH₂O), 6.75 (s, 3H, ArH).
1-Diazo-4-(2,3-methylenedioxyphenyl)-2-butanone (49)

This α-diazoketone 49 was prepared from acyl chloride 48 (2.30 g, 10.8 mmol) by essentially the same procedure as described for the preparation of α-diazoketone 37 from acyl chloride 36. The yield was 2.33 g (10.7 mmol, 99%) of α-diazoketone 49 as yellow-green oil: IR (cm⁻¹, neat) 2800 (OCH₃), 2110 (CHN₂), 1640 (C=O); ¹H NMR (60 MHz, CDCl₃) δ 2.70 (t, 2H, CH₂CO, J = 7 Hz), 2.95 (t, 2H, CH₂Ar, J = 7 Hz), 5.25 (s, 1H, CHN₂), 6.00 (s, 2H, OCH₂O), 6.75 (s, 3H, ArH) (no spectral data reported).

3,4-Dihydro-5,6-methylenedioxy-2(IH)-naphthalenone (3,6-Methylenedioxy-2-tetralone, 50)

This tetralone 50 was prepared from α-diazoketone 49 (2.33 g, 10.7 mmol) by essentially the same procedure as described for the preparation of tetralone 25 from α-diazoketone 37. The only difference was that this tetralone 50 was purified by NaHSO₃ adduct formation instead of vacuum distillation. The yield was 0.55 g (2.9 mmol, 27%) of tetralone 50 as a light-yellow solid: mp 88-89 °C (88-91 °C; [63] no mp reported); IR (cm⁻¹, KBr) 1710 (C=O) (KBr); ¹H NMR (60 MHz, CDCl₃) δ 2.55 (t, 2H, COCH₂, J = 6.5 Hz), 3.05 (t, 2H, ArCH₂, J = 6.5 Hz), 3.55 (s, 2H, ArCH₂CO), 6.05 (s, 2H, OCH₂O), 6.60-6.80 (m, 2H, ArH) (CDCl₃); MS (CI with NH₃) m/z 191 (M⁺), 208 (M⁺+18).

2.4.6 Preparation of 5,6-Methylenedioxy-2-[N-n-propyl-N-2-(2-thienyl)-ethylamino]tetralin with 5,6-Methylenedioxy-2-tetralone as Starting Material

1,2,3,4-Tetrahydro-5,6-methylenedioxy-N-n-propyl-2-naphthalenamine (5,6-Methylenedioxy-2-[N-n-propylamino]tetralin, 51)

This secondary amine 51 was prepared from tetralone 50 (0.53 g, 2.8 mmol) by essentially the same procedure as described for the preparation of secondary amine 43 from tetralone 25. The yield was 0.22 g (0.8 mmol, 29%) of 51.HCl as fine white platelets: IR (cm⁻¹, KBr) 2900-2600, 2540, 2460 (NH₂+); MS (CI with NH₃) m/z 234 (M⁺+1) (M: free amine).

1,2,3,4-Tetrahydro-5,6-methylenedioxy-N-n-propyl-N-[2-(2-thienyl)ethyl]-2-naphthalenamine (5,6-Methylenedioxy-2-[N-n-propyl-N-2-(2-thienyl)ethylamino]tetralin, 5,6-OCH₂O-PTAT, 20)

This tertiary amine 20 was prepared from secondary amine 51 (0.15 g, 0.64 mmol) by essentially the same procedure as described for the preparation of tertiary amine 19 from secondary amine 43. Differences were the use of a mixture of EtOAc and hexane (1:4) instead of a mixture of EtOAc and petroleum ether 40-60 (1:4) as the eluent for the purification by column chromatography and the omission of the recrystallization. The yield was 0.12 g (0.32 mmol, 50%) of 20.HCl as a white powder: mp 180-182 °C dec; IR (cm⁻¹, KBr) 2700-2200 (NH⁺), ¹H NMR (300 MHz, CD₂OD) δ 1.06 (t, 3H, CH₃), 5.93 (d, 2H, OCH₂O), 6.67 (s, 2H, ArH), 6.98-7.34 (m, 3H, ArH); MS (CI with NH₃) m/z 344 (M⁺+1) (M: free amine); Anal. calcd. for C₂₀H₂₅N₀₂S.HCl (379.95): C 63.22, H 6.90, N 3.69, S 8.44; found C 63.17, H 6.88, N 3.73, S 8.46.

2.5 References

(15) Neumeyer JL, Neustadt BR, Oh KJ, Weinhardt KK, Boyce CB, Rosenberg FI, Teiger DG (1973) Aporphines. 8. Total synthesis and pharmacological evaluation of (\pm)apomorphine, (\pm)-apocodeine, (\pm)-N-n-propylaporphine, and (\pm)-N-n-propylapocodeine. J Med Chem 16, 1223-1228.

(22) McDermed JD, McKenzie GM, Freeman HS (1976) Synthesis and dopaminergic activity of (\pm)-, (\pm)+-, and (\pm)-2-dipropylamino-5-hydroxy-1,2,3,4-tetrahydro-9-naphthalene. J Med Chem 19, 547-549.

(23) Seiler MP, Markstein R (1984) Further characterization of structural requirements for agonists at the striatal dopamine D2 receptor and a comparison with those at the striatal dopamine D1 receptor. Studies with a series of monohydroyaminotetralins on acetylcholine release from rat striatum. Mol Pharmacol 26, 452-457.

(65) Haworth RD (1927) 5,6-Dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline and some derivatives. J Chem Soc, 2281-2284.

(68) Von Krannichfeldt H (1913) Synthese des 2,3-Diosyocacetophenons. Berichte 46, 4016-4025.

