
https://research.rug.nl/en/publications/inductive-types-in-constructive-languages(87db58af-1fd6-4030-a862-98b5651d6be8).html

UNIVERSITY OF GRONINGEN

Inductive Types in
Constructive Languages

Peter J. de Bruin

March 24, 1995

Abstract
Logic grammar is used to partly de�ne a formal mathematical language \ADAM",
that keeps close to informal mathematics and yet is reducible to a foundation
of Constructive Type Theory (or Generalized Typed Lambda Calculus). This
language is employed in making a study of inductive types and related subjects,
as they appear in languages for constructive mathematics and lambda calculi. The
naturality property of objects with type parameters is described and employed.

Cover diagram

Behold the mathematical universe,
developing from original unity
into categorical duality.

The central beam contains
the initial and the �nal type,
together with the remaining at �nite types.

It is anked by the dual principles
of generalized sum and product,
and of initial and �nal �xed point construction.

Printed by: Stichting Drukkerij C. Regenboog, Groningen.

RIJKSUNIVERSITEIT GRONINGEN

Inductive Types in
Constructive Languages

Proefschrift
ter verkrijging van het doctoraat in de Wiskunde
en Natuurwetenschappen aan de Rijksuniversiteit
Groningen op gezag van de Rector Magni�cus Dr.
F. van der Woude in het openbaar te verdedigen op

vrijdag 24 maart 1995 des namiddags te 4.00 uur

door

Peter Johan de Bruin
geboren op 20 september 1964 te Harderwijk

Promotor: Prof. dr. G. R. Renardel de Lavalette

Preface
The fascination for mathematical truth has been the driving force for my research
as it had been for my master’s thesis written in Nijmegen. Being amazed at the lack
of a general language for the irrefutable expression of mathematical argument, I
looked for it in the direction of what is called Type Theory. I started my research
in Groningen in 1988 under supervision of Roland Backhouse, and enjoyed his
discussion club with Paul Chisholm, joyous Grant Malcolm, Albert Thijs, and
broadly interested Ed Voermans. When Backhouse moved to Eindhoven in 1990,
I and Thijs remained in Groningen and our roads parted.

The advent in 1991 of Gerard Renardel who accepted to take up my supervision
with fresh interest, started a new period of seeking to assemble all available pieces.
I owe him much for his constant trust and support in keeping up courage, his help
in formulating ideas, his e�ort to curtail outgrowing branches, and for leaving the
choice to carry this work through entirely to me. I also thank Jan Terlouw for his
modest cooperation, and my fellow Ph.D. students for their good company and
friendship.

Now my heart has turned from abstract truth to living Truth, and since 1993
I’m living in community Agap�e of the Blessed Sacrament Fathers in Amsterdam.
I am glad to thank its members, Aad, Eug�ene, Gerard, Herman, Jan, Paul, Pieter,
and Theo, for their support while �nishing this thesis. I thank the members
of the Ph.D. committee, Roland C. Backhouse (Eindhoven), Wim H. Hesselink
(Groningen), Gerard R. Renardel de Lavalette (Groningen), and Michel Sintzo�
(Louvain-la-Neuve), for accepting this duty and providing kind comments on the
manuscript, especially Wim who gave detailed comments which helped me to pre-
pare the �nal text. Though it is tough material, my presentation sometimes being
terse and not all ideas given su�cient scienti�c support, I hope you will get a catch
of its beauty.

Peter de Bruin

2 CONTENTS

2.12.3 Subsets . 37
2.12.4 Relational notations . 37
2.12.5 Currying . 38
2.12.6 Pattern matching . 39
2.12.7 Linear proof notation . 39

2.13 Conclusion . 39

3 Common induction and recursion principles 40
3.1 Examples of inductive types . 40
3.2 More on natural numbers . 43
3.3 Inductive subset de�nitions . 44

3.3.1 Sets inductively de�ned by rules 44
3.3.2 The well-founded part of a relation 45
3.3.3 Inductive de�nitions as operators 47
3.3.4 Fixed points in a lattice . 47

3.4 From induction to recursion . 48
3.5 Conclusion . 49

4 Categories and algebra 50
4.1 Categorical notions . 50
4.2 Algebras and signatures . 53
4.3 Initial algebras, catamorphisms . 54
4.4 Algebras with equations . 57
4.5 Initial algebras related to well-founded relations. 60
4.6 An aside: monads . 61
4.7 Algebraic Speci�cation . 63
4.8 Concluding remarks . 64

5 Specifying inductive types 65
5.1 Single inductive types . 65

5.1.1 Operator domains . 65
5.1.2 Operators with arity . 67
5.1.3 The wellordering of a single inductive type 68

5.2 Mutually inductive types . 68
5.2.1 Using an exponential category . 69
5.2.2 Plain algebra signatures . 70

5.3 Production rules for polynomial functors 71
5.3.1 Positive type expressions . 72
5.3.2 A type of polynomial functors . 72

5.4 Adding equations . 72
5.5 Conclusion . 73

6 Recursors in constructive type theories 74
6.1 Algebraic recursion, or paramorphisms. 74
6.2 Recursive dependent functions . 76
6.3 Mendler's approach. 78

1

Contents

Summary 5

1 Introduction 7
1.1 Mathematical language. 7
1.2 Our approach to mathematical language. 8
1.3 Type Theory and Set Theory . 10
1.4 Related e�orts . 11
1.5 Relational calculus . 12
1.6 ADAM's Type Theory . 12
1.7 Aspects of induction and recursion . 13
1.8 Frameworks for studying induction . 14
1.9 Our treatment of induction and recursion 15
1.10 Other kinds of inductive types . 16
1.11 Original contributions . 16

2 The language ADAM 18
2.1 Language de�nition mechanism . 18
2.2 Basic grammar of ADAM . 20
2.3 Production rules . 23

2.3.1 Terms . 23
2.3.2 Patterns . 23
2.3.3 De�nitions . 24
2.3.4 Declarations. 25
2.3.5 Coercion. 25

2.4 Types and universes . 26
2.5 Products and function spaces . 27
2.6 Sums and declaration types . 29
2.7 Families and quanti�ers . 31
2.8 Finite types . 31
2.9 In�nite types . 33
2.10 Equality predicate . 33
2.11 The type of propositions . 34
2.12 More derived notions. 36

2.12.1 Predicates. 36
2.12.2 Subtypes . 36

CONTENTS 3

6.4 Recursors for mutual induction and recursion 81
6.5 Summary . 83

7 Co-inductive types 85
7.1 Dualizing F -algebras . 85
7.2 Anamorphism schemes. 87
7.3 Dual recursion . 89
7.4 Dual equations . 90
7.5 Terminal interpretation of equations . 90
7.6 Conclusion . 91

8 Existence of inductively de�ned sets 92
8.1 Using trans�nite ordinal induction . 92
8.2 Kerkho�'s proof . 94
8.3 Algebras with equations . 96

9 Partiality 98
9.1 Domain theory . 98
9.2 Optional objects . 101
9.3 Building recursive cpo's by co-induction 103
9.4 Recursive object de�nitions . 104
9.5 Conclusion . 106

10 Related subjects 107
10.1 Impredicative type theories . 107

10.1.1 Weak initial algebras. 108
10.1.2 Weak �nal algebras. 109

10.2 Using type-free values . 109
10.2.1 Henson's calculus TK . 109

10.3 Inductive universe formation . 110
10.4 Bar recursion . 112

11 Reections and conclusion 113
11.1 Mathematical language. 113
11.2 Constructive Type Theory . 114
11.3 Language de�nition mechanism . 115
11.4 Proofs and proof notation . 116
11.5 Inductive types . 117
11.6 Directions for further research. 118

A Set theory 120
A.1 ZFC axioms . 120
A.2 Set encodings . 121
A.3 Ordinals . 122
A.4 Cardinals . 122
A.5 A model of ZFC . 123

4 CONTENTS

A.6 An inductive model of ZFC . 124
A.7 Anti-foundation . 125

B ADAM's Type Theory 126
B.1 Abstract syntax . 126
B.2 Meta-predicates . 127
B.3 Universes . 129
B.4 Products . 129
B.5 Sums. 130
B.6 Finite types . 130
B.7 Naturals . 130
B.8 Equality . 131
B.9 Existential propositions . 131
B.10 Semantics . 132
B.11 More derived notations . 134

C Proof elimination in Type Theory 135
C.1 Introduction . 135
C.2 The basic system . 137
C.3 Strong existence . 137

C.3.1 New rules . 137
C.3.2 Di�culties with reduction to canonical form 138

C.4 Applications . 139
C.4.1 Iota . 139
C.4.2 Quotient types . 139
C.4.3 Inductive types . 142

C.5 Conclusion . 143

D Naturality of Polymorphism 144
D.1 Introduction . 144
D.2 Polymorphic typed lambda calculus . 146
D.3 Turning type constructors into relation constructors 147
D.4 Naturality of expressions . 148
D.5 Applications . 151
D.6 Dinatural transformations . 153
D.7 Second-order languages . 154
D.8 Overloaded operators. 155

Index 156

Bibliography 160

Samenvatting (Dutch summary) 165

5

Summary

This dissertation deals with constructive languages: languages for the formal expression
of mathematical constructions. The concept ofconstruction does not only encompass
computations, as expressed in programming languages, but also propositions and proofs,
as expressed in a mathematical logic, and in particular the construction of structured
mathematical objects like sequences and trees.Types may be conceived of as classes of
such objects, andinductive types are types whose objects are generated by production
rules.

The purpose of this dissertation is twofold. First, I am searching for languages in
which the mathematician can express his inspirations well structured, correct, and yet
as freely as possible. Secondly, I want to collect the diverging approaches to inductive
types within one framework, so that it becomes apparent how the diverse construction
and deduction rules arise from a single basic idea and also how these rules may be
generalized, if desired. As basic idea I use the concept ofinitial algebra from category
theory.

My research into mathematical languages has not led to a complete proposal. The
present treatise is con�ned to general reections and the partly formal, partly informal
description of a language,ADAM (chapter 2). This language serves subsequently as
a medium for the study of inductive types, which constitutes the main body of the
dissertation.

The set-up of ADAM is as follows. To guarantee the validity of arguments expressed
in the language, it needs a sound foundation. I develop a constructive type theory (called
ATT) for this, a combination of the \Intuitionistic Theory of Types" of P. Martin-L•of and
the \Calculus of Constructions" of Th. Coquand. In order to comprise all mathematical
principles of deduction, I add the iota or description operator of Frege. It is not necessary
to include inductive types as a basic principle; natural numbers su�ce to construct these.

On this foundation I build the language ADAM by looking at how constructions and
proofs that I encountered or drafted could be formulated as naturally as possible while
adhering to the rules of type theory. The formal de�nition of ADAM , as far as it is avail-
able, and its semantics in the underlying type theory are simultaneously given by means
of a two-level grammar. This makes it in principle possible to extend the language, while
preserving validity, with notations or sublanguages for special applications, like program
correctness. The proposed notations should therefore not be regarded as immutable.
Perhaps the only typical language element is the notation for (and the consistent use of)
families of objects.

As a preparation for inductive types, I start with rendering the classical approaches

6 SUMMARY

to inductive de�nitions (chapter 3), followed by the introduction of the machinery which
we require|elementary category theory and algebra (chapter 4).

The central part of the treatise consists of the description and justi�cation of in-
ductive types as initial algebras. First, I consider at an abstract level the various ways
of specifying inductive types, and how these speci�cations designate (via a polynomial
functor) an algebra signature, possibly with equations (chapter 5). Next, I analyse and
generalize the ways of de�ning recursive functions on an inductive type (chapter 6).
Then I investigate to what extent these construction principles can be dualized to co-
inductive types, which are �nal co-algebras (chapter 7). Finally, I construct, using either
elementary set theory or type theory, initial algebras and �nal co-algebras for an arbi-
trary polynomial functor, which actually proves the relative consistency of all discussed
construction principles in relation to ADAM 's Type Theory ATT (chapter 8).

The dissertation is concluded with the treatment of some issues related to inductive
types. In chapter 9, I consider recursive datatypes with partial objects, as they occur
in programming language in which one should reckon with possibly non-terminating
program parts. I summarize the required domain theory, and construct such domains
in ADAM using �nal co-algebras. In chapter 10, I briey discuss inductive types in
impredicative languages, types as collections of type-free values, and the principle of
bar induction, and I suggest the possibility of inductive de�nition of new type universes
within a type theory. Chapter 11 gives a number of further reections on mathematical
language and proof notation, and summarizes the approaches to inductive types.

The appendices contain the basic principles of set theory and of ATT, the required
addition of either the iota operation or proof elimination to type theory, and a study
of uniformity properties (naturality) of polymorphic objects, which I need on certain
occasions.

7

Chapter 1

Introduction

This thesis circles around two themes that closely intertwine: formalized mathematical
language, and inductive types. We speak about the former in section1.1{ 1.6, resulting
in the language description in chapter2; inductive types are addressed in1.7{ 1.10 and
�ll the major part of the thesis. The remaining sections of this chapter introduce some
basic concepts for further use.

1.1 Mathematical language

Mathematical language is a �eld of interest that is shared by mathematicians and com-
puting scientists. For mathematicians �rstly as a medium to express their abstract
thinking, secondly as the subject of formal analysis itself.

The computing scientist stands in between these two approaches. For the theoretical
analysis of computing, (s)he needs a medium of expression just as the mathematician.
But he is also fascinated by the possibility of rendering mathematical treatises accessible
for computer manipulation, in order that computers may assist in creating, verifying,
and transforming mathematical texts.

Here a yawning gap appears. For the mathematician excels in creative use of his
language, inventing new styles of notation, new modes of reasoning. The formalist on
the other hand requires a well-de�ned system of permitted notations and deduction steps.
This may include a scheme for introducing some sort of new notation, yet time and again
the language user will �nd good reason to step outside the provided schemes in order to
attain more clarity of expression. Especially when the deduction steps themselves have
to be noted down, formal calculus becomes too cumbersome for most application �elds.

Our primal impetus was to work on diminishing this gap by developing a kind of
universal calculus. On the one hand it would contain a sound de�nition of correct
mathematical construction and deduction principles, complete for all practical purposes.
On the other hand it should permit the user a freedom of notational de�nition that
restricts him as little as possible.

Needless to say, this is an ideal, oating in the air, that we can hardly expect to
realize on earth. Not letting ourselves be dispirited by this, we have tried to grasp the
inspirations we received and to mould them into concrete form. Our second theme,
inductive types, has served as a playground to gain experience in using our notational

8 CHAPTER 1. INTRODUCTION

ideas. At the same time, our treatment of inductive types contains in abstract form the
various forms in which inductive types appear in other languages.

The formal realization of these ideas has often been unruly, and we apologize for the
defects in our present work. Some ideas are not worked out in full detail, but there are
also ideas whose formalization would require extensive elaboration and reconsideration
of the language set-up.

We call the resulting languageADAM , as we hope virtually all of mathematics to
appear among its o�spring, and also in honor of the city of Amsterdam, which name
abbreviates to A'dam.

1.2 Our approach to mathematical language

To begin with, let us note that our aim is a language that serves as a universal medium
of mathematical expression, not a calculus that is directed at speci�c purposes such as
problem solving through formal manipulation of the language expressions themselves.
Rather, it should be possible to embed any speci�c calculus within the language. This
aims in particular at programming logics, that describe the semantics of particular pro-
gramming languages.

When o�ering the user notational freedom and brevity, one cannot avoid that some
standard or user-de�ned notations may overlap. Thus, the possibility of ambiguity is
inherent in our approach. Furthermore, the user should have the option to omit some
details when he expects these to be obvious or reconstructible by the reader. In either
case, it is the responsibility of the user (writer) to keep his text comprehensible.

Yet, the language should have a sound formal foundation, guaranteeing all results
to be correct. We were drawn to useConstructive Type Theory (or Generalized Typed
Lambda Calculus), being attracted by its elegant uni�ed treatment of proofs and objects,
and of �nite and in�nite products and sums. Besides the construction principles that
are directly related to the basic type constructors, one needs some additional axioms to
obtain a full foundation. Rather than leaving each user to establish his own foundation,
we prefer to establish a �xed foundation for common use. For foundational research, one
may of course study alternatives.

In shaping the notations of ADAM , we looked at the established notations of mathe-
matics, making some adaptations to give them a more regular type structure. A typical
example is the notation for set formation.

Example 1.1 Traditionally, one writes

f f (x) j P(x)g (1.1)

for the set containing f (x) for all x such that condition P(x) holds. This notation does
not indicate which of the variables occurring free in f (x) and P(x) are locally bound.
A minor objection is that it may be necessary to look ahead to the condition P(x)
before one can fully understand expressionf (x). In the `Eindhoven quanti�er notation',
introduced by E.W. Dijkstra, one writes

f x : P(x) : f (x) g

1.2. OUR APPROACH TO MATHEMATICAL LANGUAGE 9

to overcome both problems. When using generalized types, the variable has to be typed;
furthermore, typings and conditions are both assumptions to be treated on a par, so we
move the condition to the left of the colons, where an arbitrary declaration (sequence of
assumptions) may appear. In this case, we get:

f x: A; P(x) :: f (x) g

For the special case whenf (x) is just x, we introduce a notation similar to (1.1):

f x: A j: P(x)g := f x: A; P(x) :: x g

The interesting thing about these notations for sets is that they are suited to be
used for logical quanti�ers and generalized constructors too. This will be described in
section 2.7.

1.2.1 De�ning ADAM. To de�ne the basic syntax and simultaneously all correct-
ness requirements ofADAM , we use the powerful mechanism of two-level grammar,
containing Horn-clause logic, which is described in section2.1. Ideally, this grammar
mechanism should be available withinADAM itself, so that the user may introduce new
non-conventional notations, special-purpose calculi, or other (programming) languages.

The de�nition of ADAM proceeds in the following stages:

1. Description of the language de�nition mechanism

2. De�nition of the underlying type theory using Horn clauses

3. De�nition of the abstract and concrete syntax classes and their production rules,
which reduce the meaning of language constructs to type theory

4. Development of a body of useful theory and notations

Actually, our de�nition is not so systematic. The de�nition mechanism is not described
in full detail, and points 3 and 4 are mingled. Some language features are de�ned only
partially, or described merely by a suggestive example, as their full formalization would
go beyond the scope of this thesis.

1.2.2 Our use of ADAM. The main body of this thesis uses bothADAM and
informal proof notation, but it can be thought of as encoded wholly in ADAM . This
stands in contrast with appendix D, where typed lambda calculus is used as the object
of study itself, rather than as a medium of expression.

We use ADAM mainly to formulate principles of inductive types, to justify them
and establish relationships between them. As such,ADAM both provides a unifying
framework in which principles from many di�erent languages can be represented, and
gives a sound foundation to these principles.

10 CHAPTER 1. INTRODUCTION

1.2.3 Semantics. The semantics ofADAM is given by its type theory, named ATT.
The rules of ATT may be regarded as a foundation for mathematics, yet for better un-
derstanding we outline an interpretation in extended set theory in sectionB.10. We have
not studied more \mathematical" models like PER models (based on partial equivalence
relations on a simple set) or categorical models [44], but we remark that �nding such
models may be very di�cult, because of the sheer strength of ATT, transcending ZFC
set theory.

1.3 Type Theory and Set Theory

The foundation of mathematics is usually sought in axiomatic set theory: all mathemat-
ical objects are assumed to exist within a single universe of sets, where each set consists
of other sets.

In a formalized language, it is convenient to have all objects classi�ed into types, in
order to avoid anomalies. In such a typed language, one cannot speak about an object
without specifying its type, and one may only apply operations to objects of appropriate
type. For example, it does not make sense to compare two objects of di�erent types.

A simple type system consists of a number of primitive types together with a number
of �nitary type constructors. The class of simple type expressions can be algebraically
de�ned prior to the further language de�nition. A typical language is Typed Lambda
Calculus, with type constructors like function space, �nite cartesian product, and disjoint
sum, and possibly inductive or user-de�ned types. It has term rewrite (or reduction)
rules operating on lambda terms, not on type expressions.

A generalized type system contains in�nitary type constructors as well. As any
concrete type expression is necessarily �nite, type expressions have to be parameterized
with object variables. The typical type constructor is the generalized product

Q
x:A Bx

for a type A and a type Bx for any object x of type A. The product is written as
�(x: A :: Bx) in this thesis. Its inhabitants are tuples that contain, for any object x: A,
an object bx : Bx . Such a tuple is written as (x :: bx) in this thesis.

Due to the generalization, object expressions may appear within type expressions.
Thus, both have to be de�ned simultaneously, and rewriting may a�ect type expressions
too. Type correctness (validity) and equivalence of expressions are usually inductively
de�ned as meta-predicates (also calledjudgements) on contexts, object and type ex-
pressions. The resulting system, consisting of expressions and judgements de�ned by
derivation rules, is called atype theory.

We are interested in constructive type theories (CTT's), which are generalized type
theories based on lambda calculus in such a way that any valid expression of some type
provides a mathematical construction for that type. The typical example is a disjoint
sum type B0 + B1; a closed expression of this type must reduce to a canonical form
containing an expression either of typeB0 or type B1. One can even have empty types,
for which there are no closed expressions.

An interesting point is that constructive type theory immediately accommodates
predicate calculus. When we identify any proposition with a type that contains all proofs
of that proposition, all propositional connectives and quanti�ers coincide with standard
type constructors. Notably, the universal quanti�er proposition 8x: A:Px becomes the

1.4. RELATED EFFORTS 11

generalized product �(x: A :: Px). The proposition is true exactly when its proof type
has an inhabitant, and any valid object expression of this type provides a proof of the
proposition. This is called the propositions-as-typesprinciple.

If one needs higher-order quanti�cation, i.e., propositions that quantify over all sub-
sets of a type, one has to make a formal distinction between propositions and data types.
In fact, one assumes propositions to be givena priori , before the hierarchy of types has
been generated. This is calledimpredicativity .

To justify constructive type theory, one may seek for a set-theoretic model. However,
the basic rules of CTT are so fundamental, that one may just as well consider it to
constitute an alternative foundation of mathematics, which replaces axiomatic set theory.
We outline two models of set theory within extended type theory in sectionA.5 and A.6,
and a model of type theory within an extended set theory inB.10.

1.4 Related e�orts

Several mathematical languages based on type theory have been developed. Note that
we do not regard a bare logical derivation system, like �rst or higher order logic, as
a mathematical language, because it provides no notation for proofs other than as a
sequence of statements.

N.G. de Bruijn developed Automath (in many variants) [11] exactly to provide an
automatically veri�able notation for de�nitions and proofs in any logical calculus. It has
only one principle of type construction (namely generalized product), which su�ces for
allowing the user to axiomatically introduce any type, object, or proof constructor he
would need as a so-called \primitive notion". The necessity to write down all parameters
of each constructor made Automath rather unwieldy to use. TheMathematical Vernac-
ular (MV) [12] was introduced to overcome this: it allowed more syntactic freedom and
the possibility to omit parts of a construction. This inhibits automatic veri�cation.

P. Martin-L•of formulated his Intuitionistic Type Theory (ITT) [56] in order to expli-
cate the basic principles of intuitionistic reasoning. Its basic type structure is very much
like Automath, but it includes a number of construction principles (including inductive
types) that provide a su�cient logical foundation for many purposes. It does not have
impredicative propositions, as this is contrary to intuitionistic philosophy. The way ITT
treats the equality predicate, internalizing it by means of \equality types" (sometimes
called \identity types"), generates some anomalies in the type structure. Because of this,
and the omission of some type parameters, type correctness (validity) of expressions may
itself require a non-trivial proof.

R.L. Constable's Nuprl [18] is an interactive computer implementation of a variant of
ITT. It assists the user in �nding valid expressions, by following the approach introduced
by the automated programming logic Edinburgh LCF (Logic of Computable Functions)
[35, 70] to employ a functional programming language, the \meta-language" (ML), which
is o�ered to the user who may call on prede�ned or user-de�ned \tactics" that perform
a goal-directed search for valid expressions. (This special-purpose language ML has
developed into the general-purpose language Standard ML, SML.) Nuprl provides a
notation for the search process, recursively listing all goals and subgoals.

12 CHAPTER 1. INTRODUCTION

Th. Coquand's Calculus of Constructions(CC) [21] is a type theory based on impred-
icative quanti�cation and has been implemented in LCF-style, too. Type constructors
as used in typed lambda calculus can be de�ned using impredicative quanti�cation, but
no induction rule can be derived inside the calculus. C. Paulin-Mohring extended CC
with embedded principles for inductive types [73, 68], which were implemented in the
system Coq.

A more direct style of interactive proof editing was designed by Th. Coquand and B.
Nordstr•om and implemented in G•oteborg as the ALF proof editor [50]. Being based on
ITT with inductive de�nitions, it allows direct manipulation through a multiple-window
presentation of the current state of the proof object, which may contain \placehold-
ers" for incomplete parts. There are windows for the current theory, the proof under
construction, the current list of placeholders (or goals) with their type and context,
and equational constraints on the placeholders. It features a nice syntax for recursive
de�nition through pattern matching, described in [23].

M. Sintzo�'s calculus DEVA [78, 85] comes closest to our goal, because of the much
greater attention it pays to the readability of the resulting proof and object expressions.
It o�ers more structuring primitives, such as a kind of labeled records with dependent
�eld types. DEVA distinguishes between explicitly and implicitly valid expressions. The
former are verifyably correct proof or object constructions, the latter \amount to devel-
opments with missing parts, e.g. incomplete proofs and tactics. They are characterized
by the undecidable existence of an explication, which completes the missing parts and
yields a valid expression."1 These explications go further than the missing proofs of De
Bruijn's MV, but do not give the full power of ML-tactics.

1.5 Relational calculus

Now and then we use relational notation for easy expression, and sometimes proof, of
properties. Such notations are being developed by a group around Backhouse into a
calculational method for deriving programs from speci�cations [1]. There is an essential
di�erence between this use of relations and ours: the relational calculus employs relations
to model (possibly nondeterministic) input-output behavior, making much use of relation
composition, while we use relations to establish relationships between functions and
other objects, using arrow composition but hardly ever relation composition. A study
of inductive properties in relational calculus is given in [8].

1.6 ADAM’s Type Theory

The language ADAM is based on a type theory, ATT, that combines the features of
Martin-L•of's ITT and Coquand's CC. Thus, it has a set of basic type constructors com-
bined with impredicative propositions, and almost all typed lambda calculi appear as
subsystems. There is, however, one gap that hinders the coding of arbitrary mathe-
matical proofs: given a constructive proof that a predicate has aunique solution, one

1Weber in [84]

1.7. ASPECTS OF INDUCTION AND RECURSION 13

cannot obtain within the calculus a term denoting that solution. To mend this, we add
a stronger elimination rule for the existential quanti�er, described in appendix C.

We have the following construction principles and axioms:

1. Generalized products (�). These subsume the function space constructor.

2. Generalized sums (�).

3. Finite types (0; 1; 2; : : :). Combined with generalized products and sums they give
�nite products and sums. Many recursion constructs can already be expressed
using only these and function space, but extra equational calculus is needed to
express their properties.

4. A hierarchy of universes (Type i).

5. Impredicative propositions (Prop), turning Type i into a topos [46] and yielding
higher order logic.

6. Equality types, i.e., an internal equality predicate (x = A y).

7. Strong existential elimination (9 elim or the description operator �). This is our
new extension, see appendixC.

8. In�nity (!). Together with the preceding principles it allows us to construct a
representation for all inductive types, as we will see in chapter8.

9. Axiom of choice, needed because propositions are distinguished from types.

10. Finally, one may also think of adding classical propositions, for which the principle
of reductio ad absurdumholds.

The exact rules are listed in appendixB.

1.7 Aspects of induction and recursion

In philosophy, induction stands often for the process of discovery of a general statement
out of some particular cases: \In all the umpty cases we encountered we found that
statement P held, which induces us to suppose thatP holds in all cases." This is not
what we mean by induction in this thesis.

In mathematics, induction may be understood as the production of an in�nite set
of things through iterated application of a �xed set of rules. One distinguishes between
inductive de�nition and inductive proof.

Inductive de�nition signi�es the de�nition of a set as the totality of all objects pro-
duced through iterated application of a �xed set of production rules.

Inductive proof signi�es proving a general statement by giving proof steps that in-
crementally produce proofs for all individual instantiations of the statement.

Recursion stands basically for the (re-)occurrence of an object within a description
of that very object. Such a description is not necessarily a valid de�nition of the object:
it may be seen as an equationx = f (x) which can have either no, a single, or multiple

14 CHAPTER 1. INTRODUCTION

solutions. Yet under suitable restrictions recursive equations have unique solutions, so
that they may be used for de�nition. Alternatively, one can use a complete partial order
so that suitable recursive equations have unique least solutions. In most applications,
the object x under de�nition is itself a function.

The notions of induction and recursion overlap. On the one hand, any inductive
type de�nition can be written as a recursive type equation; this is in fact what happens
in most programming languages that allow such types. Inductive proofs can, within
a suitable calculus with dependent types, be written as recursive dependent function
de�nitions. On the other hand, a valid recursive function de�nition can be reduced to
an inductive predicate de�nition (as a kind of set) together with an inductive proof that
this predicate constitutes a function.

The phrase recursive is often taken to denotee�ectively computable. The branch of
mathematics called (classical)recursion theory [65] deals with hierarchies of computable
functions on natural numbers, and studies their complexity. Computational complexity
falls outside the scope of this thesis.

1.8 Frameworks for studying induction

There are several quite di�erent notions of inductive sets; there are many ways inductive
types can be described; and there are many settings, languages, or frameworks in which
one may introduce inductive types. A brief survey follows.

1.8.1 Set theory. The foundational justi�cation for the use of induction may be
found in set theory (using for example the Zermelo-Fraenkel axioms of powersets, in�nity,
union etc.). The simplest interpretation of an inductive set de�nition is that it denotes
the intersection of all sets that are closed under the rules of the de�nition. It follows
immediately that proof by induction is valid for this set, but the construction is only
wellde�ned if one has already some domain that is closed under the rules. Otherwise,
one can iterate application of the rules to get a possibly trans�nite series of sets, and
take its limit. Under a certain restriction this limitset is closed under the rules indeed.

1.8.2 Type theory. An alternative foundation for mathematics is provided by Con-
structive Type Theory in the sense of Martin-L•of [56], which is a generalization of typed
lambda calculus. In these systems a principle of inductive (data-)type construction can
be included as basic. Extensive use is made of dependent types; in particular the type
of the result of a recursive function may usually depend on its argument value. As types
can represent propositions, the recursion axiom can be used for inductive proofs as well.
Thus, while classically recursion is reduced to induction, type theory reduces induction
to recursion.

An advantage of dependent types is that one can easily handle constructors that
have an in�nite number of arguments, as opposed over the ordinary use of types in, for
example, purely �nitary algebraic theories.

N.P. Mendler introduced [59] an alternative recursion construct that employed a
quanti�cation over types and a subset relation on types. It is not obvious how this
construct relates to the ordinary ones. We will use thenaturality property of polymorphic

1.9. OUR TREATMENT OF INDUCTION AND RECURSION 15

objects to show that Mendler's construct has in fact the same power as the ordinary
(dependent) recursion rule, at least when we replace the subset relation by explicit
mappings. (See section6.3.)

1.8.3 Category theory. Category theory captures inductive types in a particularly
simple axiom about initial algebras. No recursive functions with dependent types are
used nor is there an induction axiom, but there is a uniqueness condition from which
these may be derived. Categorical notions and the initial algebra axiom can easily be
put in a type-theoretical context. In fact, the general formulation of several alternative
recursion axioms, too, is most easily expressed when using categorical notions. The cat-
egorical notions do also allow a very simple generalization tomutual and parametrized
inductive de�nitions , for each construct. There are, however, other parametrized recur-
sion constructs possible that are sometimes easier to use.

1.8.4 Impredicative type theories. Ordinary Constructive Type Theory does not
allow to form types by quanti�cation over the class of all types, as such a principle is
intuitively not well-founded, and indeed inconsistent with some other constructs of type
theory. However, such impredicative quanti�cation can be added to either simple typed
lambda calculus, resulting in polymorphic lambda calculus, or to a calculus with depen-
dent types. This is done in theCalculus of Constructions of Coquand [21]. It allows the
construction of inductive types for which there is a recursion construct, without using
extra axioms. Unfortunately one cannot derive an induction rule inside the calculus,
although it may be possible to prove outside the calculus, using a generalized naturality
theorem, that the induction principle does hold. One might just assume a primitive in-
duction axiom. When subtypesare available one is indeed able to construct an inductive
type that has an induction rule. (See subsection10.1.1.)

1.9 Our treatment of induction and recursion

In this thesis, we shall describe inductive types as they appear or might appear in various
typed languages. UsingADAM all the time, we start with the traditional description
of inductive sets by means of well-founded relations. Then we move to the categorical
framework, which will be our main tool to bring various induction principles under a
common denominator.

Our treatment is separated into construction principles for inductive types, and re-
cursion principles over inductive types. The former, discussed in chapter5, describe for
which forms of algebra signature an initial algebra does exist. The latter, discussed in
chapter 6, describe the forms which a total function de�nition using structural recur-
sion over an inductive type may take. These rules suggest possible language rules for
including inductive types in other constructive languages. Any such rule may be taken:

� either in its full generality, if the language includes all primitives that we use in
the formulation of the rule,

� or in a more restricted form. For example, instead of a generalized product �(x: A ::

16 CHAPTER 1. INTRODUCTION

Bx) one might allow only �nite products B0 � B1, parametrized types B A , and
combinations of these.

In chapter 8 we construct algebras inADAM that satisfy the given induction and
recursion rules. This proves the relative consistency with respect to ATT of these rules.
It also proves the relative consistency of other calculi with inductive types that are
directly embedded in ATT, like ITT and CC.

1.10 Other kinds of inductive types

Apart from inductive sets or types as mentioned in section1.7, there are other kinds of
inductive type de�nitions to which we shall give some attention.

1.10.1 Co-induction. In chapter 7, we see how the categorical description of induc-
tive types can be dualized to describe�nal coalgebras, also calledco-inductive datatypes.
These model tree structures that may be in�nitely deep, while staying in a pure setting
that contains only total functions and totally de�ned objects. All recursion constructs
can be dualized too, provided the usage of dependent functions is removed. One has to
add a uniqueness condition in order to preserve completeness. The set interpretation of
these objects is not evident, as in�nitely deep sets conict with the foundation axiom of
standard set theory, but they may interpreted as graphs (section8.2).

1.10.2 Domain theory. An entirely distinct notion of recursion is used in pro-
gramming languages. Here it is often allowed to de�ne types and objects in terms of
themselves, without signi�cant restrictions. This may result in partial or in�nite ob-
jects, where it is e�ectively undecidable whether some part of an object is de�ned or
not. Domain theories, such as the theory of Complete Partial Orders, were developed
to give meaning (semantics) to such recursive de�nitions.

In chapter 9, we will describe several rules for reasoning about partial objects. We
show how partial or in�nite objects can be modeled by co-inductive datatypes, and how
lazy recursive object de�nitions, with possibly nonterminating parts, can be interpreted
in this model.

1.10.3 Inductive universe formation. The intuitive justi�cation for the set-theore-
tical axioms is in fact an extraordinary kind of inductive set de�nition itself: one where a
big set is generated such that each generated element is associated with a set itself, and
where the production rules may use this associated set. In section10.3, we suggest that
existence of such big sets may be presented as a general principle, and name itinductive
universe formation.

1.11 Original contributions

The main contribution of this thesis consists �rst of the presentation of an alternative
view on the development of formal mathematical language, secondly of the description

1.11. ORIGINAL CONTRIBUTIONS 17

and generalization of principles of inductive types in constructive languages, within a
coherent framework.

In the course of this work, we presented a number of constructions and proofs. We
think the following ones are minor contributions of this thesis:

� The introduction of strong existential elimination into constructive type theory
(appendix C)

� The equivalence proof between non-dependent Mendler recursion and initiality
(theorem 6.4), using naturality

� The generalized formulation of liberal mutual recursion (paragraph6.4.3)

� The dualization of algebras with equations (section7.4)

� The proof that Kerkho�'s initial algebra construction can be dualized (theorem 8.3)

� The construction of recursive cpo's by means of co-induction (paragraph9.2.3
and section9.3), and the interpretation of recursive object de�nitions within this
representation (section9.4)

� The inductive model of Zermelo-Fraenkel set theory in type theory (sectionA.6)

� The derivation of dinaturality from naturality (section D.6)

Furthermore, we have obtained a few not very remarkable results, for which we yet do
not know whether they are known in the literature. These are:

� The relation between monads and initial algebras (theorem4.6)

� The model of set theory within type theory by means of directed graphs (sec-
tion A.5)

18

Chapter 2

The language ADAM

In this chapter we introduce our mathematical language namedADAM . It serves to pro-
vide clear and precise notations for mathematical constructions based on strong typing,
including generalized products and sums.

ADAM is based on a formal system, ATT, that is an extension of Martin-L•of's
Intuitionistic Type Theory. This type theory is described in appendix B, but it is not
necessary to study it separately if one has some acquaintance with generalized type theo-
ries. The primitive notions that are included are generalized products, generalized sums,
�nite types, a cumulative hierarchy of universes, a universe of propositions, impredica-
tive quanti�cation for propositions, the equality predicate, and existential propositions
with strong elimination. Furthermore, there are no inductive types except a type of
natural numbers. The system is powerful enough to serve as a mathematical foundation
of ADAM , for set theory (ZFC) can be encoded in it, using the �rst universe. Con-
versely, all primitives can be given a set-theoretical interpretation (sectionB.10) within
ZFC extended with a hierarchy of universes, so we have a set-theoretical semantics for
ADAM as well.

The theory contains many simpler typed lambda calculi as subsystems, and most of
our constructions are valid in some of these too.

While being formal, ADAM attempts to come much closer to the natural way of
expression of informal mathematical language than most other systems based on Type
Theory. We achieve this by making a sharp distinction between the abstract expressions
that are manipulated by the formal system (sometimes called the \deep structure" or
\kernel language"), and the concrete text as it is written down by the mathematician.

In type theory, propositions and proof objects are represented as a kind of types and
objects. We have not developed a really natural notation for proof construction, so we
describe proofs mainly in ordinary English, sometimes using an equational style.

2.1 Language de�nition mechanism

Mathematical languages are often de�ned by �rst de�ning a kernel language and subse-
quently adding \syntactic sugar". We choose for a more sophisticated correspondence
between the concrete language and its basic type theory, for the following reasons.

2.1. LANGUAGE DEFINITION MECHANISM 19

1. There are new syntactic classes, like `declarations', that do not correspond to
expressions in the primitive type theory.

2. Context information for an expression contains more information about the syn-
tactic forms that are allowed for that expression than contexts in the primitive
type theory.

3. We wish to have the possibility to introduce new sublanguages withinADAM that
may have a structure very di�erent from type theory.

We seek to de�ne the language by a form of two-level grammar in the style of Van
Wijngaarden [86], but using abstract trees as parameters rather than strings. The gram-
mar formalism is informally described in this section. The description ofADAM in the
following sections uses this grammar formalism, but some of the more complicated fea-
tures will be described merely by example.

2.1.1 Two-level grammar. The �rst level consists of a number of abstract syntax
classesA, which are de�ned by context-free production rules. Members of these classes
are abstract trees, rather than strings as in Van Wijngaarden grammar [86].

The second level consists of a number of parametrizedconcrete syntax classesT (�x),
where �x is a sequence of parameters or meta-variablesx i , each ranging over an abstract
syntax classA i . Names of syntax classes of both levels are inSlanted font and begin with
a capital. The concrete classes are de�ned by production rules which may contain meta-
variables. Members of a concrete class (with actual parameters) are pieces of concrete
text. The parameters serve to pass information from the context into the derivation of
a piece of concrete text and vice versa.

Thus, our notion of two-level grammar is roughly the same as the notion ofDe�nite
Clause Grammar (or uni�cation grammar) [2, page 79{80] used in the logic programming
community. It has also some similarity with the notion of attribute grammar, except that
we expect parsing to be done simultaneously with parameter instantiation, and do not
allow a parse tree to be recomputed with di�erent parameter values. There is no need
even to mention parse trees. See Ma luszy�nski [53] for a comparison between De�nite
Clause Grammars and attribute grammars.

The distinction between the two levels is not really necessary: a �rst level classA can
be seen as a second-level classA(x) on type-free trees, and its context-free production
rules as abbreviations for second-level production rules.

2.1.2 Derived notions. We introduce some (syntactic) predicates p(�x) over ab-
stract classes. These are inductively de�ned by Horn clause logic with equality. Clauses
are written using `(' as main operator. Each such predicate may be identi�ed with a
syntax class that contains the empty string � just when the predicate holds. To e�ect
this, replace each Horn clausep(�x) (�q (�x) by a production rule p(�x) �! �q (�x), and any
production rule containing a condition p(�x) will be blocked when p(�x) is not rewritable
into � .

We also introduce some (syntactic)operations f (�x) on abstract classes. Such an
operation may be replaced by a predicatef 0(�x; y) that holds just when f (�x) equals y.

20 CHAPTER 2. THE LANGUAGE ADAM

The parameters of a class can often be separated into input (orinherited) and output
(or synthesized) parameters. The actual value of an input parameter is assumed to be
�xed by the production rules that invoke the syntax class. The actual value of an output
parameter is to be determined by the production rules for the class itself.

We use ageneric abstract class, A � , for any classA. This class contains all �nite
(possibly empty) sequences of members ofA.

2.1.3 Grammar notation. Syntactic predicate and operation names are in lower
case.

The production rules for abstract classes are given in Backus-Naur Form, using meta-
symbols `::=', `j', and `.', and braces f̀ ', `g' for grouping. In particular, ` fg ' stands for
an empty production. All other symbols are terminal symbols.

The production rules for concrete classes are written using `�! ' as main operator,
a comma for string concatenation, terminal symbols between double quotes, and using
italic or greek symbols as variables.

Rules for predicates are written using(as main operator. Note that string concate-
nation for classes becomes conjunction for predicates. For any abstract class, we assume
syntactic equality and inequality predicates, (a = a0) and (a 6= a0).

2.2 Basic grammar of ADAM

This section introduces the abstract and concrete classes that we will use. The next
section (2.3) gives production rules for general use. The other sections describe speci�c
language features; most of these are formalized by means of de�nitions to be collected in a
standard environment. Several features require additional syntax classes and production
rules; these are only informally described, either by means of example or by means of
de�nitions that treat only some special cases.

The main context-free classes are (abstract)terms and contexts, just as in B.1. The
rules in appendix B de�ne a predicate `� ` t: T ' for contexts � and terms t and T,
meaning that under the assumptions in �, abstract term t has type T.

The main concrete syntax class isTerm � ; (t; T), where context � records all assump-
tions v: A currently made, is an environment recording all name bindings and other
de�nitions. Now, if T represents a type (i.e. � ` T : Type i , where i is called the level
of T), then a concrete text produced byTerm � ; (t; T) denotes the abstract term t, and
the production rules shall be such that � ` t: T holds. (We conceive that this might be
checked by an appropriate grammar manipulation tool.)

2.2.1 Abstract classes. We have the following abstract classes, listed together with
the meta-variables that range over them.

� A � : For any syntax class A: �nite sequences of expressions of
classA

v Var : Abstract variables

c; Q Const : Abstract primitive constants

2.2. BASIC GRAMMAR OF ADAM 21

i Nat : Natural numbers at the syntactic level, e.g. to index the
hierarchy of universes

t; a; b Term : Terms, which denote objects, including types

T; A; B Type : Types, being just terms

� ; � Context : Contexts, being sequences of assumptions likev: T

x Name : Names (identi�ers) used in concrete text

; � Env : Environments, being sequences of environment items

EnvItem: Environment items, being either name bindings or coercions
(This may be extended.)

� Subst : Substitutions for abstract variables

We distinguish between variables used in abstract terms and names written in concrete
text for the following reasons:

� Concrete names may be ambiguous; abstract variables must be unambiguous.

� The concrete namex used in a concrete abstraction, (x :: b), may be di�erent from
the name y used in the type of the abstraction, �(y: A :: By).

� When using pattern matching, for example ((x; y) :: b), multiple concrete names
refer to components of the value of the same unnamed abstract variable.

An environment contains, for any visible namex, an item x: T := t that gives the
type and (abstract) value of x. This value may be either the abstract variable named
by x, or the value of x as given by some de�nition. The environment may furthermore
specify other information that inuences the parsing of concrete terms, such as coercions
(described in 2.3.5), and in�x operator symbols (not formally described here).

For Var and Const, see2.2.3. The other classes are given by:

Nat ::= 0 j Nat 0 :

A � ::= fg j A A � :

Term ::= Var

j Const(f Term; g�)

j (Var :: Term) :

Type ::= Term :

Context ::= f Var : Type; g� :

EnvItem ::= Name: Type := Term

j Const(Context): Type := Term

j Context ` Term : Type � t Type :

Env ::= f EnvItem; g� :

Subst ::= f Var := Term; g� :

(EnvItem may be extended with other kinds of environment information.)

22 CHAPTER 2. THE LANGUAGE ADAM

2.2.2 Concrete classes. We did already introduce the classTerm � ; (t; T) of terms
of inherited type T. Besides we have a classTTerm � ; (t; T) of terms of synthesized type
T. Thus, expressions of this class de�ne both the abstract termt and its type T, and
we will have both � ` T: Type i for somei , and � ` t: T .

Term � ; (t; T) : A term t of inherited type T
TTerm � ; (t; T): A term t of synthesized typeT, guaranteed to be cor-

rect (if � ; are correct)
Def � ; (�) : A de�nition yielding the new environment �
Defs� ; (�) : A (nonempty) sequence of de�nitions
Decl� ; (� ; �; i) : A declaration yielding the new assumptions � and

environment � , containing only types up to level i
Pat � ; (T; t; �) : An exhaustive pattern for type T that, when matched

against term t, yields name bindings�

Predicates are the following:

(a = a0) : a is structurally equal to a0

(v 6= v0) : variable v is di�erent from v0

(t = > t 0) : term t reduces to head normal formt0

(t == t0) : term t is convertible to t0

� ` t: T : in context �, t is a term of type T
in(a; �) : a occurs in list �
fresh(v; �) : Abstract variable v is fresh with respect to �
valu� (�; �) : � is a valid valuation for � in context �

Predicates => , ==, and ` are given in appendix B. Predicates in, fresh, and valu are
given by:

in(a; a$�) :

in(a; b$�) (in(a; �) :

fresh(v; fg) :

fresh(v; f v0: T ; � g) ((v0 6= v); fresh(v; �) :

valu� (fg ; fg) :

valu� (f �; x := tg; f �; x: Tg (valu� (�; �) ; � ` t[�]: T [�] :

Syntactic operations:

�� 0 : List concatenation
t[�] : Term t under substitution �
repq(Q; � ; t) : Repeatedly apply quanti�er Q for all typings in � to

term t

List concatenation and term substitution are de�ned as usual, taking care for variable
renaming. Substitution of a single variable is needed for term reduction in appendixB;
substitution of multiple variables is currently only used in our description of coercion,
subsection2.3.5. Repeated quanti�er application is de�ned in 2.5.5.

2.3. PRODUCTION RULES 23

2.2.3 Identi�ers. We consider availability of several styles of identi�ers indispens-
able for writing serious mathematical texts (and hope that automatic proof checkers will
soon provide them).

We use single-character names in italic, greek, or calligraphic font, and multiple-
character names in sans-serif and boldface font. So the expression `fax ' is the juxtapo-
sition of three variables, while f̀ax' is a single constant. In patterns, the underscore '̀
will act as an anonymous variable.

Adding a prime `0' builds a new name. Other decorations such as subscripts usually
denote some operation applied to the undecorated symbol, but may also be used to build
new identi�ers if this is explicitly stated.

Furthermore, we sometimes use other mathematical symbols, sometimes written in
in�x (or post�x, out�x, mix�x, . . .) position.

Capitalized identi�ers are normally used for types, boldface identi�ers for types of
types, sets of sets, categories etc. When introducing new notation, characters from the
end of the alphabet usually stand for arbitrary identi�ers, while other symbols stand for
expressions.

2.3 Production rules

2.3.1 Terms

As said, we distinguish between terms with inherited and with synthesized type. A
typical example of a term with synthesized type is a variable occurence. A term with
synthesized type may be used where an inherited type is already given, provided both
types are convertible. Terms of both classes may be surrounded by parentheses, and
may make use of local de�nitions.

TTerm � ; (t; T) �! Namex; in(f x: T := tg;):

Term � ; (t; T) �! TTerm � ; (t; T 0); (T == T0):

TTerm � ; (t; T) �! \(" ; TTerm � ; (t; T); \)" :

Term � ; (t; T) �! \(" ; Term � ; (t; T); \)" :

TTerm � ; (t; T) �! \ let " ; Defs� ; (�); \ in " ; TTerm � ;� (t; T):

Term � ; (t; T) �! \ let " ; Defs� ; (�); \ in " ; Term � ;� (t; T):

Term � ; ((v :: b); �(A; B)) �! fresh(v; �) ; \(" ; Pat � ; (A; v; �);

\::" ; Termf �; v:Ag;� (b; B(v)) ; \)" :

TTerm � ; ((fa); (Ba)) �! TTerm � ; (f; �(A; B)) ; Term � ; (a; A):

As one sees, the context and environment parameters �; are always passed on to
subexpressions. Production rules would be quite easier to read if we could omit them
from our rule notation. For now, we will accept the load.

2.3.2 Patterns

The class Pat � ; (T; t; �) produces exhaustive patterns for typeT that, when matched
against term t, yield name bindings � . The simplest form of patterns are single named

24 CHAPTER 2. THE LANGUAGE ADAM

variables, resulting in a single binding, and the anonymous variable '̀, resulting in no
binding at all.

For composite patterns, we give only a rule for patterns that match dependent pairs
(section 2.6). See subsection2.12.6for a more general idea of patterns.

Pat � ; (T; t; f x: T := t ; g) �! Namex:

Pat � ; (T; t; fg) �! \ " :

Pat � ; (�(A; B); t; ��) �! \(" ; Pat � ; (A; fst t; �);

\;" ; Pat � ; (B (sndt); sndt; �); \)" :

2.3.3 De�nitions

A de�nition introduces some typed identi�ers, and assigns a value to them. We have
several forms of de�nition; not all of these formally described. The classDef � ; (�)
produces a single de�nition, the classDefs� ; (�) a sequence of them.

A (concrete) simple de�nition may have the form � : T := t, where � is a pattern and
T and t are expressions denoting a type and a term of that type. A simpli�ed form of
de�nition is � := t, which is possible only if t has a synthesized typeT. As the rules
indicate, a de�nition yields the bindings obtained by handing the value of the term t
over to the pattern � .

Def � ; (�) �! Pat � ; (T; t; �); \:" ;

Term � ; (T; Type i); \:=" ; Term � ; (t; T):

Def � ; (�) �! Pat � ; (T; t; �); \:=" ; TTerm � ; (t; T):

Defs� ; (�) �! Def � ; (�):

Defs� ; (�� 0) �! Def � ; (�); \; " ; Defs� ;� (� 0):

Secondly we haveparametrized de�nitions in various forms, which we do not formally
de�ne. Some of these are:

1. Primarily, a parametrized de�nition consists of some new constantc followed by a
type declaration � of its parameters, its result type T and de�ning expression t :

c(�): T := t

2. Instead of declaring the parameters after the constant, they may be declared in
front of the de�nition, separated by the symbol `` ' in which case only the sequence
of variable names �x declared in � appear after the constant:

� �x ` c(�x): T := t

(Do not confuse this use of `̀ ' inside the language with the syntactic (meta-)
predicate ` !)

3. Parameters can be made implicit by omitting them from the sequence �x. This is
often done for type parameters, e.g.

A; B : Type ; (x; y): A � B ` swap(x; y): B � A := (y; x)

2.3. PRODUCTION RULES 25

4. A parameter typing itself can be made implicit by preceding the de�nition with a
separate variable declaration V̀ariablesx: T; : : :', like:

Variablesx: IR+ ; n: IN+ ;
n
p

x := x1=n;p
x := 2

p
x

Thus, whenever a variable, that is a declared in aVariablesdeclaration, appears
untyped in a subsequent de�nition, it is implicitly typed by the declaration. We
have as yet no clear scope rules for variable declarations.

Later on we will allow several other forms of de�nitions, e.g.:

� Coercions (: : : � t : : :) in 2.3.5

� Several forms of de�nition by giving a characteristic property (De�ne : : : by : : :)
in 2.6.3 and 2.8.5

� Sum types given in BNF form (S ::= : : : j : : :) in 2.8.4

We have yet no formal scheme to de�ne (or declare) new constructs that bind local
variables. But we will use apseudo de�nition that is suggestive of the intended notation,
like:

(x: A ` bx : B) ` (x 7! bx) := : : :

2.3.4 Declarations

A declaration in Decl� ; (� ; �; i) is a sequence that may contain typings like� : T , where
� is a pattern, as well as de�nitions as above. A special form of typing consists of only a
type T, and represents an anonymous assumption: T. This is intended to be used only
when T is a proposition.

For each typing � : T , the synthesized parameter � contains an abstract assumption
x: T, and � contains the name bindings that are yielded by matching pattern � against
x.

Decl� ; (fg ; fg ; i) �! :

Decl� ; (f v: T; � g; �� 0; i) �! fresh(v; �) ; Pat � ; (T; v; �); \:" ; Term � ; (T; Type i);

\; " ; Declf �; v:T g;� (� ; � 0; i):

Decl� ; (f v: T; � g; � 0; i) �! fresh(v; �) ; Term � ; (T; Type i);

\; " ; Declf �; v:T g; (� ; � 0; i):

Decl� ; (� ; �� 0; i) �! Def � ; (�); \; " ; Decl� ;� (� ; � 0; i):

2.3.5 Coercion

We sometimes wish to allow objects of one type to be \coerced" into objects of another
type, by implicitly applying some conversion function. These coercions may be user-
de�ned, and are recorded in the environment by an item of the form � ` f : T � t

26 CHAPTER 2. THE LANGUAGE ADAM

T0. Here, f is the coercion function from type T to T0, and � declares substitution
parameters for f , T , and T0. The rules below describe how coercions are de�ned and
implicitly applied; functions are described in 2.5.3.

Def � ; (f � ` f : T � t T0; g) �! Decl� ; (� ; �); \ ` " ; (� 0 = ��) ; (0 = �);

Term � 0; 0(f; (T ! T0)) ; \:" ;

Term � 0; 0(T; Type i); \ � t " ; Term � 0; 0(T0; Type i):

Term � ; (f [�]:t; U) �! in(f � ` f : T � t T0g;);

valu� (�; �) ; (U == T0[�]); Term � ; (t; T [�]):

Note that there are as yet no restrictions on the coercion function, so that one can de�ne
very misleading coercions. It would be desirable to require, but di�cult to enforce, that if
the transitive closure of the set of all coercions in e�ect contains any circularityf : T � t T,
then the coercion function f should be the identity.

This formalization of � t is not wholly adequate to cover the use we make of it. For
example, many type constructors preserve coercion, like the following. If

' : A0 � t A ;

 (x: A0) : Bx � t B 0x

then we would like to have a coercion �(' ;) : �(A; B) � t �(A0; B 0), where �(' ;) is
the appropriate function (p 7! (x :: x:p (':x))).

We will speak a bit loosely about coercions, like statingT � t T0 without giving the
coercion function. We write T = t T0 if we have a bijective pair of coercionsT � t T0 and
T0 � t T.

2.4 Types and universes

Types in context � are those terms T for which � ` T: Type i is derivable, for some
Nat i . This i is called the level of T. The constants Type i are calleduniverses. These
are types themselves and form a cumulative hierarchy, for we have:

Type i : Type i +1 ;

Type i � t Type i +1 :

The latter rule means that any type in Type i is in Type i +1 too; see paragraph2.3.5
for � t .

These universes are calledpredicative, because the rules for introducing types in
Type i do not assume thatType i itself is completely given. There is also an impredica-
tive universe of propositionsProp , which we introduce in section2.11, that is itself an
element ofType 0, and all propositions P: Prop are types in Type 0 as well.

Many de�nitions can be given at any level, and the subscript i is often left implicit.
De�nitions that involve a universe, like Fam in 2.7, do actually de�ne a hierarchy of
type-constructors

T: Type i ` Fami T: Type i +1 :

2.5. PRODUCTS AND FUNCTION SPACES 27

2.5 Products and function spaces

The �rst paragraph of this and following sections describes a constant that is a primitive
type constructor, constants for introducing and eliminating objects of such types, and
some derived notation. In most cases, the types of these constants can be given in the
standard declaration, but in some cases (including this section) special derivation rules
will be needed.

The next paragraphs introduce notions that are derived from the primitive type
constructor.

2.5.1 Products. Informally, if A is a type, and for any x: A is Bx a type, then the
(generalized) product �(x: A :: Bx) is a type containing all (in�nitary) tuples (x :: bx),
where bx : Bx for any x: A. This is a derived notation for �(A; (x :: Bx)).

Selecting a component from a tuple is denoted by juxtaposition, so a tuple can act as
a pre�x operator. Alternative notations are subscripting and reverse application, using
an in�x ` n ' which we took from DEVA [85].

A: Type ; B : �(A; (x :: Type)) ` �(A; B): Type ;

p: �(A; B); a: A ` pa: Ba ;

pa := pa ;

anp := pa

(x: A ` bx : Bx) ` (x :: bx): �(A; B)

(x: A :: Bx) := (A; (x :: Bx))

p; p0: �(A; B) ` p = �(A ;B) p0 , 8 x: A :: px = Bx p0x

The last line, which uses the equality predicate of section2.10, is the extensionality rule
stating that tuples are equal (but not necessarily convertible) just when their components
are equal.

Finite products, like B0 � B1, are de�ned as a generalized product over a �nite type
in paragraph 2.8.2.

2.5.2 Exponential types. Given types A and B , we write B A for the type �(: A ::
B) of (possibly in�nitary) tuples.

A; B : Type ` B A := �(: A :: B)

Single objects are identi�ed with one-tuples via the obvious coercions:B = t B 1.

2.5.3 Function spaces. The type A ! B of (total) functions from A to B is iso-
morphic to the type B A of tuples, but we prefer to make the conceptual distinguish
between these two types explicit. This allows us to de�ne di�erent coercions and other
notations, like:

� Composition of tuples of functions, sayf; g : (A ! A)N , will be de�ned compo-
nentwise, (f �� g) i = f i �� gi (as arrows in the categoryTYPE N), which would be
di�cult if the typing were f; g : N ! (A ! A).

28 CHAPTER 2. THE LANGUAGE ADAM

� Single objects are identi�ed with one-tuples: B = t B 1.

� Functions will occasionally be regarded as (single-valued) binary relations between
A and B , by de�ning a coercion (A ! B) � t P(A � B). In particular, we have
(A ! A) � t P(A2). We would not do this for tuples.

We de�ne function spaceA ! B by means of a Backus-Naur notation, that is described
in paragraph 2.8.4, as the type containing an object �p for any tuple p: B A . Thus,
function space is like an Abstract Data Type, that is implemented by the tuple type.

The normal notation for function abstraction will be ` x 7! bx ' where variable x is
locally bound. Function application is denoted by an in�x low dot, and de�ned by a
case analysis (paragraph2.8.5) on the only case forf : A ! B .

A; B : Type ` A ! B ::= � (p: B A) :

(x: A ` bx : B) ` x 7! bx := � (x :: bx) : A ! B

f : A ! B ; a: A ` De�ne f:a : B by

(�p):a := pa

Note that the de�nition of ` 7! ' is a pseudo de�nition because new forms of variable
binding cannot be formally de�ned from within ADAM .

The coercion to binary relations is given by

A; B : Type ` f 7! f x: A :: (x; f:x) g : (A ! B) � t P(A � B) :

Identity functions, constant functions, backward and forward composition of functions
are de�ned by:

I: A ! A := x 7! x

K(c: C): A ! C := x 7! c

f : A ! B ; g: B ! C ` g � f : A ! C := x 7! g:(f:x) ;

f �� g: A ! C := g � f

(Forward composition f̀ �� g' is Hoare's composition operator f̀ ; g'.)
Tuples and functions are combined in the following de�nitions:

� a:A : �(A; B) ! Ba := p 7! pa

f x:A : C ! Bx ` hf i : C ! �(A; B) := z 7! (x :: f x :z)

2.5.4 In�x operators. We may introduce in�x operators
 , which form a new
syntactic class, so that

x: A; y: B ` x
 y: C

for some typesA, B and C. Note that in�x abstractors like 7! do not follow this pattern.
For such an operator
 we introduce the following notations. The �rst two show how to

2.6. SUMS AND DECLARATION TYPES 29

turn an in�x operator into either a pre�x operator or a function on binary tuples. The
other two notations are called sections1.

(
): (A � B . C) := ((x; y) :: x
 y)

(
): A � B ! C := � (
)

x: A ` (x
): (B . C) := (y :: x
 y)

y: B ` (
 y): (A . C) := (x :: x
 y)

2.5.5 Repeated abstraction. To introduce a sequence of assumptions and de�ni-
tions using a single declaration, we introduce a triangle .̀ ' as an in�x notation. Infor-
mally, if � is a (concrete) declaration, and T a type in which the identi�ers introduced
by � may occur, then (� . T) stands for taking the product of T over all assumptions
in �. For example, (x: A; y: B . C) = �(x: A :: �(y: B :: C)). The formal rule is:

Term � ; (repq(� ; � ; T); Type i �! \(" ; Decl� ; (� ; �; i); \ . " ;

Term �� ;� (T; Type i); \)" :

The syntactic operation repq (repeated quanti�er application) is given by the syntactic
equations

repq(Q; fg ; t) = t

repq(Q; f v: A; � g; t) = Q(A; (v :: repq(Q; � ; t)))

When the declaration consists only of a type, we have (A . B) = B A .

2.6 Sums and declaration types

2.6.1 Sum types. If A is a type and, for any x: A, Bx is a type, then the (general-
ized) sum �(A; B) or �(x: A :: Bx) is a type consisting of all pairs (a; b) where a: A and
b: Ba. We introduce the typing rules, and de�ne some auxiliary operations.

A: Type ; B : Type A ` �(A; B): Type

a: A; b: Ba ` (a; b): �(A; B)

T: Type �(A ;B) ; t: (x: A; y: B . T (x; y)) ` � elimt: �(�(A; B); T)

(x: A; y: Bx ` txy : T(x; y)) ` ((x; y) :: txy) := � elim(x; y :: txy)

fst: (z: �(A; B) . A) := ((x; y) :: x)

snd: (z: �(A; B) . B (fst z)) := ((x; y) :: y)

� a:A : Ba ! �(A; B) := y 7! (a; y)

f x:A : Bx ! C ` [f]: �(A; B) ! C := (x; y) 7! f x :y

Note that we have � fst: �(A; B) ! A. For �nite sums, like B0 + B1, see paragraph2.8.2.

1after an idea of Richard Bird

30 CHAPTER 2. THE LANGUAGE ADAM

Taking sums preserves coercion, for if

' : A � t A0 ;

 (x: A) : Bx � t B 0x

then we have a coercion �(' ;) : �(A; B) � t �(A0; B 0), where:

�(' ;) := (x; y) 7! (':x ; x:y) :

2.6.2 Declaration types. From a declaration � we can obtain the type of its in-
stances by means of �. An instance of a declaration is a sequence of (correctly typed)
values for the typed identi�ers in the list. For example, declaration

(x: A; y: Bx ; z: Cxy)

has triples (a; b; c) as instances, wherea: A, b: Ba and c: Cab. So the class of all instances
forms a type, denoted by writing parentheses and braces around the declaration, thus:
f (�) g. In this case:

f (x: A; y: Bx ; z: Cxy) g = �(x: A :: �(y: Bx :: Cxy))

The following grammar rule describes how a declaration type is to be translated into
repeated use of quanti�er �:

Term � ; (repq(� ; � ; 1); Type i) �! \ f (" ; Decl� ; (� ; �; i); \) g" :

A more elaborate notation for the instances (a; b; c) of a declaration is to write them
like de�nitions, (x := 1; y := b; z := c). This is very much like Pebble [16] or DEVA [85].
Unfortunately, we cannot formalize this, because our abstract encoding of declaration
types (via �) disregards the concrete identi�er names.

2.6.3 Structure de�nitions. Elimination on a sum type can be done by pattern
matching, as in the de�nition of fst and snd above. But de�nitions of classes of struc-
tures in mathematics are often given in combination with special elimination constructs.
Consider for example the common de�nition of posets:

A poset X is a structure (X ; � X) where X is a set and� X a partial order
on X .

This de�nition indicates (1) that there is a type of posets, (2) that for any set X and
partial order � on X , (X ; �) is a poset, and (3) that the underlying set of a posetX is
noted asX as well, and that its corresponding partial order is noted as� X .

We write such a combined structure de�nition as follows. (Posets appear again in
section 9.1.)

De�ne Poset : Type 1 by

X : Poset :=: (X : Set ; (� X): POX) :

For another example, see the de�nition of F̀am' below.

2.7. FAMILIES AND QUANTIFIERS 31

2.7 Families and quanti�ers

For T a type, we de�ne a family of T to be a tuple (D ; t) where D is a type, called the
domain of the family, and t associates anyd: D with an element td of T. Formally:

De�ne Fami (T: Type i +1): Type i +1 by

t: Fami T :=: (Domt: Type i ; t: TDom t)

The arguments of � or � now turn out to be families of types. I.e., we may write:

� ; �: (Fami Type i . Type i)

Such constantsQ, which are typed by Q: (Fami T . T) for some type T and Nat i , are
called quanti�ers .

In 2.5.1, we introduced a double-colon notation (x: A :: Bx) for families. We shall
now generalize this to allow an arbitrary declaration � instead of the single typing x: A.
Informally, a quanti�cation

Q(� :: t)

shall stand for the repeated quanti�er application repq(Q; � ; t). For example, we can
write, using the universal quanti�er for propositions, and �nite and in�nite types:

8(n: IN; k := nn ; p: IN k ; i : k :: P(n; p; i))

The formal rule looks like

TTerm � ; (repq(Q; � ; t); T) �! TTerm � ; (Q; T Fami T);

\(" ; Decl� ; (� ; �; i); \::" ; Term �� ;� (t; T); \)" :

except that Q must be a single identi�er, and that the concrete type expressionTFami T

should be replaced by the abstract tree expression that it denotes.
The notation (� :: t) may be used too for families that are not argument of a

quanti�er Q, using the pseudo-de�nition

(� �x :: t �x) := (f (� �x) g; (�x :: t �x)) : FamT

A derived notation for �nite families is given in paragraph 2.8.2.

2.8 Finite types

2.8.1 Naturals as types. For Nat n, a �nite type with n elements is noted just ǹ'
(in decimal notation), and its elements are named 0 till n � 1. And if T is an n-tuple
of types, T: Type n , so �(n; T) is the �nite product of all T i , then we note elements of
this product as `(t0; : : : ; tn� 1)0, where t i : T i , and the parentheses are optional.

` n: Type for Nat n

` k: n for Nat k; k < n

T: Type n ; t0: T(0); : : : ; tn� 1: T(n � 1) ` (t0; : : : ; tn� 1): �(n; T)

32 CHAPTER 2. THE LANGUAGE ADAM

2.8.2 Finite families, products, and sums. We note a family whose domain is
a �nite type n by using (overloaded) angle brackets. This gives an elegant notation for
�nite products and sums as special cases of generalized products and sums:

ht0; : : : ; tn� 1i := (n; (t0; : : : ; tn� 1))

B0 � � � � � Bn� 1 := � hB0; : : : ; Bn� 1i

B0 + � � � + Bn� 1 := � hB0; : : : ; Bn� 1i

This `overloaded' use of h̀: : :i ' bears no relationship to the notation `hf i ' in para-
graph 2.5.3. The latter notation says that if f i : A ! B i (i = 0 ; 1) then hf 0; f 1i : A !
B0 � B1. We have furthermore � i : B0 � B1 ! B i and � i : B i ! B0 + B1.

We �nd our de�nition B0 � B1 := � hB0; B1i far more elegant than the more common
one in type theory, B0 � 0B1 := �(x: B0 :: B1). Ours has the advantage that notations
and operations on generalized products apply directly to �nite products, so that, e.g.,
B 2 is synonymous with B � B .

2.8.3 Enumerations. For any enumerated list of distinct labels ` i , we introduce a
�nite type f `0; : : : ; `n� 1g whose elements arè i . Let L abbreviate this type, then L is
isomorphic with type n. We de�ne a �nite type of booleans as an example.

` ` i : L : Type

T: Type L ; t0: T(`0); : : : ; tn� 1: T(`n� 1) ` (`0 :: t0 j � � � j `n� 1 :: tn� 1): �(L ; T)

Bool := f true; falseg

if b then p elseq := bn(true :: p j false:: q)

(We generally use the symbol j̀' to join alternatives. Its shape gives a good separation.)

2.8.4 Labeled sums. Sum types whose domain is an enumeration may be de�ned
by grammar rules in Backus-Naur form (BNF), using `::=', which is not to be confused
with the BNF de�nitions used to de�ne the abstract classes of ADAM . So the following
two de�nitions are equivalent, where L is f `0; : : : ; `n� 1g and the � i are declarations:

S ::= `0(� 0) j � � � j `n� 1(� n� 1)

S := �(L ; (`0 :: f (� 0) g j � � � j `n� 1 :: f (� n� 1) g))

The elements (̀ i ; �) of S, where � : f (� i) g, may be noted ` i (�), and we can use a case
analysis notation like

(`0(x0) :: t0x0 j � � � j `n� 1(xn� 1) :: tn� 1xn � 1): �(S; T)

2.8.5 Case analysis in de�nitions. The notation for �nite tuples in 2.8.1and 2.8.3
is a form of case analysis. We allow a more general form of mapping that uses arbitrary
(exhaustive and exclusive) patterns, as yet informally. De�nitions may use case analysis
using a notation like

De�ne c(z: A + B): Cz by c(0; x) := cx j c(1; y) := c0
y :

This corresponds toc: (z: A + B . C z) := � elim((x :: cx); (y :: c0
y)).

2.9. INFINITE TYPES 33

2.9 In�nite types

In�nite types are to be characterized by induction principles, and these form the subject
matter of this thesis. To prove the existence of inductive types, we need to assume the
existence of one in�nite type:

2.9.1 Naturals. The syntax classNat of naturals is not itself a type. We assume a
type named IN, with a dependent recursion rule as is usual in type theory. Its elements
may be given in decimal notation, so forNat n we haven: IN. Conversely, we identify any
n: IN with a �nite type, so IN � t Type , where we skip details. We use! as a synonym
for IN, especially to index in�nite tuples. So A ! := (IN . A).

` IN: Type (2.1)

` 0: IN; s: (IN . IN) (2.2)

T: Type IN ; b: T(0); t(n: IN; h: Tn): T(sn) ` IN rec(b; t): �(IN; T) (2.3)

` IN � t Type (2.4)

! := IN (2.5)

2.9.2 Finite sequences. Now we can form, for any typeA, the type A � = �(n: IN ::
An) of �nite sequences ofA. The length of a sequences is noted # s . Our de�nition is
similar to the one for families in 2.7:

A: Type ` De�ne A � : Type by s: A � :=: (# s: IN; s: A# s)

The angle-bracket notation for �nite families of paragraph 2.8.2 can be used for �nite
sequences inA � as well, i.e.ht0; : : : ; tn� 1i : A � , and we haveA � � t FamA.

2.10 Equality predicate

We use a primitive equality predicate on objects of any type. It yields for any type A
and objectsu; v: A, a type (u = A v) that is inhabited just when u equalsv. This type is
actually a proposition in Prop , which we introduce in section2.11. The inhabitant for
trivial equalities, including reexivity, is denoted by ` eq0.

A: Type ; u; v: A ` (u = A v): Prop

a: A ` eq: (a = A a)

p: (A = Type B) ` A = t B

This last rule implies that, if in some context there is an expressionp: (A = Type B),
and a: A, then one hasa: B as well. This is called type conversion. Existence of such
an expressionp is not e�ectively decidable, so a correctness checker may have to reject
expressionsa: B when it is not evident how to �nd p.

The equality predicate (or equality type) might also be de�ned by the Leibniz equal-
ity, setting (u = T v) equal to

8(P: Prop T :: Pu) Pv) ;

34 CHAPTER 2. THE LANGUAGE ADAM

Replacing)̀ ' by `, ' would be equivalent. One still needs a rule for type conversion,
and one for extensionality of (in�nite) tuples.

2.10.1 Uniqueness. For any type A, we de�ne !A to be the type containing the
unique element ofA, if one exists; otherwise !A will be empty:

De�ne !(A: Type) by

a: !A :=: (a: A; uniqa: (x: A . a = x)) :

That is to say, any element a of !A consists of an element ofA that is noted a as well,
together with a proof, noted uniqa, that any x: A equalsa. We have !A � t A.

2.11 The type of propositions

ITT fully identi�es prositions with types, while CC contains a special type Prop to rep-
resent propositions. This is not only useful for making a conceptual distinction between
types and propositions, but also necessary for constructing types that represent the class
of all subsets of some type, while staying in the same universe, by de�ningP(A): Type i
as Prop A , for any A: Type i .

Thus, Prop must be a member of any universe of the hierarchy. It is construed
a priori as being a type of types whose members have at most one element, and are
members of any other universe. As the product of any number of propositions still
has at most one element, it is again a proposition, the universal quanti�cation noted
`8(A; P)'. We introduce Prop here in ADAM .

` Prop : Type i

` Prop � t Type i

P: Prop ; p; q: P ` eq: p = P q

A: Type i ; P : Prop A ` 8 (A; P): Prop

p: 8(A; P); a: A ` pa: Pa

(x: A ` px : Px) ` (x :: px): 8(A; P)

From the universal quanti�er we derive all other propositional operators and quanti-
�ers. The existential quanti�er is de�ned here as an operator `9A', meaning \type A is
inhabited". We give it a subscript w now, as it is soon to be replaced.

The product 8(A; P) is usually written as 8(x: A :: Px). This and other quanti�ers
and connectives are de�ned below. Note that9w is de�ned as an operator that turns a
type into a proposition; existential quanti�cation over a family of propositions is derived
from this.

P) Q := 8 : P :: Q

P0 ^ � � � ^ Pn� 1 := 8hP0; : : : ; Pn� 1i

True := 8h i

P , Q := (P) Q) ^ (Q) P)

2.11. THE TYPE OF PROPOSITIONS 35

9w(A: Type) := 8(X : Prop ; 8(x: A :: X) :: X)

9w(P: FamProp) := 9wf (x: DomP; Px) g

P0 _ � � � _ Pn� 1 := 9whP0; : : : ; Pn� 1i

False := 9wh i

: P := P) False

P; Q: Prop ` eq: (P = Prop Q) = (P , Q)

In addition, one may need the axiom of choice. This axiom states that, given a
family of nonempty types, there exists a tuple picking an inhabitant of each type from
the family.

B : Type A ; p: 8(x: A :: 9w Bx) ` acp: 9w �(A; B)

An existential assumption p: 9wA may be called weak because it can only be used for
proving other propositions. As explained in appendixC, for some purposes we need a
stronger notion of existential quanti�cation. On other occasions we want to do classical
reasoning. In a constructive calculus, these should not be combined in a single type, for
this strong quanti�er destroys the constructivity of terms of all types as soon as proofs
of propositions need not be constructive. For this reason, we introduce two alterna-
tive versions of Prop , which we nameProp c and Prop i for classical and constructive
(though not really intuitionistic, for intuitionistic philosophy does not admit impredica-
tive quanti�cation) propositions. Thus, we have two variants of ADAM . Combining
them in a single language might be desirable, but requires a more careful distinction
between classical and constructive propositional operators.

Except when stated otherwise, we use constructive logic and omit the subscripti.

2.11.1 Constructive propositions. As expressions should be equivalent to con-
structive object de�nitions, we should have an operator � (iota) that, given a construc-
tive proof that some type has a unique element, denotes that element. Consequently,
the information contained in a proof becomes relevant for computing the object denoted
by an expression, and one should not introduce representations in the abstract (kernel)
language in which this proof information is removed.

Rather than adding primitive rules for iota, appendix C proposes to introduce a new
existential quanti�er with a stronger elimination rule. The idea is that the proposition
9T should be equivalent to the quotient type of T modulo the equivalence relation that
identi�es everything. Thus 9T contains at most one equivalence class.

The type Prop i of constructive propositions has rules as stated above forProp and
this new existential quanti�er.

A: Type ` 9 A: Prop i

` 9 in: A ! 9 A
T: Type 9A ;
t: �(x: A :: T(9 in x));
d: 8x; y: A :: tx = ty ` 9 elimt: �(9A; T)

Here we let the typesA and T and proof d be hidden in the concrete notation9 elimt
because we are not so much concerned with proof objects. (In the appendix, ruleC.3,

36 CHAPTER 2. THE LANGUAGE ADAM

we chose to showd explicitly.) Using 9 elim we can de�ne iota, as follows:

�T : (9!T . T) := 9 elim((u; p): !T :: u)

noting (u; p); (v; q): !T ` pv: (u = v)

When Prop in the de�nition of 9wA is read asProp i, then 9wA and 9A become
equivalent. I.e., one has

9A , 8 (X : Prop i; 8(x: A :: X) :: X)

2.11.2 Classical propositions. For classical logic, one just adds areductio ad ab-
surdum rule:

P: Prop c ` raa: (:: P) P)

(Adding 9 elim for Prop c is possible but destroys the constructive nature of object
terms.)

2.12 More derived notions

2.12.1 Predicates

A predicate P on a type T is obviously an operatorP: (T . Prop), and if � is an in�x
relation symbol, say

x: A; y: B ` x � y: Prop ;

then we have (�): (A � B . Prop). By \sectioning" (paragraph 2.5.4), (� b) stands for
the predicate (x :: x � b).

In a declaration, we may write (x: � b) for (x: A; x � b).

2.12.2 Subtypes

If A is a type and P a predicate over A, then f x: A j: Pxg is a subtype of A which
is isomorphic to �(A; P), but for which we allow a more convenient notation for its
elements. Symbol j̀:' may be read as `such that'. We can pseudo de�ne it by:

De�ne f x: A j: Pxg: Type by

x: f x: A j: Pxg :=: (x: A; propx: Px) :

One may use a pattern instead of the single variablex. So we have, ifa: f x: A j: Pxg,
then a: A and propa: Pa. Furthermore, if for some a: A there is an evidentp: Pa, one may
write just a: f x: A j: Pxg.

Here a problem appears: how should a subtype elementa be noted when the corre-
sponding proof p is not evident? Writing `(a; p)' is rather confusing. We have thought
about `(aj; p)', where j̀;' should be read as \because of", but leave it to informal notation,
for now.

Note that subtypes admit only the declaration of variables of that type. To quantify
over all subsets of a type one must use the subset typePT below, which is derived from
Prop . A membership test for subtypes does not make much sense, becausea 2 f x: A j:
Pxg can always be replaced byPa.

2.12. MORE DERIVED NOTIONS 37

2.12.3 Subsets

The type of subsetsS: P(A) is isomorphic to the type of predicates onA, but one writes
a 2 S for the membership test rather than S(a). We shall write jP j for the subset that
corresponds to predicateP: Prop A , by making the following de�nitions.

P(A: Type i): Type i ::= j (P: Prop A) j :

S: PA; a: A ` De�ne a 2 S : Prop by

a 2 j P j := Pa

(x: A ` Px : Prop) ` f x j: Pxg: PA := jx :: Px j

t : FamA ` f tg: PA := f x j: 9d: Domt :: x = tdg

R; S: PA ` R � S := 8(x: A :: x 2 R) x 2 S)

This may be completed with all usual set operations, like the empty set; , binary op-
erators [and \ , quanti�ers

S
and

T
(intersection within A), and S (complement in

A).
The third de�nition above introduces the usual suggestive notation for set compre-

hension, except that we write j̀:' for \such that", just as with subtypes. The fourth
de�nition introduces a notation similar to the replacement axiom of set theory. For
example, f x: D :: tx g stands for the subset that containstx for any x: D .

The next de�nition tells how to interpret subsets as types themselves, that is, we
have PT � t Type . Furthermore, a type may stand for its full subset. Finally, we shall
sometimes omit the bars around a predicateP.

T: Type ` S 7! f x: T j: x 2 Sg : PT � t Type

T: Type ` T: PT := f x j: Trueg

T: Type ` P 7! j P j : Prop T � t PT

The declaration X : � T now stands for X : PT; 8(x: T :: x 2 X) True), which we read
as just X : PT.

2.12.4 Relational notations

A (binary) relation between two types A and B , notation R: A � B , should obviously be
a subsetR: P(A � B). One easily de�nes converse, left and right domain, and (forward)
composition of relations:

A; B : Type i ` A � B : Type i := P(A � B)

R: A � B ` R[: B � A := f (y; x) j: (x; y) 2 Rg ;

R< : PA := f x j: 9y :: (x; y) 2 Rg ;

R> : PB := f y j: 9x :: (x; y) 2 Rg

R: A � B; S: B � C ` R � S: A � C := f (x; z) j: 9y: B :: (x; y) 2 R ^ (y; z) 2 Sg

This composition is associative and has identity relationsj= A j.

38 CHAPTER 2. THE LANGUAGE ADAM

Functions f : A ! B are sometimes identi�ed with their relational graph, and we
de�ne the relational image of a set:

f 7! f x: A :: (x; f:x) g : (A ! B) � t (A � B)

R: A � B ; X : PA ` R[X] := f y: B j: 9x: 2 X :: (x; y) 2 Rg

R: A � B ; x: A ` R[x] := R[f xg]

So one has, e.g., forX : PA; Y : PB ; f : A ! B; g: B ! C; h: C ! D ; R: B � C, the
following equalities:

f [X] = f x: 2 X :: f:x g : PB

f [[Y] = f x j: f:x 2 Yg : PA

f � g = f �� g : A � C

f � R = f (x; z) j: (f:x; z) 2 Rg : A � C

R � h = f (y; z): 2 R :: (y; h:z) g : B � D

In appendix D we will see how type constructors extend to relation constructors.
The most important of these we give here for general use. ForR: A � A0; S: B � B 0,
we de�ne R ! S to be the set of all pairs of functions that map related arguments to
related results:

R ! S: (A ! A0) � (B ! B 0) := f (f; f 0) j: 8(x; x 0): 2 R :: (fx; f 0x0) 2 Sg

To obtain a function f : A ! B given its graph R: A � B with a proof that R is
single-valued,

p: 8x: A :: 9!R[x] ;

one has to use the iota operator (subsection2.11.1):

f:x := �R[x](px) : (2.6)

2.12.5 Currying

We will sometimes consider (z: f (x: A; y: Bx) g . Tz) to be equivalent to

(x: A; y: Bx . T (x; y)) :

So tab is equivalent to t(a; b) and we can write ta for (y :: t(a; y)).
Taking A := 2, this convention amounts to (z: B + B 0 . Tz) being equivalent to

(y: B . T (0; y)) � (y: B 0 . T (1; y)) :

Thus, if we havet: CB and t0: CB 0
, we can write (t; t 0): CB + B 0

instead of ((x; y) :: (t; t 0)xy).
(Currying is the term used in functional programming for using functions that yield

functions again, after an idea of H.B. Curry.)

2.13. CONCLUSION 39

2.12.6 Pattern matching

The notation of paragraph 2.8.3 for case analysis can be generalized to other patterns.
We will be less restrictive than in subsection2.3.2, for we admit any `suitable' terms
with some free variables to be used as a pattern.

Let meta-expressions� �u: A stand for patterns containing a sequence of variables �u.
Suppose we have a sequence ofn patterns � i u, where for simplicity we assume that each
pattern has only one and the same variableu: Ui . If one knows that

8x: A :: 9i : n; u: Ui :: x = � i u (2.7)

and a sequence of expressionsqi u typed by

u: Ui ` qi u: B (� i u)

such that
8i; j : n; u: Ui ; v: Uj :: (� i u = � j v) qi u = qj v) (2.8)

then there is a unique tuple p: �(A; B) such that p(� i u) = qi u, which we note as

(� 0u :: q0u j � � � j � n� 1u :: qn� 1u) :

If the i and u in (2.7) are known to be unique, then (2.8) holds trivially.
A similar notation may be used for other in�x abstractors, e.g.

(� 0(u: Ui) . B 0u j � � �) := (x: A . x n(� 0u :: B0u j � � �))

(� 0u 7! q0u j � � �) := (x 7! xn(� 0u :: q0u j � � �))

A problem with these notations is that it might not be clear which identi�ers are
being bound, in case� i contains free variables itself.

2.12.7 Linear proof notation

Statements s R t that some transitive relation R, such as = or , , holds between two
objects or propositions are often derived through a linear sequence of steps. We may
present these proofs in a three-column format:

s

R s0 f hreason whys R s0i g

R t f hreason whys0 R t i g

During such a linear proof, we may sometimes give a de�nition that extends to the
following proof lines, and even beyond.

Of course, any propositionP may be derived by a linear proof ofP (True.

2.13 Conclusion

We de�ned an extensive notation system based on Constructive Type Theory, partly
using a two-level Van Wijngaarden grammar. Several of the more advanced features,
that we consider valuable to obtain natural notational exibility, appeared to be too
complicated to be formally de�ned within the scope of this thesis. We shall apply the
notations in the rest of the thesis to express our de�nitions and rules.

40

Chapter 3

Common induction and recursion
principles

In this chapter, we present a summary of some common principles of inductive de�nition
and recursion. This serves two purposes: to get introduced to inductive de�nitions and
also to get acquainted with our notations.

In 3.1, we start with some simple examples, each one adding a new aspect of induc-
tive de�nition: naturals, lists, trees, join lists, rose trees, ordinal notations, inductive
relations, and in�nite lists.

In 3.2, we formulate the main derived principles of induction and recursion on natu-
rals.

In 3.3, we summarize the theory of inductively de�ning a subset of a given set.
In 3.4, we derive some recursion principles from the induction rules in3.3.

3.1 Examples of inductive types

Before embarking on generalized formulations of induction principles, we list some ex-
amples of inductively de�ned types that illustrate several features.

Example 3.1 (Natural numbers) The type IN is usually described by the �ve Peano
axioms (where we ignore the presence of IN inADAM):

1. 0, zero, is a natural number: 0: IN.

2. Whenever n is a natural number, then sn, its successor, is also a natural number:

n: IN ` sn: IN

3. No successor equals zero:sn 6= 0.

4. Natural numbers with the same successor are equal:sn = sm) n = m.

5. Nothing else is a natural number. That is, if a predicate P(n: IN) holds for zero
and is preserved by the successor operation, then it holds for all natural numbers:

P(0) ^ 8 (n: IN :: P(n)) P(sn))) 8 (n: IN :: P(n)) (3.1)

3.1. EXAMPLES OF INDUCTIVE TYPES 41

Regarding this de�nition, we distinguish a base clause 1, a step clause 2, equality rules 3
and 4, and an induction clause 5. The induction clause is an instance of the elimination
principle for naturals (2.3), taking Tn := Pn.

Example 3.2 (Lists) For any type A, the type ClistA of cons lists is generated by:

` 2 : ClistA

e: A; l : ClistA ` e+< l : ClistA

As for naturals, we have to give clauses saying that two lists are only equal if they are
constructed by the same constructor from equal arguments (no confusion):

8(e; l :: e+< l 6= 2) 8(e; e0; l; l 0 :: e+< l = e0+< l 0) e = e0^ l = l0)

and an induction clause saying that all lists can be built by repeated application of the
construction rules (no junk): for predicates P(l : ClistA),

P2 ^ 8 (e; l :: P l) P(e+< l))) 8 (l :: P l) :

Example 3.3 (Binary trees) The type BTreeA is generated by:

` 2 : BTreeA

x: A ` 3 :x: BTreeA

s; t: BTreeA ` s ++ t: BTreeA

where 2 is a unit of ++:

s: BTreeA ` 2 ++ s = s = s ++ 2

No other trees are identical (no confusion), i.e.:

s ++ t = 2) s = 2 ^ t = 2

s ++ t = u ++ v) (s = u ^ t = v) _ (s = 2 ^ t = u ++ v) _ (s = u ++ v ^ t = 2)

Finally, nothing else is a tree (no junk). That is, for predicates P(t: BTreeA), if

P2 ^ 8 (x: A :: P(3 :x)) ^ 8 (s; t: BTreeA :: Ps ^ P t) P(s ++ t))

then 8(s: BTreeA :: Ps).
We will see in example4.5 that the notion of initial algebra avoids the formulation

of complicated no-confusion and no-junk conditions.

Example 3.4 (Join lists) The constructors for join lists JListA are the same as those
for BTreeA, but have the additional equation telling that ++ (called join) is associative,

s; t; u: JListA ` (s ++ t) ++ u = s ++ (t ++ u):

We shall not spell out the complicated no-confusion condition; the no-junk condition is
the same as for binary trees.

42 CHAPTER 3. COMMON INDUCTION AND RECURSION PRINCIPLES

Example 3.5 (Rose trees) Rose trees and forests (e.g. Malcolm [52]) can be described
either as two mutually inductive types or as a single one using lists.

Making the latter choice, rose trees over some typeA are inductively generated by:
any list f of rose trees together with some elementx of A makes a rose tree notedx

p
f ,

i.e.

x: A; f : Clist(RTreeA) ` x
p

f : RTreeA

This is an iterated inductive de�nition in the sense of [55], as it builds upon another
inductively de�ned type, Clist. However, the use of iterated induction is not essential
here.

The alternative is to de�ne rose trees and lists of them (named forests) simultane-
ously, by mutual induction:

x: A; f : ForestA ` x
p

f : RTreeA

` 2 : ForestA

t: RTreeA; f : ForestA ` t +< f : ForestA

Example 3.6 (Ordinal notations) A more typical iterated inductive de�nition is the
following one, which builds upon the inductive type of naturals. Ordinal notations are
constructed from zero, a successor operation, and taking the limit of an in�nite but
countable series of ordinal notations. They may be used to represent ordinals of the
so-called second number class. This typeOrd is our �rst in�nitary inductive type.

` 0:Ord

n: Ord ` sn: Ord

u: Ord! ` lim u: Ord

Our �nal two examples illustrate rather di�erent kinds of inductive de�nitions.

Example 3.7 (An inductive relation) Given a relation R: � T2, its transitive clo-
sure R(+) is speci�ed by

R � R(+)

R(+) � R(+) � R(+)

and: R(+) is the least relation w.r.t. � that satis�es these two rules.
By Knaster-Tarski (theorem 3.6), the unique solution to this speci�cation is the

intersection of all relations that satisfy the two rules:

R(+) :=
\

(X : � R j: R � X ^ X � X � X)

Similarly, the reexive and transitive closure is

R(�) :=
\

(X : � R j: j= T j � X ^ R � X ^ X � X � X)

Note the di�erence with the preceding examples: there we created new types by stating
new operations and equations, here we de�ne a subset of an existing type (T2) by giving
rules that refer only to existing operations.

3.2. MORE ON NATURAL NUMBERS 43

Example 3.8 (In�nite lists) The type A1 of (total) in�nite lists over A is isomorphic
with A ! , but we give a quite di�erent axiomization. This is not an inductive type
de�nition like the examples 3.1{ 3.7, but we shall see that it is its categorical dual, a �nal
coalgebra instead of an initial algebra. The axioms are:

1. Any in�nite list has a head: hd: A1 ! A.

2. Any in�nite list has a tail: tl : A1 ! A1 .

3. For any type X and mappings h: X ! A and t: X ! X , there exists a family of
in�nite lists l : (A1)X such that:

hd:l i = h:i ;

tl :l i = l (t:i) :

4. Moreover, this family of lists l is unique: any other such family equals it.

Summary. Example 3.1 gave the most common form of inductive type de�nition;
example 3.2 de�ned a type with a parameter; example 3.3 gave a type with parameter
and equations; the join lists of example3.4 added more equations; example3.5 used
mutual induction, example 3.6 iterated induction.

Example 3.7 showed the di�erence between inductive type and inductive set de�ni-
tions, and example3.8 displayed the categorical dual of inductive type de�nition.

3.2 More on natural numbers

Peano's 5th axiom (3.1) constitutes the �rst induction principle. Of course one can
derive similar principles starting at a base di�erent from zero. A well-known equivalent
principle is total induction. Let j< j := (� s)(+) , the transitive closure of the successor
relation � s = f n: IN :: (n; sn) g.

Theorem 3.1 (Total induction) If a property P(n: IN) can be proven on the assump-
tion that it holds for smaller natural numbers, then it holds for all natural numbers:

8(n: IN; j< n j � j P j :: Pn)) IN � j P j (3.2)

Note that j< n j � j P j abbreviates 8(m: IN :: m < n) Pm).

Proof. Use (3.1) substituting P(n) := j< n j � j P j.

Note that no separate treatment of some base case is needed.
De�nitions of a recursive function f on natural numbers usually consist of a base

case,f: 0 = b and an induction step of the form f: (n + 1) = g:(n; f:n). This is called
primitive recursion. Typed lambda calculi with natural numbers usually have a recursion
construct which allows such de�nitions. With the help of the iota operation, one can
derive it from the Peano axioms.

44 CHAPTER 3. COMMON INDUCTION AND RECURSION PRINCIPLES

Theorem 3.2 (Primitive recursion)

U: Type
b: U
g: IN � U ! U

9!f : IN ! U :: f: 0 = b ^ 8 n :: f: sn = g:(n; f:n)
(3.3)

Proof. This is an instance of theorem3.7 below, for T := IN, j�j := � s, and s :=
((0; h) :: b j (sn; h) :: g:(n; hn)), for Peano's axiom (3.1) says exactly that this � is
well-founded (3.6).

Alternatively, existence of f is a special case of the elimination principle for naturals
(2.3) for nondependent types,Tn := U. Uniqueness follows: assumeg: IN ! U satis�es
the same equations, then prove8n: IN :: g:n = f:n by Peano induction, which is an
instance of (2.3) too.

3.3 Inductive subset de�nitions

We summarize the standard theory of inductive set de�nitions, following the basic def-
initions from the �rst section of Aczel's Introduction to Inductive De�nitions [3]. This
theory deals with subsets of a set (or type) that has been constructed prior to the
inductive de�nition.

3.3.1 Sets inductively de�ned by rules

Example 3.7 de�ned R(+) as the least subset ofT2 that is closed under certain rules.
The other examples,3.1 till 3.6, introduced new types, not subsets, but each of these
types can be characterized by saying that it equals its own least subset that is closed
under certain rules. Let us give the general form of such de�nitions.

Let type T be given. We de�ne:

1. A rule is a pair (X; x) where X : PT is called the set ofpremissesand x: T is the
conclusion. A set of rules, �: P(PT � T), is also called arule set.

2. If � is a rule set, then a set S: � T is � -closed i� each rule in � whose premisses
are in S also has its conclusion inS, i.e. i�

8(X; y): 2 � :: X � S) y 2 S :

3. If � is a rule set, then I (�), the set inductively de�ned by �, is given by

I (�) :=
\

(S: � T j: S is �-closed) : (3.4)

Note. �-closed sets exists; e.g. the typeT itself. Also, the intersection of any collection
of �-closed sets is �-closed. In particular I (�) is �-closed and hence I (�) is the smallest
� -closed subset.

From the de�nition (3.4) of I (�) we get immediately the principle of � -induction :
If P(x: T) is a predicate, such that whenever (X; y): 2 � and X � j P j then Py, then Px
holds for every x: 2 I (�).

3.3. INDUCTIVE SUBSET DEFINITIONS 45

De�nition (3.4) involves a second-order quanti�cation. If one designs a logical calcu-
lus without quanti�cation over arbitrary subsets, one might consider including inductive
set (or predicate) de�nitions as a primitive rule [55]. By the way, if a calculus includes
inductive mutually recursive type de�nitions in the style of section 5.2.2, then one gets
inductive predicate de�nitions as well.

3.3.2 The well-founded part of a relation

A slightly less general scheme of inductive subset de�nitions is based on well-founded
relations. The constructive idea of a well-founded relation is a generalization of the
principle of total induction (3.2), but its classical de�nition is di�erent.

Let � be a binary relation on a typeT. The well-founded partof T for � , W (�): � T ,
is de�ned (classically) as the set consisting of thosex: T for which there is no in�nite
descending sequencex � s0 � s1 � � � � . The relation � is called well-founded i�
T = W (�), and it is a well-ordering i� it is both well-founded and transitive (but see
(3.6) for the constructive de�nition of wellfoundedness). Note that the transitive closure
� (+) of any well-founded relation is a well-ordering. The elementsy: � x are called the
predecessorsof x.

The set W (�) can be de�ned inductively using the following rule set � � .

� � := f x: T :: (j� xj; x) g (3.5)

The set inductively de�ned by � � , I (� �), is called the reachable part of T for � . The
principle of total induction (3.2) can now be formulated as IN� I (� <).

Theorem 3.3 W (�) = I (� �), classically.

Proof. � : It su�ces to show that W (�) is � � -closed. So assumej� xj � W (�). To
show x 2 W (�), supposex � s0 � � � � . Then s0 2 j� xj � W (�). But as s0 � s1 � � � � ,
s0 =2 W (�), which gives a contradiction.

� : Let x: 2 W (�) and S be � � -closed. Supposingx =2 S, we shall derive a contra-
diction by �nding x � s0 � � � � showing that x =2 W (�). As x =2 S, then j� xj 6� S.
Hence there is ans0: � x such that s0 =2 S. Repeating inde�nitely we obtain si +1 : � si

such that si +1 =2 S.

Conversely, inductive de�nitions can often be rephrased in the form � � for a suitable
� . Let � be a rule set on a type T; we say � is deterministic i�

(X 0; y) 2 � ^ (X 1; y) 2 �) X 0 = X 1 :

Let (� �): � T2 be the relation j2j � � [f (x; y) j: y =2 � > g, i.e.:

x � � y := y 2 � >) 9 (X : PT :: x 2 X ^ (X; y) 2 �) :

(Aczel [3, proposition 1.2.4] erroneously missed the conditiony 2 � > .)

Theorem 3.4 For deterministic � , one has (classically)

I (�) = I (� � �) = W (� �) :

46 CHAPTER 3. COMMON INDUCTION AND RECURSION PRINCIPLES

Proof. We have I (� � �) = W (� �) from theorem 3.3. Next,

I (�) � I (� � �)

(all � � � -closed sets are �-closed f def. I (3.4)g

(� � � � � f def. closednessg

, 8 (X; y): 2 � :: X = j� � yj f def. � � (3.5)g

, 8 (X; y): 2 � :: X = f x j: (x; y) 2 j2j � � g f def. � � , y 2 � > g

, � is deterministic f def. deterministicg

and:

I (� � �) � I (�)

(I (�) is � � � -closed f def. I (� � �)g

, 8 y :: j� � yj � I (�)) y 2 I (�) f def. � � , closednessg

(8 ((X; y): 2 � :: X � I (�)) y 2 I (�))

^ 8 (y =2 � > :: T � I (�)) y 2 I (�)) f def. � � g

, True f def. I (�) g

Theorem 3.3 suggests us a constructive interpretation of well-foundedness. Con-
structively, we even take T � I (� �) as the de�nition of well-foundedness. Thus, we
henceforth say� is well-founded i� it admits trans�nite induction :

P: Prop T

8y: T; j� yj � j P j :: Py

T � j P j
(3.6)

For natural numbers with (�) := (<), this is exactly the total induction principle (3.2).
There are several other constructive interpretations of well-foundedness possible,

which are classically equivalent:

Theorem 3.5 The three properties: � admitting trans�nite induction, � having no de-
scending chains, and all nonempty subsets ofT having a minimal element, are classically
equivalent. Formally these are:

T � I (� �) (3.7)

8s: T ! :: 9i : ! :: si +1 6� si (3.8)

8Q: PT; 9(Q) :: 9q: 2 Q :: :9 (Q \ j� qj) (3.9)

((3.9) implies (3.8) constructively as well. (3.7) and (3.9) seem to be constructively
independent.)

Proof. (3:7) , (3:8) is a corollary of theorem 3.3, for (3.8) says just T � W (�).

(3:8)) (3:9): Assume Q: PT, q: 2 Q and suppose8q: 2 Q :: 9(Q \ j� qj). Then
we choose a descending sequence by takings0 := q, and given si 2 Q, choosing an
si +1 : 2 Q \ j� si j. This contradicts (3.8).

3.3. INDUCTIVE SUBSET DEFINITIONS 47

(3:9)) (3:8): Given s: T ! , take Q := f i : ! :: si g. Then by (3.9), :9 (Q \ j� si j) for
somei , and in particular si +1 6� si .

A somewhat di�erent use of well-founded relations is to conduct inductive proofs
over some given type. To �nd suitable relations, Paulson [69] described a number of
principles to construct well-founded relations.

3.3.3 Inductive de�nitions as operators

An \operator" (function) � : PT ! P T is monotonic i� (�; �) 2 (�) ! (�), i.e. i�
X : � Y : PT implies �:X � �:Y . Given � , let rule set � � be de�ned by

� � := f (X; y) j: y 2 �:X g :

For monotonic � , S: PT is � � -closed just in case�:S � S. So

I (� �) =
\

(S: PT j: �:S � S) : (3.10)

Hence it is natural to write, still following Aczel [3], I (�) for
T

(S: PT j: �:S � S).
Conversely, all inductive de�nitions can be obtained using monotonic operators. For,

if � is a rule set on T we may de�ne � by

�:Y := f y j: 9X : � Y :: (X; y) 2 � g :

Then Y is �-closed just in case �:Y � Y so that I (�) = I (�).
An alternative characterization of I (�) uses trans�nite iterations � (�) for ordinals � .

We skip this; see [3].

3.3.4 Fixed points in a lattice

The Knaster-Tarski theorem generalizes the �xed point property (3.10) of monotonic
operators on sets to complete lattices.

Theorem 3.6 (Knaster-Tarski) Any monotonic operator F in a complete lattice
(U; v) has a least �xed point

�x F := u(X : U j: F:X v X)

and hence by duality a greatest �xed point

t (X : U j: X v F:X) :

Proof. We have F:(�x F) v �x F because for anyX : U, if F:X v X then �x F v X so
F:(�x F) v F:X v X .

Conversely, �x F v F:(�x F) follows from F:(F:(�x F)) v F:(�x F), which holds by
monotonicity of F .

48 CHAPTER 3. COMMON INDUCTION AND RECURSION PRINCIPLES

We show the same proof in linear form:

F:(�x F) = �x F

, �x F v F:(�x F) ^ F:(�x F) v �x F f latticeg

(F:(F:(�x F)) v F:(�x F) ^ F:(�x F) v �x F f def. �x g

, F:(�x F) v �x F f F monotonicg

, 8 X ; F:X v X :: F:(�x F) v X f def. �x g

(8 X ; F:X v X :: F:(�x F) v F:X f assumption X g

(8 X ; F:X v X :: �x F v X f F monotonicg

, True f def. �x g

3.4 From induction to recursion

Once one has a well-founded relation� (or a deterministic rule set), one can de�ne
recursive functions provided one has the iota-correspondence of subsection2.11.1 be-
tween functions and single-valued relations. The proof would be somewhat simpler in
set theory, as functions and single-valued relations are identi�ed there.

Theorem 3.7 (trans�nite recursion) If (�): � T2 is well-founded, and one has a
recursion step

s(x: T; h: U j� x j): U

then one can construct a uniquef : UT such that

8x: T :: fx = s(x; f j � x) : (3.11)

(f j � x is the restriction of f to j� xj, which will henceforth be noted just f .)

Proof. Let the in�x binary relation R: � T � U, that is to become the graph of f , be
inductively de�ned as the least relation X such that

8x: T; h: U j� x j :: 8(y: � x :: y X hy)) x X s (x; h) : (3.12)

To prove single-valuedness ofR we apply trans�nite induction (3.6) to Px := 9! jx Rj
(the predicate stating that x has a uniqueR-image), and see that8(x: T :: 9! jx R j) holds
provided

8x: T; 8(z: � x :: 9! jz Rj) :: 9! jx R j :

So assumingx: T and induction hypothesis

8z: � x :: 9! jz Rj ; (3.13)

we have to prove9! jx Rj. From (3.13) we get (using iota) a unique

g: !(z: � x . jz Rj) : (3.14)

Taking then y := s(x; g), one has by (3.14) and R satisfying (3.12) that x R y , so9 jx Rj.

3.5. CONCLUSION 49

Now supposing somez: T satis�es x R z too, we must showz = y. By de�nition of
R (3.12), we have z = s(x; h) for some h with 8(y: � x :: y R hu). By uniqueness ofg
(3.14) it follows that h = g, and hencez = s(x; h) = s(x; g) = y.

This completes the constructive proof of single-valuedness ofR. So letp(x: T): 9! jx R j
be the corresponding proof term, and takefx := �(px). Then fx = s(x; f) holds
by (3.12).

For uniqueness, assumegx = s(x; gj � x). Then by trans�nite induction one proves
8(x: T :: gx = fx).

We may note that this theorem can be generalized to dependent typesU: Type T .
We shall do this in theorem 6.2: given a recursion step

s(x: T; h: �(y: � x :: Uy)): Ux ;

there is a unique f : �(T ; U) satisfying (3.11). The proof goes analogous; one replaces
jRj: � T � U by R: � �(T ; U).

3.5 Conclusion

We have seen our languageADAM at work in some inductive de�nitions. In the rest of
the thesis, we develop a general theory for inductive types, based on categorical notions
which we introduce in the next chapter.

50

Chapter 4

Categories and algebra

In this chapter we develop within ADAM the categorical framework for manipulating
inductive types in the style advocated by Hagino [37], i.e. as initial objects in a category
of (F; G)-algebras, for functorsF and G. This di�ers from the style used in the branch
of mathematics called universal algebra, where inductive types are formed asmonads,
being themselves functors with appropriate natural transformations. In the next three
chapters we shall concentrate on particular induction and recursion rules as they �t in
this categorical framework.

In section 4.1 we introduce basic categorical notions in our notation, in4.2 we in-
troduce the categorical view of algebras over some signature. In4.3 inductive types
appear as initial F; G-algebras, and in section4.4 we take these algebras modulo equa-
tions, which are formed either on an (abstract) syntactic or semantic level. Section4.5
looks at the relationship with well-founded relations, and 4.6 relates the initial algebra
approach to the monads of universal algebra. In4.7, we make a comparison with the
framework of Algebraic Speci�cation.

4.1 Categorical notions

Category theory provides a number of general purpose concepts and theorems. We will
use some of the most basic notions, which we introduce here in the notation ofADAM .
For a gentle introduction to some of the basic concepts, see Rydeheard [76].

4.1.1 Categories. First the big type of categories. There are several equivalent
de�nitions in use. We take a category C to be a type, also namedC, of objects together
with for any pair of objects X; Y a type (or set) X ! Y in C of morphisms (or arrows)
from X to Y , called its hom-set, and with associative arrow composition�� and identity
arrows IdX . This is formalized below in the notation of paragraph 2.6.3.

De�ne C: Cat i : Type i +1 :=: (
C: Type i ;
X; Y : C ` (X ! Y [in C]): Type i ;
VariablesX; Y; Z; U : C;

f : X ! Y; g: Y ! Z; h: Z ! U;

4.1. CATEGORICAL NOTIONS 51

IdX : X ! X;
f �� g: X ! Z ;
IdX �� f = f; f �� IdY = f;
(f �� g) �� h = f �� (g �� h)

)

Note that any universe of types together with functions as morphisms form a category,

TYPE i : Cat i +1 := (Type i ; (!); I; (��)) :

4.1.2 Functors. A functor between two categories is a mapping of both objects and
arrows that preserves identities and composition:

De�ne F : (C: Cat) ! (D: Cat) :=: (
F : C ! D in TYPE ;
VariablesX; Y; Z : C; f : X ! Y; g: Y ! Z ;
F : (X ! Y in C) ! (F:X ! F:Y in D);
F:IdX = IdF:X ;
F:(f �� g) = F:f �� F:g

)

We have identity functors I, and composition of functors denoted by reverse juxta-
position, so the type of categories with functors forms itself a (big) category:

IC: C ! C := (I; I)

F : C ! D ; G: D ! E ` GF : C ! E := (F �� G; F �� G)

CAT i : Cat i +1 := (Cat i ; (!); I; (F; G :: GF))

4.1.3 Natural transformations. For categoriesC, D and functors F; G: C ! D , a
natural transformation � : F :! G is a family of arrows � X :C: F:X ! G:X in D such that,
for any f : X ! Y in C, one has

� X �� G:f = F:f �� � Y : F:X ! G:Y :

In relational notation, this is (� X ; � Y) 2 F:f ! G:f . Note the similarity with the
typing � X : F:X ! G:X !

As natural transformations are easily composed with each other,

� : F :! G; : G :! H ` � �� : F :! H := (X :: � X �� X) ;

the class of functorsF : C ! D with natural transformations as arrows forms the functor
category DC.

Natural transformations � : F :! G can be composed with functors in two ways:

H : D ! E ` H:� : HF :! HG := (X :: H:� X)

J : B ! C ` � J: : FJ :! GJ := (X :: � J:X)

52 CHAPTER 4. CATEGORIES AND ALGEBRA

4.1.4 Product and exponent categories. The product �(D ; C) of a family of
categories is a category whose objects and arrows are tuples,

D : Type ; C: Cat D ` �(D ; C) := (�(D ; C);

X ! Y := �(d: D :: X d ! Yd in Cd);

IdX := (d :: IdX d);

f �� g := (d :: f d �� gd)

)

D : Type ; C: Cat ` C D : Cat := �(d: D :: C)

4.1.5 Dualization and initiality. For any category C = (C; (!); Id; (��)), there is a
dual or opposite category where all arrows are reversed,

Cop := (C; (); Id; (�))

where(X Y) := (Y ! X in C) ;

f � g := g �� f :

So (X ! Y in Cop) = (Y ! X in C).
An initial object X of a categoryC is one for which, for any objectY : C, there is a

unique morphism from X to Y , noted ([X ! Y])C as in [30], or rather just ([Y]) when C
and X are evident.

De�ne X : Init C :=: (X : C; ([Y : C]): !(X ! Y))

A �nal (or terminal) object of C is an initial object of Cop.
The notion of initiality, and all its derived notions, can be weakened: aweakly initial

object X of C is one for which, for any object Y : C there is a morphism from X to Y ,
not necessarily unique.

4.1.6 Product and sum objects. A category C is said to have (binary) products
i� for any pair of objects, B : C2, we have an objectB0 � B1: C and two morphisms
� i : B0 � B1 ! B i , such that for any X : C; p: (X; X) ! B there is a (unique) mediating
morphism hpi = hp0; p1i : X ! B0 � B1 characterized by

f = hp0; p1i , 8 i : 2 :: f �� � i = pi :

Using the algebraic terminology of section4.2, one can say thathpi is a homomorphism

hpi : (X ; p) ! (B0 � B1; �) ;

so that (B0 � B1; �) is the �nal object in the category of algebras (X ; p).
More generally, given a typeN , categoryChasproducts overN i� for any tuple B : CN

there is a �nal object (�(N ; B); �) in the category of algebras (X : C; p: � :X ! B). Here,
�: C ! C N is the diagonal functor X 7! (i :: X).

4.2. ALGEBRAS AND SIGNATURES 53

Similarly, C is said to have (binary) sums(or coproducts) i� Cop has binary products,
noted (B0 + B1; �). Given B : C2; X : C; s: B ! (X; X), the mediating morphism is noted
as

[s0; s1]: (B0 + B1; �) ! (X ; s) :

Note that the category of types has products and sums over all types in the category
indeed, and the notations hpi and [s] were already introduced in paragraphs2.5.3 and
2.6.1 for the mediating morphisms in this category.

4.1.7 Subobjects. For an object A: C of any category, we can de�ne the category
of subobjects ofA,

PCA := f (H : C; r : H ! A) g

(H ; r) ! (H 0; r 0) in PCA := f f : H ! H 0 in C j: r = f �� r 0g

We de�ne a preorder (�) on subobjects, and any functor onC extends to a functor on
PCA (which preserves (�)):

(H ; r) � (H 0; r 0) := 9((H ; r) ! (H 0; r 0) in PCA)

F:(H ; r) := (F:H ; F:r)

For C := TYPE , a subobject (H ; r) represents the subsetf z: H :: r:z g: PA, and any
subsetS: PA is represented by a subobject (S; I). Relation (�) represents subset inclu-
sion (�), and extended functors preserve not only inclusionsS � S0, but also inclusion
maps:

F:(I: S ! S0) = I: F:S ! F:S0 : (4.1)

Note that the latter property is not automatic for functors on the subset category
(PA; (!)) or on SET , for inclusion maps are not identity arrows whenS 6= S0.

4.2 Algebras and signatures

An algebra is essentially a tuple of typesTi called the carriers or sorts, where i ranges
over some typeN called the set of sort names, together with a tuple of functions � j

called the operations, where j ranges over a typeM of operation names. The domain
and codomain (range) of the operations is speci�ed by a signature.

We use a more liberal notion of signature than in the tradition of Algebraic Speci�-
cation, see section4.7. The signature of an algebra consists of the typesN and M , and
two functors F; G: TYPE N ! TYPE M , specifying for each operation its domain and
codomain, so that � j : (F:T) j ! (G:T) j .

The type of signatures is thus

Sign : Type := f (N; M : Type ; F; G: TYPE N ! TYPE M) g

and the type of algebras with a given signature � = (N; M ; F; G) is

Alg � := f (T: Type N ; � : F:T ! G:T in TYPE M) g :

54 CHAPTER 4. CATEGORIES AND ALGEBRA

These are called �-algebras, or (F; G)-algebras whenN and M are evident. As a special
case, ifN = M and the codomain functorG is the identity, one speaks aboutF -algebras,
and their type is noted Alg F .

The type of homomorphisms between two �-algebras (T; �), (U;) is the subtype
of those arrowsf : T ! U (that is, tuples of functions f i : Ti ! Ui for i : N) that preserve
the operations,

(T; �) ! (U;) := f f : T ! U in TYPE N j: � �� G:f = F:f �� g :

Using the relational interpretation of ` ! ' (section 2.12.4), this condition for f : T ! U
to be a homomorphism reads

(�;) 2 F:f ! G:f :

Note the similarity with the type � : F:T ! G:T !
One has identity and composition of homomorphisms, so algebras and homomor-

phisms form a categoryALG � for any �: Sign .
This notion of algebra is easily generalized by replacingTYPE N and TYPE M by

arbitrary categories C, D. Thus one has signatures � = (C; D: Cat ; F; G: C ! D) and
�-algebras (T: C; � : F:T ! G:T in D). This corresponds to the notion of F; G-dialgebra
of Hagino [37].

Example 4.1 The ring of naturals with zero, one, addition and multiplication,

(IN; K 0; K 1; (+) ; (�)) ;

forms an algebra of signature

� := (N := 1 ; M := 4; F:X := (1 ; 1; X 2; X 2); G:X := (X; X; X; X)) : (4.2)

This same algebra can also be given as anF -algebra, whereF:X := 1+1+ X 2+ X 2, using
the fact that the type of morphisms A ! (X; X) in TYPE 2 is (naturally) isomorphic
to A0 + A1 ! X in TYPE .

4.3 Initial algebras, catamorphisms

Let � = (C; D; F; G) be a (generalized) signature. According to the de�nition of initial
objects in 4.1.5, a �-algebra (T; �) is initial i� there exists a unique homomorphism
(noted ([U;])) from (T; �) to any other �-algebra (U;), i.e.

([U;]) : !((T ; �) ! (U;)) :

Such homomorphisms, further abbreviated to ([]), are called catamorphisms as in the
Bird-Meertens formalism [57]. ([]) satis�es the property that, for all f : T ! U,

� �� G:f = F:f �� , f = ([]) (4.3)

from which one has immediately the followingcharacteristic equation of ([]) :

� �� G:([]) = F:([]) �� :

4.3. INITIAL ALGEBRAS, CATAMORPHISMS 55

Example 4.2 We can build an initial �-algebra where � is given by (4.2). Take the
type A � of strings over the alphabetA := f 0; 1; +; *g, and the operations

z:0 := 0

o:0 := 1

x � y := +xy

x
 y := *xy

Let T: � A � be the least subset that is closed under these operations. Then by theorem
4.3 below, the algebra (T; z; o;(�); (
)) is an initial object of the category ALG �.
That is, it has a unique arrow f to any other algebra (U;) in this category, inductively
de�ned by equations like f: (+xy) = 2:(f:x; f:y) for x; y: 2 T.

Thus, initial algebras, when they exist, are often thought of as sets of syntactic terms.

Example 4.3 From the primitive recursion principle (3.3) we get immediately the fol-
lowing iteration principle .

U: Type
b: U
g: U ! U

9!f : IN ! U :: f: 0 = b^ f: sn = g:(f:n)
(4.4)

Now this says exactly that the natural numbers, with zero and successor, form an initial
algebra � := (IN; K 0; � s) of signature

� := (1 ; 2; F:X := (1 ; X); G:X := (X; X)) ;

for the equations say that f is a homomorphism from � to (U; K b; g). Equivalently,
(IN; [K 0; � s]) is an initial F -algebra where F:X := 1 + X . We will often omit the
brackets in such cases, writing just (IN;K 0; � s).

We will see in chapter6 that the iteration principle in generalized form is equivalent
to other recursion principles. (End of example)

Many other inductive types also form initial F -algebras for someF . In fact, we
can take the notion of initial algebra in the category TYPE N as our basic notion of
inductive type.

Example 4.4 The algebra of lists of example3.2,

(ClistA; [K 2 ; +<]) ;

is the initial F -algebra whereF:X := 1 + A � X . And the algebra of rose trees and
forests of example3.5,

(RTreeA; ForestA; (
p

); [K 2 ; (+<)]) ;

is the initial F -algebra whereF : TYPE 2 ! TYPE 2 is

F:(X; Y) := (A � Y;1 + (X � Y)) :

(End of example)

56 CHAPTER 4. CATEGORIES AND ALGEBRA

Identity is a catamorphism, and constructors are always isomorphisms here:

Theorem 4.1 (Lambek's lemma) For any initial F -algebra(T; �), Id is the catamor-
phism in (T; �) ! (T ; �).

Proof. � �� Id = F:Id �� � , so Id is a homomorphism and hence the unique one.

The main use of this fact is in proving that a morphism f : T ! T equals identity:
f = Id , � �� f = F:f �� � .

Theorem 4.2 The constructor � : F:T ! T of an initial F -algebra (in any category) is
an isomorphism.

Proof. We seek to de�ne some� : T ! F:T . It should be a pre-inverse of� :

� �� � = Id

, � �� � 2 (T; �) ! (T ; �) f theorem 4.1g

, � �� (� �� �) = F:(� �� �) �� �

(� �� � = F:� �� F:�

, � 2 (T; �) ! (F:T ; F:�)

So taking for � the catamorphism ([F:T ; F:�]) will do. It remains to check that this � is
a post-inverse as well:

� �� � = Id

, F:� �� F:� = Id f � �� � = F:� �� F:� aboveg

, F:(� �� �) = F:Id f functorsg

(� �� � = Id

, True f � is a pre-inverseg

Thus, we can indeed use� [:= ([F:T ; F:�]).

We now prove that an F -algebra being initial coincides with having no junk and
no confusion. Let F be a functor in TYPE , extended to subsets (paragraph4.1.7) and
(T; �) an F -algebra; we say that (T; �) hasno confusion i� � is injective, i.e. � �� [= IdF:T ,
and no junk i� T is minimal, i.e. i� for all S: � T :

� 2 F:S ! S) T � S : (4.5)

Theorem 4.3 F -algebra (T; �) is initial i� it has no junk and no confusion.

Proof.) : Let (T; �) be initial, then theorem 4.2 comprises that � is injective. Further-
more, assume� 2 F:S ! S, then ([�]) 2 (T; �) ! (S; �). But theorem 4.1 says ([�]) = I,
so T � S.

(: Let (U;) be another F -algebra; we seek to de�ne the unique homomorphism
f : (T; �) ! (U;). The homomorphism condition (�;) 2 F:f ! f gives rise to the
inductive de�nition of f as being the smallest subsetf : � T � U such that:

8g: � T � U; g single-valued; (x; y): 2 F:g :: g � f) (�:x; :y) 2 f :

4.4. ALGEBRAS WITH EQUATIONS 57

It then follows from minimality of T and injectivity that f is total and single-valued,
using (4.5) with

S := f x: T j: 9!f [x]g :

One clearly has that f is a homomorphismf : (T; �) ! (U;), and one proves by exten-
sionality and minimality that f equals any other such homomorphism.

4.4 Algebras with equations

Some types that have an inductive character, can be seen asF -algebras, but not initial
ones, because they violate the no-confusion condition. These can often be described by
using a subcategory of algebras that satisfy certain equations.

Example 4.5 Considering example3.4, the type of joinlists with its constructors, note
that (JListA; [K 2 ; 3 ; (++)]), is an F -algebra with F:X := 1 + A + X 2. But, as its
constructors are not injective, we see that this algebra is not initial in ALG F .

One can, however, form the subcategory of thoseF -algebras (T; [K e; f; (�)]) that
satisfy the equations

s: T ` e � s = s; s � e = s

s; t; u: T ` (s � t) � u = s � (t � u):

One may check that the algebra of joinlists is initial in this subcategory.
(End of example)

Now, what is the general form of a family of equations? The �rst idea is to view an
equation as a pair of \syntactic" terms with free variables. We shall introduce syntactic
terms in a rather abstract style, that allows for in�nitary terms.

The second, even more abstract, view of equations is that an equation may be any-
thing that establishes in a uniform way, for any algebra of the given signature, a binary
relation on the carrier of the algebra. This idea gives rise to the notion of semantic
equations.

We took the distinction between syntactic and semantic equations from Manes [54].
Fokkinga [30, chapter 5] introduced \transformers" and \laws" to describe equations;
these are in fact a slight generalization of Manes' semantic operations and equations.

4.4.1 Syntactic terms. Let � = (N; M ; F; G) be a signature, soC = Type N ; we
can give an inductive de�nition of the sets of terms for this signature �. First, �x for
each carrier indexi : N the set (type) Vi of (substitutable) variable names for this carrier.
SoV is an object in C. We de�ne the type of syntactic terms over V for carrier i , (T:V) i ,
as follows:

1. The sets of variable names are embedded in the sets of terms through� V : V ! T:V
in TYPE N

2. For each operation indexj : M , there is a syntactic operation� V j building composite
terms, so that � V : F T:V ! GT:V in TYPE M

58 CHAPTER 4. CATEGORIES AND ALGEBRA

3. These terms are all distinct and there are no more, i.e., (T:V ; � V ; � V) is an initial
algebra of signature

� 0 := (N; M + N ; hF; K V i ; hG; Ii)

(for simplicity, we identify Type M + N with Type M � Type N as in 2.12.5.)

4. The choice ofT:V is uniform with respect to V , i.e., T: C ! C is a functor and �
and � are natural transformations � : F T :! GT and � : I :! T.

Given any �-algebra (X ; �) and a valuation of the variables v: V ! X in C, one can
interpret terms over V as denoting elements ofX via the catamorphism ([�; v]): T:V !
X . Check that (X ; �; v) is another � 0-algebra!

4.4.2 Syntactic equations. For a syntactic equation over signature � one needs two
terms for one common carrier indexi and over a common set of variablesV : Type N .
We require that each equation has its own set of (relevant) variablesV , in order that a
valuation has to specify values only for relevant variables.

Thus, an equation is an instance of

(V : Type N ; i : N ; s; t: (T:V) i)

where (T:V ; �; �) is the term algebra overV . An algebra (X ; �) satis�es such an equation
i�, for all valuations v: V ! X , the denoted elements are equal:

([�; v]) i :s = ([�; v]) i :t ;

or, put di�erently, i� the relation

f v: V ! X :: ([�; v])2
i :(s; t) g

is contained in the equality relation j= X i j.
In general, one needs a family of equations, (d: D :: (Vd; i d; sd; td)), to delimit the

required subcategory. For the example of joinlists above, taking [K e; f; (�)] := � , the
three equations would be

h (1; e � �: 0; �: 0); (1; �: 0 � e; �: 0); (3; (�: 0 � �: 1) � �: 2; �: 0 � (�: 1 � �: 2)) i :

4.4.3 Semantic equations. In the category of types, a semantic equation should
provide, for any �-algebra �, a relation E �: � � 2. Uniformity requires at least that any
homomorphism f : � ! 	 respects the relation, i.e. f 2 2 E� ! E 	.

In an arbitrary category Cwith binary products, one can represent relationsR: A � B
by subobjects (H ; r): PC(A � B). To avoid products, we will use spans:

(H : C; r : (H; H) ! (A; B) in C2) :

In TYPE , such a span (H ; r) corresponds to the relationf h: H :: (r0:h; r 1:h) g. We have
a preorder � on spans as on subobjects:

(H ; r) � (H 0; r 0) := 9m: H ! H 0 :: r = (m; m) �� r 0

4.4. ALGEBRAS WITH EQUATIONS 59

The identity relation on A: C is represented by the span (A; Id).
Now, we de�ne a semantic equation(or law) E over a signature � = (C; D; F; G) to

be, for any �-algebra (X ; �), a span E(X ; �): X � X which is uniformly de�ned in the
sense that

E(X ; �) = (H:X ; r (X ; �))

for a functor H : C ! C together with two natural transformations r0; r1: HU :! U, where
U: ALG � ! C is the forgetful functor (X ; �) 7! X . That is, one has

r : ((X ; �): ALG � . H:X ! X)2

satisfying the promotion law that, for all �-algebras �, 	,

8f : � ! 	 in ALG � :: r j � �� f = H:f �� r j 	 :

The r j are called semantic operations. Algebra (X ; �) satis�es equation E i� E (X ; �)
is contained in the identity relation, E(X ; �) � (X ; Id), which is equivalent to (4.6):

(H:X ; r (X ; �)) � (X ; Id)

, 9 m: H:X ! X :: r (X ; �) = (m; m) �� Id

, r0(X ; �) = r1(X ; �) (4.6)

One checks easily that our �rst uniformity requirement, that homomorphisms respect
semantic equations, is satis�ed indeed. The set of all algebras that satisfy a law forms a
subcategory,

ALG (�; E) := f �: ALG � j: r0� = r1� g :

Fokkinga [30, chapter 5] calls a natural transformation r : HU :! JU a transformer
of type (F; G) ! (H; J). The current notion of semantic operation (following Manes)
corresponds to transformers of type (F; G) ! (H; I). Transformers can be composed
both horizontally and vertically, which gives rise to algebraic manipulations:

r : (F; G) ! (H; J); r 0: (F; G) ! (J; K) ` r �� r 0 := (� :: r � �� r 0�) : (F; G) ! (H; K)

r : (F; G) ! (H; J); s: (H; J) ! (K; L) ` sr := (� :: s(U:�; r �)) : (F; G) ! (K; L)

We now show that semantic equations really generalize syntactic ones, and moreover,
that a single semantic equation su�ces.

Theorem 4.4 Any family of syntactic equations corresponds to a single semantic equa-
tion, provided the base category has sums and exponents.

Proof. Given a family of syntactic equations (d: D :: (Vd; sd; td)), we have to �nd a law
(H ; r) such that

8(d: D ; v: Vd ! X :: ([�; v]):sd = ([�; v]):td) , r0(X ; �) = r1(X ; �) : (4.7)

That's fairly simple; take

H:X := �(d: D :: X Vd) ;

r (X ; �) := (d; v) 7! (([�; �v]):sd; ([�; �v]):td) ;

then the righthand side of (4.7) unfolds to the lefthand side.

We shall see in section8.3 that for certain signatures, called polynomial, initial
(�; E)-algebras do generally exist.

60 CHAPTER 4. CATEGORIES AND ALGEBRA

4.5 Initial algebras related to well-founded relations

For bijective F -algebras, we will de�ne a predecessor relation that is well-founded just
when the algebra is initial. We cannot do this for algebras with equations, nor does an
arbitrary well-founded relation correspond to some initial algebra.

Let F : TYPE ! TYPE be a functor, extended to subsets, that preserves nonempty
intersections,

9A; X i :A : PT ` F:
\

(i : A :: X i) =
\

(i : A :: F:X i) ;

and (T; �) a bijective F -algebra. We de�ne the set of predecessors ofx: T as the least
set X : � T for which x 2 � [F:X] . So we have a relation onT:

j� xj :=
\

(X : � T j: x 2 � [F:X])

We must check that this set satis�es x 2 � [F:X] itself:

8x: T :: x 2 � [F:j� xj]

, 8 y: F:T :: y 2 F:
T

(X j: �:y 2 � [F:X]) f � is surjective: x = �:y g

, 8 y: F:T :: y 2 F:
T

(X j: y 2 F:X) f � is injectiveg

, 8 y: F:T :: y 2
T

(X : � T ; y 2 F:X :: F:X) f F preserves
T

g

, True

Theorem 4.5 For F; T; �; � as above,T has no junk i� � is well-founded.

Proof.

T has no junk

, 8 S: � T; � 2 F:S ! S :: T � S

, 8 S: � T; 8(x: T; x 2 � [F:S] :: x 2 S) :: T � S

, 8 S: � T; 8(x: T; j� xj � S :: x 2 S) :: T � S f See belowg

, � is well-founded

It remains to prove x 2 � [F:S] , j� xj � S.
) : Immediate, by de�nition of � .
(: When j� xj � S, then � [F:j� xj] � � [F:S]. As x 2 � [F:j� xj], we are done.

(Classically, � being well-founded implies� being surjective, so that requirement could
be dropped.)

If one has an algebra with equations,� is no longer injective so this construction of
� would not make sense. Indeed, take the initial algebra (T; a; b; f) in the category of
algebras

f (T: TYPE ; a; b: T; f : T ! T) j: f:a = f:bg :

Then the set j� f:a j of immediate predecessors off:a would have to bef a g and f bg at
the same time.

4.6. AN ASIDE: MONADS 61

Conversely, not all well-founded relations (�): � T2 correspond to some initial F -
algebra with equations (or without). For, take the type T := f 0; 1g with the ordering
0 � 1. A corresponding algebra should have some operationf : T ! T with f: 0 = 1 .
But then it would also have an element f: 1 with 1 � f: 1 , which T has not.

4.6 An aside: monads

Universal (categorical) algebra usually talks about inductive types in the form of monads,
see Manes [54]. A nice introduction is also given by Lambek and Scott in [46, page 27{
34]. As a side trip in our exposition, we summarize this concept here and establish its
relationship to initial F -algebras.

A monad on a categoryC is a triple (T; �; �) consisting of a functor and two natural
transformations, typed by

T : C ! C

� : IC
:! T

� : TT :! T ;

that satisfy the three equations

T:� �� � = IdT = � T: �� � ; � T: �� � = T:� �� � : (4.8)

If C is TYPE , one may think of T:V as a type of structured values with sub-values
drawn from V. Transformation � creates a value consisting of a single subvalue, and
transformation � merges a structured value with its structured subvalues..

Example 4.6 The monad of lists in the category of types is given byT:X := X � ,
� X :x := hxi , and � being the join function that concatenates a list of lists into a single
list, so �: ha; bi = a ++ b . To get some understanding of the monad equations (4.8), we
apply them to respectively the list hx; yi and the list of lists of lists hha; bi ; hc; dii , and
get:

�: hhxi ; hyii = hx; yi = �: hhx; yii ; �:�: hha; bi ; hc; dii = �: h�: ha; bi ; �: hc; dii :

The following theorem gives a link with initial F -algebras.

Theorem 4.6 1. For any functor F , if (T:V; [� V ; � V]) is a uniformly de�ned initial
(F + K V)-algebra (so that � and � are natural transformations), then de�ne

� V : TT:V ! T:V := ([T:V; [� V ; IdT:V]])

to make a monad(T; �; �).

2. Conversely, any monad(T; �; �) can be made into aT+ K V-algebra(T:V; [� V ; � V]),
but not necessarily into an initial one.

62 CHAPTER 4. CATEGORIES AND ALGEBRA

Proof 1. Check that � V is correctly typed (its domain is an initial F + K(T:V)-alge-
bra, so see that (T:V; [� V ; IdV]) is an algebra of the same signature). As� is clearly
polymorphic, it is a natural transformation by the naturality theorem D.1. Then we
have to check (4.8). By the catamorphism property we have the following.

� T: �� � = F:� �� � (4.9)

� T: �� � = IdT: (4.10)

The equality � T: �� � = IdT: goes

� T: �� �

= � 1 �� [� T:; � T:] �� �

= � 1 �� (F:� + IdT:) �� [�; IdT:] f � is a catamorphismg

= IdT: �� � 1 �� [�; IdT:]

= IdT:

Then to check T:� �� � = IdT:, we use theorem4.1 saying that f = IdT:V i�

(F:f + IdV) �� [�; �] = [�; �] �� f

which is equivalent to
F:f �� � = � �� f ^ � = � �� f :

Instantiating this to f := T:� �� � , we calculate �rst

� �� T:� �� �

= FT:� �� � T: �� � f � is naturalg

= FT:� �� F:� �� � f (4.9)g

= F:(T:� �� �) �� � f functorg

and second

� �� T:� �� �

= � �� � T: �� � f � is naturalg

= � �� IdT: f (4.10)g

= �

Finally we derive � T:V �� � V = T:� V �� � V by proving that both sides are equal to
([T:V; [� V ; � V]]). Note that f = ([T:V; [� V ; � V]]) i�

� T T:V �� f = F:f �� � V ^ � T T:V �� f = � V :

So together we have four proof obligations to check.

� T T: �� � T: �� �

= F:� T: �� � T: �� � f (4.9)g

4.7. ALGEBRAIC SPECIFICATION 63

= F:� T: �� F:� �� � f (4.9)g

= F:(� T: �� �) �� � ;

� T T: �� � T: �� �

= IdT T: �� � f (4.10)g

= � ;

� T T: �� T:� �� �

= FT:� �� � T: �� � f � is naturalg

= FT:� �� F:� �� � f (4.9)g

= F:(T:� �� �) �� � ;

� T T: �� T:� �� �

= � �� � T: �� � f � is naturalg

= � �� IdT: f (4.10)g

= �

2. It is obviously a T + K V-algebra. It need not be initial, as shown by the following
counterexample. Let C := TYPE , T := K 1, let � and � be the unique transformations
to K 1, and V := 1. The carrier of the initial T + K V-algebra is then 2, not 1.

4.7 Algebraic Speci�cation

Let us make a few remarks about the relation between the approach sketched here and
the tradition of Algebraic Speci�cation (A.S.) as reviewed by Wirsing [87].

A.S. uses a notion of signature that is more restrictive than our categorical formula-
tion, in that the argument and result types of operations must be sorts from the algebra
itself. Such an algebra is calledplain in 5.2.2. Furthermore, the sets of sorts, operations,
and arguments of each operation are often required to be �nite. Thus, a signature �
consists of �nite numbers or name setsn; m for the sorts and operations, and arities
(dj ; cj): n� � n specifying the domain and codomain of the operation named byj :

� = (n; m: IN; d: (n�)m ; c: nm)

The algebras of signature � are given by:

(T: Type n ; � j :m : �(k: # dj :: T(djk)) ! T(cj))

A data type speci�cation is given in both approaches by means of a signature with
axioms. A.S. is more liberal in that the axioms may contain inequations, conditional
equations, or even unrestricted axioms in �rst order logic. The main di�erence lies in
the interpretation and derivational use of such a speci�cation.

In our approach, we de�ne the data type explicitly to be an initial algebra of the
given signature, which needs to contain only the basic constructors and if necessary
additional equations. The signature should be of a form that guarantees existence of

64 CHAPTER 4. CATEGORIES AND ALGEBRA

such an algebra. We use full logic, even higher order if needed, to exploit initiality in
de�ning derived functions and in deriving theorems. The logic may be restricted for
speci�c purposes.

In A.S., one should distinguish between the formal application and the semantic
interpretation of a speci�cation. Formal derivations may only use the speci�ed axioms,
so that derived theorems hold for all algebras of the given signature. As a consequence,
the signature must contain additional operations and axioms describing their behavior.
A speci�cation of lists for example must either contain operations yielding the head,
tail, and length of a list, or a recursion operator. There is no formal guarantee that the
signature axioms are consistent. The logic is often quite restricted, for example purely
equational, allowing only �nitary operations, and not containing function types.

One can prove consistency by meta-reasoning on the semantic level, where one dis-
tinguishes initial and terminal interpretations. For example, one can point out some of
the operations as being constructors, prove that the sub-signature of these constructors
has an initial model, and prove that this model has indeed operations that satisfy the
remaining axioms. For terminal interpretations, see section7.5.

A.S. has the advantage of admitting several alternative semantic concepts, like partial
or continuous algebras. A simple logic is of course simpler to implement, to master, and
to analyze.

4.8 Concluding remarks

Now that we have the basic categories of algebras, the stage is set for discussing the
various forms that inductive and recursive de�nitions may take. The next chapter studies
forms of inductive type de�nitions themselves, the subsequent one recursive function
de�nitions over inductive types. The dual forms follow in chapter 7.

65

Chapter 5

Specifying inductive types

In the previous chapter, we introduced the notion of initial algebra. By viewing inductive
types as initial algebras, we can de�ne them up to isomorphism by giving the appropriate
signature. However, not all algebra signatures have initial algebras. In this chapter we
seek schemes for signatures that do have initial algebras, such that concrete inductive
type de�nitions �t into the scheme.

We discuss only the abstract form that such schemes may take, not the concrete
syntax that has to be de�ned in order to write signatures in a concrete language. We
start with single inductive types, where an admissible functorF is speci�ed by means of
a family of sets. The generalization to mutually inductive types in section 5.2 diverges
into several alternatives. In section5.3 we have a look at producing admissible functors
through inductive rules themselves. The use of positive type expressions may be seen as
a special case of this.

The name T̀ype ' as we use it stands for any universeType i from the hierarchy.
But it is relevant that inductive types in one universe Type i are understood to be initial
algebras in all higher universes too, in order that one can use recursion to de�ne other
types.

5.1 Single inductive types

Suppose we want to introduce a single inductive type,T: Type . In sections 4.3 and
4.4 we have seen how giving a signature consisting of a collection of constructors and
equational axioms su�ces to describeT. We discuss two ways to abstractly specify this
collection.

We postpone the introduction of equations. So, in this section, we stipulate that
objects built either by di�erent constructors, or by one constructor from di�erent argu-
ments, are always di�erent.

5.1.1 Operator domains

The most common approach in classical set theory (see for example Manes [54]) of giving
a general scheme for initial algebras, is to identify for each constructor� its arity as a

66 CHAPTER 5. SPECIFYING INDUCTIVE TYPES

cardinal number p: Card so that � : Tp ! T . Note that a constructor with arguments of
other types, say� : A � Tp ! T , can be regarded as a family of constructors� a:A : Tp ! T .

Subsequently, all constructors with equal arity p have to be collected in a single
family � p indexed by a set
 p, so we get the typing

� p: (Tp ! T)
 p

or equivalently
� p:
 p � Tp ! T :

Thus, the family of sets

: SetCard

determines the number and arity of all constructors. It is called an operator domain.
The pair (T; �) forms an F -algebra where:

F:X := �(p: Card ::
 p � Tp)

Unfortunately, taking a functor of this form does not guarantee that an initial F -
algebra exists in SET . We shall see that it does exist when
 is bounded, i.e.
 n

is empty for all n above some cardinalm. Also, when
 0 is empty, then the empty
algebra, consisting ofT := ; , � 0 the empty tuple, and all other � p being tuples of
(empty) functions t 7! t0, is trivially initial. But:

Theorem 5.1 When
 is not bounded and
 0 is nonempty, then
 does not have an
initial algebra in SET .

Proof. Suppose (T; �) were initial; we shall de�ne (with choice) an injection f : Set ! T
by means of set-recursion (recursion over the wellfounded relation2, (A.7)).
For any set s, let p be its cardinality and choose a surjection� s: p ! s. Let q be the
least cardinal q � p such that
 q is nonempty, and choosees:
 q. Then de�ne

f:s := � qes:t wheret r :<q :=
�

f: (� s:r) if 0 � r < p
f: (� s:0) if p � r < q

Note that in the second case,� s:0 is de�ned because ifq > p then
 p is empty sop > 0.
One checks easily thatf:s = f:s 0 implies s = s0. But such an injection cannot exist.

Objections against the use of operator domains in type theory are the following:

� As we just showed, extra conditions are needed to guarantee existence of an initial
algebra with operator domain
.

� It may be unnatural or in constructive logic impossible to identify the arity as a
cardinal number. To overcome this, one can use types rather than cardinals, so
that
: Type Type .

� It may be unnatural to group constructors according to their arity. For example,
an algebra may contain a family of constructors� n:! : Tn ! T which one would
prefer to keep apart from other constructors for type T.

5.1. SINGLE INDUCTIVE TYPES 67

5.1.2 Operators with arity

An approach better �tted to type theory is to specify the arity of each constructor � j as
a type. This is really the algebraic speci�cation approach, but with �nite sets replaced
by possibly in�nite types. The general form is:

� a:A : TBa ! T (5.1)

So, the signature is characterized by the typeA, the index domain of the constructors,
and the tuple of types B , Ba being the index domain of the constructor with index
a: A. We call the pair (A; B): FamType an operator speci�cation, and the corresponding
signature is (1; A; (X 7! (a :: X Ba)) ; (X 7! (a :: X))).

If we have an inductive type characterized by a list of constructors with arguments
of other types as well, we can transform these into the form of (5.1) as follows. First,
write the constructor types as:

� j :M : �(x: A0
j :: TB 0jx) ! T (5.2)

Next, the index j can be eliminated by transforming � into (5.1) where we substitute

A: Type := �(M ; A0)

B (j ; x) := B 0
j x

� (j ;x) := t 7! � j :(x; (y :: t(j ; y)))

The types of � in (5.2) and in (5.1) are isomorphic:

�(j : M :: �(x: A0
j :: TB 0jx) ! T) �= �(j : M :: �(x: A0

j :: TB 0jx ! T))

�= �((j ; x): �(M ; A0) :: TB 0jx ! T)

Example 5.1 In example 3.1 (natural numbers), we had two constructors, namely
\zero" with 0 arguments, and \successor" with 1 argument. That is, � 0: T0 ! T and
� 1: T1 ! T , which results in the operator speci�cation (A := 2; B := (0 ; 1)).

For example 3.2 (lists over E), we have originally

� 0: 1 ! T

� 1: E � T ! T

which is �rst transformed into

� 0: �(0: 1 :: T0) ! T

� 1: �(e: E :: T1) ! T

and next into (5.1) where A := 1 + E and B := ((0; 0) :: 0 j (1; e) :: 1). We might use a
labeled sum forA, for example:

A ::= empty j cons(E) ; B := (empty :: 0 j cons(e) :: 1)

(End of example)

68 CHAPTER 5. SPECIFYING INDUCTIVE TYPES

As a third step, one can replace the constructor family� by a single constructor,

� : �(x: A :: TBx) ! T : (5.3)

Note that we can de�ne a functor F : TYPE ! TYPE by:

F:(U: Type) := �(x: A :: UBx) ;

F:(f : U ! V) := (x; t) 7! (x; (y :: f:t y)) :

We will call a functor polynomial i� it is (naturally) isomorphic with a functor of this
form, as it is a sum of products. It is well known that for polynomial F , an initial
F -algebra does always exist, and we will name it�F . Two di�erent constructions of �F
are given in chapter 8. A �nal F -coalgebra exists too and is named�F .

The type inductively de�ned by F is the carrier of the algebra�F , which is called�F
too. This type is a �xed point of functor F , modulo isomorphism. Not all functors do
have �xed points; for example the powerset functor (with P:f := X 7! f x: 2 X :: f:x g)
cannot have one for cardinality reasons. But most type-construction principles, such as
generalized sum and product, and taking �xed points itself, transform polynomial func-
tors into polynomial functors. This is exploited in the next subsection. Also, for many
theoretical purposes, it's simpler to deal with a functor than with A and B explicitly.

An operator speci�cation that corresponds to an operator domain
 is

(A := �(Card ;
); B (n;a):A := n) :

Note that �(Card ;
) is a set indeed if and only if
 is bounded.
Conversely, given an operator speci�cation (A; B), a corresponding operator domain

is

 p := f a: A j: Ba

�= pg :

This assumes that every type is isomorphic to some cardinalp, which requires the axiom
of choice.

5.1.3 The wellordering of a single inductive type

The inductive type T characterized by operator speci�cation (A; B) is wellordered by
the subterm relation j< j := j�j (+) , where � is the immediate subterm relation:

j�j := f x: A; t: TBx ; y: Bx :: (ty ; �: (x; t)) g : (5.4)

Type T is actually Martin-L•of's so-called wellordering type W(A; B) described in [56]
where the constructor is called sup after supremum as, for a: A and t: W(A; B)Ba ,
sup(a; t): W(A; B) is the supremum of the family (y: Ba :: ty) with respect to < .

5.2 Mutually inductive types

By mutually inductive types we mean a family of typesTi :N for some index domainN ,
that are inductively generated by constructors � whose arguments may come from any

5.2. MUTUALLY INDUCTIVE TYPES 69

Ti from the family. The cardinality of N is normally greater than 1. Algebra (T; �) can
again be viewed as an initial (N; M ; F; G)-algebra.

A well-founded relation over a family of types is simply a well-founded relation over
the sum type of the family, �(N ; T). Specifying a family of N types by simultaneous
induction is somewhat more complicated. We give two alternatives for the abstract
speci�cation of mutually inductive types. The �rst is the generalization of the polynomial
functor approach of 5.1.2 to exponential categories, but the required generalization of
\polynomial" is not evident. The second alternative is the abstract rendering of plain
(multi-sorted) algebra signatures, mentioned in4.7.

5.2.1 Using an exponential category

We may use an endo-functor on the exponential categoryTYPE N , i.e. F : TYPE N !
TYPE N , that is polynomial as de�ned below. Then the tuple of mutually inductive
types and their constructors appears as an initial algebra�F = (T: Type N ; � : F:T ! T).
As arrows in an exponential category are tuples of arrows in the component categories,
� consists of functions� i : (F:T) i ! Ti for each i : N .

We give two ways to characterize such polynomial functorsF on TYPE N . In both
ways, a type A i indexes the constructors for typeTi .

The �rst way, perhaps the most straightforward one, lets type B ((i ; a); j) (also writ-
ten Biaj) index the arguments of type Tj that the constructor for type Ti indexed by
a: A i shall get. Thus, for some

A: Type N ; B : Type �(N ;A)� N ;

we let the constructors be typed by

� i :N ;a:A i : �(j : N :: TBiaj
j) ! Ti : (5.5)

Equivalently, � : F:T ! T where F is given by

(F:X) i := �(a: A i :: �(j : N :: X Biaj
j)) :

With the second way, B i a: Type indexes all arguments that the constructor � ia shall
get, and si(a; k): N (or siak) indicates what the type of the argument indexed by k: B i a
must be. Thus, for some

A: Type N ; B : �(i : N :: Type Ai); s: �(i : N :: N �(Ai ;Bi)) ;

we let the constructors be typed by

� i :N ;a:Ai : �(k: B i a :: T(siak)) ! Ti : (5.6)

Equivalently, � : F:T ! T where F is given by

(F:X) i := �(a: A i :: �(k: B i x :: X (siak))) :

This is the approach proposed by Petersson [72, section 4]. An advantage over the plain
algebra approach below is that one gets a simpler case-distinction construct when no
recursion is needed.

A context-free grammar corresponds to an algebra speci�cation of form (5.6), where
all A i and B i a are �nite:

70 CHAPTER 5. SPECIFYING INDUCTIVE TYPES

Example 5.2 The rose trees and forests of example3.5 can be described by a context-
free grammar, given a nonterminalE:

RTree ::= E
p

Forest

Forest ::= 2 j RTree +< Forest

This corresponds to an algebra (5.6), where

N := 2;

A := (E; 2);

B := ((e :: 1); (0; 2));

s := (((e; 0) :: 1); ((1; 0) :: 0 j (1; 1) :: 1))

Theorem 5.2 Both characterizations (5.5) and (5.6) are reducible to each other, pro-
vided one has equality types.

Proof. (5:6)) (5:5): We can �nd an initial solution to (5.5) for some given (A; B) by
�nding an initial solution to (5.6) with

B i a := �(j : N :: Biaj); sia(j ; k) := j ;

and then taking � ia := p 7! � ia :((j ; k) :: pjk).

(5:5)) (5:6): Using equality, apply (5.5) with Biaj := f k: B i a j: siaj = kg.

5.2.2 Plain algebra signatures

The choice above, that� be an arrow in the categoryTYPE N , implied that each type
Ti had its own (family of) constructor(s). Alternatively, one can give a single family of
constructors and indicate for each one its codomain. This makes us return to the notion
of plain algebra as we used in connection with Algebraic Speci�cation in section4.7,
but here in�nite families of constructors and arguments are allowed, rather than �nite
sequences. So given

M : Type ; B : Type M ; d: N �(M ;B) ; c: N M ;

let � be typed by
� j :M : �(k: B j :: T(djk)) ! T(cj) : (5.7)

So (T; �) is not an F -algebra, but it is an initial (N; M ; F; G)-algebra where

(F:X) j := �(k: B j :: X (djk))

(G:X) j := X (cj)

Theorem 5.3 Formulations (5.6) and (5.7) reduce to each other, provided one has
equality types.

5.3. PRODUCTION RULES FOR POLYNOMIAL FUNCTORS 71

Proof. (5:7)) (5:6): Apply (5.7) with M := �(N ; A); B := B ; d(i ; a)k := siak ;
c(i ; a) := i .

(5:6)) (5:7): Here one needs equality. Apply (5.6) with A i := f j : M j: cm = N i g;
Bij := B j ; dijk := djk .

This formulation is particularly suited to build types of proof trees for inductively
de�ned relations:

Example 5.3 The type P(n; m) of proof trees for n < m as de�ned in example 3.7,
together with appropriate constructors, is initial in the category of algebras

(P: Type IN 2
; � (0;n) : 1 ! P(n; sn); � (1; n;m) : P(n; m) ! P(n; sm)) :

So here we have (5.7) with:

N := IN 2

M := IN + IN 2

B := (0; n) :: 0 j (1; n; m) :: 1

d := (1; n; m; 0) :: (n; m)

c := (0; n) :: (n; sn) j (1; n; m) :: (n; sm) :

(End of example)

This example gives us an alternative way to de�ne (<): �rst de�ne (P; �) to be an initial
algebra in the above category, and then de�nen < m to hold i� P(n; m) is nonempty. If
one's calculus has inductive type de�nitions as a primitive, then this avoids the second
order quanti�cation occurring in example 3.7. Or, inductive relation de�nitions can be
allowed as primitive themselves by stating that the category of predicatesT: PROP N

with constructors typed by (5.7) has an initial object.
A drawback of this plain algebra approach is that it seems less suited for dualization;

see paragraph7.1.2.

5.3 Production rules for polynomial functors

Instead of requiring that the typings of operations have exactly a polynomial form like
(5.1) or (5.3), the class of polynomial type expressions may be de�ned by production
rules. This is based on the fact that the class of polynomial functors contains projections
and constant functors, and is closed under taking sums, products and inductive types.

Let PF(N; M): � (TYPE N ! TYPE M) be the subtype of polynomial functors as
de�ned in subsection 5.2.1 and closed under isomorphism;PF(N) is PF(N; 1); note that
PF(N; M) �= PF(N)M . We state the following fact:

Theorem 5.4 Type PF(N) is closed under the following rules:

i : N ` (X 7! X i) 2 PF(N) (5.8)

T: Type ` (X 7! T) 2 PF(N) (5.9)

F : Fam PF(N) ` � F 2 PF(N); � F 2 PF(N) (5.10)

F : PF(N + M; M) ` (X 7! � (Y : Type M 7! F:(X; Y))) 2 PF(N; M); (5.11)

(X 7! � (Y : Type M 7! F:(X; Y))) 2 PF(N; M) (5.12)

72 CHAPTER 5. SPECIFYING INDUCTIVE TYPES

where � F abbreviates the sum functor (X 7! �(i : DomF :: Fi :X)) , and similarly for
� F .

To understand (5.11), let F : PF(M + N; M), and note that for X : Type N we have
that (Y 7! F:(X; Y)) is an endofunctor in TYPE M indeed, so� (Y 7! F:(X; Y)) is an
M -tuple of types. We write this tuple as �F:X . To see that �F : Type N ! Type M is
a functor, let g: X ! X 0 be an arrow in TYPE N ; we have to �nd an arrow �F:g . We
take

�F:g : �F:X ! �F:X 0 := ([�F:X 0; �])

where

� : F:(X; �F:X 0) ! �F:X 0 := F:(g;I) �� � :

Proving that each (�F:X) j , for j : M , is polynomial in X is quite complicated; we do not
try it here.

5.3.1 Positive type expressions

One possibility for employing the above observation in a language design is to syntacti-
cally distinguish polynomial functors as type expressionsEX that are (strictly) positive
in X . We say that a type expression is positive inX i� all free occurrences of type
variables X are positive, i.e. not within the domain of any product or function type, nor
in the parameter or argument of any user-de�ned operation.

This is done for example in Nuprl [18], where one can form the inductive type� (X 7!
EX), and in Paulin-Mohring's extension [22, 68] of CC, where one can form the inductive
type that is closed under a �nite number of constructors with positive argument types.

A drawback is that in building EX from X , one can neither apply user-de�ned type
constructors (as we did in our example3.5, where a user-de�ned type of lists was applied
in de�ning the type of rose trees), nor apply other constants or variables toX . (Normally
one can replace the constant with its de�nition.)

5.3.2 A type of polynomial functors

As an alternative, one might include the class of polynomial functors as a primitive type
itself, say PF(N; M), which is closed under composition and the operations listed in
theorem 5.4. This would allow user de�nitions of polynomial functors, and polymorphic
operations to be instantiated to polynomial functors. One has to �nd easy notations,
for example noting the projection functor (X 7! X i) by the name of parameter i .

5.4 Adding equations

To any of the three approaches above, one can add syntactic or semantic equations as
in section 4.4. Semantic equations can be used if one's language admits such a semantic
approach, otherwise one can develop concrete syntax for syntactic terms and equations.

5.5. CONCLUSION 73

5.5 Conclusion

We characterized the signatures that may be admitted for de�ning inductive types, in
the following ways.

1. Using a bounded operator domain{this approach does not �t very well to type
theory

2. Giving an arity for each constructor, by which means one de�nes a polynomial
functor

3. For mutually inductive types, generalizing the notion of polynomial functor to an
exponential category in either of two ways

4. Using generalized plain algebra signatures, which leaves a bit more freedom for the
type de�nition

5. Using polynomial functors characterized by production rules, or by syntactic con-
ditions on type expressions

74

Chapter 6

Recursors in constructive type
theories

In this chapter we present several styles of introducing recursive functions on an inductive
type. The inductive type may be characterized in two ways:

1. as a well-founded relation (�): � T2, for which we have recursion principle (3.11):

U: Type
s(x: T; h: U j� x j): U

9!f : UT :: 8x: T :: fx = s(x; f)

2. or as an initial F -algebra (T; �) (section 4.3), for which we have

U: C
 : F:U ! U

([U;]): !f f : T ! U j: f � � = � F:f g
: (6.1)

This is sometimes called the iteration principle, and ([U;]), or ([]), is called a
catamorphism [57]. If C is TYPE , we have a well-founded predecessor relation�
as given in section4.5.

We shall �rst derive the recursion principle for initial F -algebras, then we derive in
6.2 the construction of dependent functions using either kind of inductive type charac-
terization. In 6.3 we consider Mendler's style of recursion which comes closer in form to
the unrestricted form of recursive equation, f (�:y) = E f;y . Finally we shall see in6.4
how each style of recursion generalizes to mutual recursion, and how an alternative form
of mutual recursion may be useful.

6.1 Algebraic recursion, or paramorphisms

The function : F:U ! U in (6.1) that determines the value ([]):x of a catamorphism
cannot use the predecessorsy: � x directly but only the values ([]):y. To overcome this,
the following recursion principle is derived, which corresponds more closely to (3.11).
We formulate name it in the style of Meertens [58].

6.1. ALGEBRAIC RECURSION, OR PARAMORPHISMS 75

Theorem 6.1 (Paramorphisms) An F -algebra(T; �) in a category with binary prod-
ucts is initial i� one has

U: C
 : F:(T � U) ! U

9!f : T ! U :: f � � = � F:hId; f i
(6.2)

The function f produced by this rule is called aparamorphism, and is noted [[]].

Proof.) :

f � � = � F:hId; f i

, h Id; f i � � = h� � F:� 0; i � F:hId; f i f functor propertiesg

, h Id; f i = ([T � U; �]) f (6.1), de�ning � := h� � F:� 0; ig

, f = � 1 � ([�]) f as Id = � 0 � ([�])g

So we have:
[[]] := � 1 � ([�]) where� := h� � F:� 0; i : (6.3)

(: Assume (6.2), and : F:U ! U. We seek to �nd a unique homomorphism:

f � � = � F:f

, f � � = � F:(� 1 � hId; f i) f productsg

, f � � = (� F:� 1) � F:hId; f i f functorg

, f = [[� F:� 1]] f (6.2) g

See section7.1 for dual catamorphisms calledanamorphisms. Malcolm [52] and Fokkinga
[30] give these and some more schemes of recursive functions with names likezygomor-
phisms, mutumorphisms, prepromorphisms, and postpromorphisms.

Example 6.1 For natural numbers, with F:X := 1 + X and [K 0; � s] = � , one can get
the usual recursorRU : U ! (IN ! U ! U) ! IN ! U of typed lambda calculus, that
satis�es

RU ag0 = a RU ag(sn) = gn(RU agn) ;

by taking for RU ag the paramorphism [[]] where

 := [K a; ((n; u) 7! gnu)] : 1 + T � U ! U :

(End of example)

It should be noted that, though [[]] as de�ned by (6.3) satis�es the equation given
by (6.2), the reduction rule that we actually get is somewhat di�erent:

[[]] � � = > � 1 � ([�]) � � = > � 1 � � � F:([�]) = > � F:([�])

76 CHAPTER 6. RECURSORS IN CONSTRUCTIVE TYPE THEORIES

6.2 Recursive dependent functions

We now specialize to the category of types. Usage of dependent types allows the trans-
�nite induction principle (3.6) and trans�nite recursion (theorem 3.7) for well-founded
relations to be uni�ed into a single dependent recursion principle. We have two similar
principles for initial F -algebras, described in6.2.2 and 6.2.3. In all cases, the principle
does not need to state that the constructed functionf is unique, for this is derivable by
an auxiliary application of the very same principle!

6.2.1 Dependent recursion over a well-founded relation.

Theorem 6.2 A relation (�): � T2 on a type T is well-founded i� one has:

U: Type T ;
s(x: T; h: (z: � x . Uz)): Ux

9f : �(T ; U) :: 8x: T :: fx = s(x; f j � x)
(6.4)

Proof.) : This runs parallel to theorem 3.7. First we inductively de�ne a subset
R: � �(T ; U) by

8x: T; h: (z: � x . Uz) :: 8(z: � x :: (z; hz) 2 R)) (x; s(x; h)) 2 R :

Then one proves by trans�nite induction (3.6) that R is single-valued in the sense that

8x: T :: 9!u: Ux :: (x; u) 2 R ;

which proof we skip here. Letting p be the corresponding proof term, we can take
fx := �(px) .

(: Rule (6.4) subsumes (3.6) by taking Ux := Px. Note also that it subsumes
theorem 3.7 by substituting Ux := U.

6.2.2 Dependent recursion on an initial F -algebra. To formulate a rule for de-
pendent recursion on an initial F -algebra, one has to �nd a way to encode the hypothesis
of the induction step. This hypothesis should contain, for somey: F:T , for each prede-
cessorz: T of �:y the function value fz : Uz. One possibility is to replace each predecessor
z by the pair (z; fz): �(T ; U), so the hypothesis becomes

h: F:�(T ; U) :

A second possibility, which we shall consider in6.2.3, is to add to y the tuple of all these
function values fz . Pursuing the �rst possibility, we get the following.

Theorem 6.3 An F -algebra (T; �) in the category of types is initial i� the following
rule holds.

U: Type T ;
s(h: F:�(T ; U)): U(�: (F:� fst:h))

9f : �(T ; U) :: 8y: F:T :: f (�:y) = s(F:(z 7! (z; fz)) :y)
(6.5)

6.2. RECURSIVE DEPENDENT FUNCTIONS 77

Proof.) : assume that (T; �) is initial, and that the rule premises hold. To get the
dependent function f , we seek somef 0: T ! �(T ; U) with fst(f 0:x) = x, so that we can
take fx := snd(f 0:x) . We derive f 0 from the speci�cation of f as follows.

� fst � f 0 = I ^ 8 (y :: snd(f 0:(�:y)) = s(F:f 0:y))

, � fst � f 0� � = � � F:(� fst � f 0) ^ 8 (y :: snd(f 0:(�:y)) = s(F:f 0:y)) f th. 4.1g

, 8 y :: f 0:(�:y) = (�: (F:� fst:(F:f 0:y)); s(F:f 0:y))

, f 0� � = (h 7! (�: (F:� fst:h); s(h))) � F:f 0

, f 0 = ([h 7! (�: (F:� fst:h); s(h))]) f catamorphismg

(This proves also that f 0, and hencef , is unique.)

(: assuming (6.5), we prove that (T; �) is initial by deriving the paramorphism
rule (6.2). Given some U: Type and : F:(T � U) ! U, apply (6.5) to Ux := U;
s(h) := : (F:((z; u) 7! (z; u)) :h) . Say this yields f 0: �(T ; U), then take f:x := f 0x,
which clearly satis�es the requirement f � � = � F:hI; f i .

It remains to check that this f is unique. So, assuming that someg: T ! U satis�es
g � � = � F:hI; gi too, we prove that f and g are equal:

f = g

, 8 x: T :: f:x = g:x

, 9 �(T; U0) whereU0x := (f:x = g:x)

(9 �(h: F:�(T ; U0) :: U0(�: (F:� fst:h)) f (6.5)g

(8 h: F:�(T ; U0) :: f: (�: (F:� fst:h)) = g:(�: (F:� fst:h))

, � F:(hI; f i � � fst) = � F:(hI; gi � � fst) : F:�(T ; U0) ! T f property f and gg

(h I; f i � � fst = hI; gi � � fst : �(T ; U0) ! T

, 8 x: T; f:x = g:x :: (x; f:x) = (x; g:x)

, True

As the f : �(T ; U) in (6.5) is unique, we can give it a name:� rec(U; s). We remark that
the proof for the (̀ '-part in theorem 6.3 contains two abstract applications of (6.5), one
to construct a paramorphism and one to prove that it is unique.

Most typical examples of dependent recursion arise from inductive proofs: given
a property P: Prop T and an inductive proof of 8x :: Px, the proof object (or tree)
corresponding to this proof is given by a dependent recursion. A simple concrete example
is the following.

Example 6.2 Consider the natural numbers as an initial (K 1+ I)-algebra, (IN; [K 0; � s]).
We construct, for any n: IN, the function f n : IN2 ! INn that transforms (a; b) into the
n-tuple (a; a � b; : : : ; a� bn� 1). The recursion equations are

f 0 = (a; b) 7! ()

f sn = (a; b) 7! (a; f n :(a � b; b))

78 CHAPTER 6. RECURSORS IN CONSTRUCTIVE TYPE THEORIES

Now, equation (6.5) says that for any s of appropriate type, there exists anf such that
f 0 = s(0; 0), f sn = s(1; n; f n). So we just have to take

Un := IN n

s(0; 0) := (a; b) 7! ()

s(1; n; f 0) := (a; b) 7! (a; f 0:(a � b; b))

and obtain an f := � rec(U; s) that satis�es our recursion equations.

6.2.3 Dependent recursion in Paulin style. The second possibility is to keep
y: F:T separate from the tuple of valuesfz . This is done in most languages with depen-
dent recursion, where the inductive type is usually de�ned by a �nite set of production
rules. A formulation based on a functor F seems only possible for polynomialF , and
requires us to extendF to operate on families of types and on dependent functions. This
was done by Coquand and Paulin in [22], as follows.

Let F:X = �(a: A :: X Ba). We extend F to operate on familiesU: Type T and on
dependent functionsf : �(T ; U), in such a way that:

U: Type T

F 0:U: Type F:T

f : �(T ; U)

F:f : �(F:T ; F 0:U)

For y: F:T , (F:f)y has to be the tuple of function valuesfz for all components z: T of
y, and (F 0:U)y is the type of this tuple. Thus:

(F 0:U)(a; t) := �(y: Ba :: U(ty))

(F:f)(a; t) := (y :: f (ty))

You may note that F:�(T ; U) �= �(F:T ; F 0:U) . Now, the rule becomes (we leave the
proof to the reader):

U: Type T

s(y: F:T ; h: (F 0:U)y): U(�:y)

9f : �(T ; U) :: 8y: F:T :: f (�:y) = s(y; (F:f)y)
(6.6)

6.3 Mendler’s approach

Mendler [59] introduces a somewhat di�erent style of recursion over an initial F -alge-
bra �F . The idea is here that in order to de�ne a (dependent) function f : �(�F ; U),
one may assume that the function is already available on some subsetX : � �F while
de�ning it on F:X . This gives a recursive equation forf that is simpler than the one
appearing in (6.5). Mendler's thesis [59] uses a distinguished inclusion relation on types
that is de�ned by separate production rules, and which we note (� m): � Type 2. The
rule looks like:

U: Type T ;
X : Type ; X � m T; h: �(X ; U) ` s(h): �(y: F:X :: U(�:y))

9f : �(T ; U) :: 8y: F:T :: f (�:y) = sfy
(6.7)

6.3. MENDLER'S APPROACH 79

Note that, as in (6.4) and (6.5), rule (6.7) does not need to state that the constructedf
is unique, for this can be derived by employing the dependency in the type ofU, again
taking U0x := (f:x = g:x) .

Example 6.3 Rule (6.7) yields the recursion equations of example6.2 when we de�ne
s simply by:

sf (0; 0) := (a; b) 7! ()

sf (1; n) := (a; b) 7! (a; f (n):(a � b; b))

(End of example)

Derivation of (6.7) requires a semantical analysis of the predicate� m, which we will
not do here. But in his paper [60] Mendler replaced the inclusion relationX � m T by
an explicit function i : X ! T, and used only non-dependent functions. Correctness of
this principle requires that the polymorphic dependency onX , h, and i be uniform in
a certain way. This is covered by thenaturality principle, described in appendixD for
languages without dependent types. The resulting rule holds in any categoryC with
binary products. Thus we get:

U: C;
X : C; i : X ! T; h: X ! U ` sX (i; h): F:X ! U
where s is natural

9!f : T ! U :: f � � = sT (Id; f)
(6.8)

where s̀ is natural' means that, for all p: X ! X 0; i 0: X 0 ! T ; h0: X 0 ! U, one has

sX (i 0� p; h0� p) = sX 0(i 0; h0) � F:p :

As indicated in appendix D, any lambda-de�nable s is natural. Therefore, this require-
ment can be omitted in calculi where one has only lambda-de�nable objects.

Example 6.4 We construct a non-dependent variant of the function of example6.2,
namely f : IN ! IN2 ! ClistIN satisfying

f: 0 = (a; b) 7! 2

f: sn = (a; b) 7! a +< f: (a � b; b)

This function is produced by (6.8) when we take for s:

sX (i; h):(0; 0) := (a; b) 7! 2

sX (i; h):(1; x) := (a; b) 7! a +< h: (a � b; b)

Theorem 6.4 An F -algebra (T; �) in any category with binary products is initial i� it
satis�es (6.8).

80 CHAPTER 6. RECURSORS IN CONSTRUCTIVE TYPE THEORIES

Proof.) : Let (T; �) be initial, and assume ans that satis�es the premises of (6.8).
We calculate the unique solution for f by showing that hId; f i is a homomorphism, as
follows.

f � � = sT (Id; f)

, f � � = sT (� 0 � hId; f i ; � 1 � hId; f i) f productsg

, f � � = sT � U (� 0; � 1) � F:hId; f i f s is naturalg

, h �; f � � i = h�; s (� 0; � 1) � F:hId; f ii f productsg

, h Id; f i � � = h� � F:� 0; s(� 0; � 1)i � F:hId; f i f products, F a functorg

, h Id; f i = ([T � U; h� � F:� 0; s(� 0; � 1)i]) f initiality g

, f = � 1 � ([T � U; h� � F:� 0; s(� 0; � 1)i]) f fact belowg

Writing � := h� � F:� 0; s(� 0; � 1)i , we used the fact:

Id = � 0 � ([�])

, � 0 � ([�]) � � = � � F:(� 0 � ([�])) f theorem 4.1g

, � 0 � � � F:([�]) = � � F:(� 0 � ([�])) f catamorphismg

, � � F:� 0 � F:([�]) = � � F:(� 0 � ([�])) f de�nition � g

, True f F a functorg

(: Simple; given � : F:U ! U, apply (6.8) to sX (i; h) := � � F:h which is obviously
natural.

As with paramorphisms, the actual reduction rule that we get when f is de�ned as
� 1 � ([�]) is not f � � = > s (Id; f), but rather:

f � � = > s (� 0; � 1) � F:([�]) :

A Mendler rule for dependent functions that uses an explicit inclusion function can
be given, but it appears to be too complicated to be practical:

U: Type T ;
X : Type ; i : X ! T; h: �(x: X :: U(i:x)) ` sX (i; h): �(y: F:X :: U(�: (F:i:y)))
where s is natural

9f : �(T ; U) :: 8y: F:T :: f (�:y) = sT (I; f)y
(6.9)

It is probably not possible to derive rule (6.7) directly, because of the special role
of the inclusion relation. Rather, one would have to prove that any construction made
under an inclusion assumptionX � m T can be transformed into one using a function
i : X ! T. We will not try to do so.

Parameter h in premises in rules (6.7) and (6.8) gives access to the function value on
immediate predecessorsx: X of the function argument �:y . Either rule can be strength-
ened to allow access to the function value on non-immediate predecessors. For (6.7), this

6.4. RECURSORS FOR MUTUAL INDUCTION AND RECURSION 81

is done by adding a hypothesisX � m F:X , for (6.8) by adding a parameterd: X ! F:X .
Assuming that � [: T ! F:T is available, the latter rule becomes:

U: C;
X : C; i : X ! T; d: X ! F:X ; h: X ! U ` sX (i; d; h): F:X ! U
where s is natural

9!f : T ! U :: f � � = sT (Id; � [; f)
(6.10)

To derive this rule, one has to instantiate X not to T � U, but to some type that encodes
the function value on all predecessors ofy: F:X . An initial (F � K U)-algebra, say (V : C;
� : F:V � U ! V), would suit well, for then we can instantiate

i : V ! T := ([� 0 �� �])

d: V ! F:V := � [�� � 0

h: V ! U := � [�� � 1

Further proof details are left to the reader.

6.4 Recursors for mutual induction and recursion

Considering mutual recursion, we have to distinguish between mutually recursive func-
tions on a single inductive type and recursive functions on a family of mutually inductive
types.

6.4.1 Mutual recursion on a single inductive type. Regarding the �rst kind of
mutual recursion, note that a tuple of functions on a single inductive type, e.g. f 0: T !
B0, f 1: T ! B1, is equivalent to a single function with a cartesian product as codomain,
f : T ! B0 � B1. Therefore, in a calculus that has cartesian products (�nite or in�nite),
any recursion principle can be employed to construct mutually recursive functions.

6.4.2 Standard recursion on mutually inductive types. We modeled mutu-
ally inductive types (section 5.2) by several forms of initial algebras in an exponen-
tial category. All categorical recursion principles for initial algebras that we presented:
(6.1), (6.2), and (6.7), can be interpreted in these categories, yielding arrowsf : T ! U
in TYPE N . The recursors for dependent functions, (6.5) and (6.7), can easily be ac-
commodated in an exponential category too; for example, rule (6.5) becomes

Ui :N : Type T n ;
si :N (h: Fi :�(T ; U)): Ui (� i :(Fi :� fstN :h))

9f : �(N ; �(T ; U)) :: 8i : N ; y: Fi :T :: f i (� i :y) = si (Fi :(n0 :: z 7! (z; f i z)) :y)

where � en � have to be lifted: �(T ; U) i := �(Ti ; Ui).

82 CHAPTER 6. RECURSORS IN CONSTRUCTIVE TYPE THEORIES

6.4.3 Liberal mutual recursion. Standard recursion on a family of N inductive
types above requires that the recursive functionsf consist of one function f i for each
type Ti . As an alternative recursion scheme, it is sometimes more convenient to index
the functions over some typeM that is di�erent from N , and use a mappingd(j : M): N
to indicate the domain of function f j . The de�ning equation for f j :(� dm :y) may assume
that, for every predecessorx: Ti of y, the function results f m0:x for each m0: M with
dm0 = n are available. We name the type of this tuple of function resultsUj= n , so
Uj= is the tuple of all these types. We dub the rule \liberal mutual recursion", as the
function index type M is not �xed to be the index type N .

Theorem 6.5 (Liberal mutual recursion) For any endofunctor F on TYPE N , an
F -algebra(T: TYPE N ; � : F:T ! T) is initial i� rule (6.11) below holds for anyM : Type ;
d: N M ; U: Type M . We abbreviate:

Uj= : Type N := (n :: �(f j : M j: dm = ng; U));

Td: Type M := (m :: T(dm))

Fd: TYPE M ! TYPE M := S 7! (m :: F(dm) :S)

� d: Fd:Td ! Td in TYPE M := (m :: � (dm))

f : Td ! U; i : N ` f j= n : Ti ! Uj= n := x 7! (m :: f j :x)

 : Fd:(T � Uj=) ! U in TYPE M

9!f : Td ! U :: f � � d = � Fd:hId; f j= i)
(6.11)

Proof.) : We calculate the unique f that satis�es the speci�cation, by translating it
into an equation in category TYPE N :

8m :: f j � � dm = j � Fdm :hId; f j= i

, 8 n; m; dm = n :: f j � � i = j � Fi :hId; f j= i f introduce n = dmg

, 8 n :: f j= n � � i = j= n � Fi :hId; f j= i f de�nition j= ng

, f j= = [[j=]] f (6.2)g

, 8 m :: f j = x 7! ([[j=]]dm :x) j

(: This rule subsumes the paramorphism principle (6.2) with C := TYPE N , by
instantiating M := N , dm := m.

The rule of liberal mutual recursion made use of the equality type. However, in a
calculus without explicit equality, one might still allow restricted forms of this rule by
using syntactic checks for the equalitydm = n, as the following example illustrates.

Example 6.5 Suppose we have a family of inductive typesT: Type IN � IN , and we wish
to simultaneously de�ne two families of recursive functions,

gn : Tnn ! IN

hnm : Tnm ! Tmn

6.5. SUMMARY 83

This is possible by rule (6.11), taking

M := IN + IN 2

d(0; n) := (n; n)

d(1; n; m) := (n; m)

U(0; n) := IN

U(1; n; m) := Tmn

After selecting a suitable , the rule yields an f from which we can obtain gn := f (0;n)
and hnm := f (1;n;m) . Using the currying convention of subsection2.12.5, we can write
(g; h) = f . The characteristic equations become

gn � � nn = 0n � F0n :hId; (g; h)j= i

hnm � � nm = 1nm � F1nm :hId; (g; h)j= i

Inspection of the right-hand side of these equations reveals that the expressions which
de�ne gn :(� nn :y) and hnm :(� nm :y) may contain reference toy, to hn0m0:z for any imme-
diate predecessorz: Tn0m0 of � nm :y, and also to gn0:z when it happens that m0 = n0. If
one allows the latter only when m0 and n0 are equal by de�nitional equality, no explicit
equality predicate is necessary.

6.5 Summary

This chapter completed our expedition of describing ordinary inductive types: chapter
2 introduced our language, chapter 4 our categorical machinery, chapter 5 surveyed
schemes for inductive type de�nitions, and this chapter �nished with describing the
forms of recursion over an inductive type.

We described the following forms:

1. Catamorphisms (6.1), obtained directly from initiality.

2. Paramorphisms (6.2), which follow the scheme of simple or algebraic recursion.

3. Dependent (algebraic) recursion (6.5) and (6.6)

4. Mendler recursion (6.8), using a quanti�ction over types. Any of the recursors 1{3
above can be formulated in Mendler form, giving six combinations.

5. Liberal mutual recursion (6.11). Any of the six combinations above can be gener-
alized to either standard or liberal mutual recursion, giving twelve forms of mutual
recursion.

Furthermore, any of these may appear either in a weak form, giving just a typing rule and
an equality (or reduction) rule, or in a strong form, giving also a uniqueness condition.
The latter is only possible when the calculus has an explicit equality predicate.

The strong forms of the recursors and the weak form of dependent recursion are all
equivalent (with respect to extensional equality), with these remarks:

84 CHAPTER 6. RECURSORS IN CONSTRUCTIVE TYPE THEORIES

� Equality types are required in order to formulate and derive the general form of
liberal mutual recursion.

� Equality types are also required to derive any strong recursor from weak dependent
recursion.

� Generalized sums are required to derive strong or weak dependent recursion.

\Equivalent" means here, that any application of one recursor can be translated into an
application of the other recursor that satis�es the same equation. However, the actual
reduction behavior may di�er.

Similarly, the weak forms of the catamorphism, paramorphism, Mendler, and liberal
mutual recursion rules are equivalent, with the same remarks.

85

Chapter 7

Co-inductive types

We have noted in section4.3 and 4.4 that the categoriesTYPE N have initial F -algebras
and initial (F ; E)-algebras. Quite remarkably, the same holds for the opposite categories
(TYPE N)op. Initial algebras in the opposite category are �nal co-algebras in the original
category, and may be calledco-inductive types. While the elements of initial F -algebras
are like trees with �nite branches only, elements of �nal F -coalgebras are like trees with
possibly in�nitely deep branches. Final coalgebras are introduced in7.1.

In 7.2 we have a look at the various shapes which the unique homomorphism to a
�nal coalgebra may take. We present the interesting example of in�nite processes.

Section 7.3 shows how all recursion constructs that do not involve dependent func-
tions dualize.

While adding equations to an initial F -algebra has the e�ect of identifying some trees
(elements of theF -algebra), we prove in7.4 that adding equations to a �nal F -coalgebra
has the e�ect of removing some trees from the algebra. Section7.5 contrasts this with
the Algebraic Speci�cation idea of �nal or terminal interpretation of equations over an
initial algebra.

7.1 Dualizing F -algebras

Let C be the category TYPE N for some type N . An F -algebra in Cop, say (X : Cop;
� : F:X ! X in Cop), is, by de�nition of op, a (Id; F)-algebra (X : C; � : X ! F:X in C),
which is also called anF -coalgebra. In section 8.2 we shall see that, ifF is polynomial,
then there exists a �nal F -coalgebra, which we name�F . Thus, for any F -coalgebra
(X ; �) there is a unique homomorphismf : (X ; �) ! (U; �), with characteristic equation:

� � f = F:f � � : (7.1)

This homomorphism is noted `[(X ; �)]', and called an anamorphisms, as devised by Erik
Meijer. Note that � is an isomorphism by theorem4.2, as (U; �) is initial in Cop.

Theorem 7.1 A �nal F -coalgebra(U; �) contains an initial F -algebra (V ; � [).

Proof. Take V : PU :=
T

(X j: � [2 F:X ! X). Then (V ; � [) is initial by theorem 4.3
(no junk and no confusion).

86 CHAPTER 7. CO-INDUCTIVE TYPES

Whereas, inTYPE , elements of initial algebras are thought of as well-founded trees,
�nal coalgebras do also contain all non-wellfounded trees, having in�nitely deep branches.

Example 7.1 (In�nite lists) The algebra of streams or in�nite lists (E1 ; hhd; tl i), as
speci�ed in example 3.8, is the �nal (E �)-coalgebra.

To de�ne the list e: IN1 of all even numbers, we letf:n be the arithmetic sequence
hn; n + 2 ; : : :i , using an equation of the shape (7.1).

hhd; tl i :(f:n) = (n; f: (n + 2)) = ((IIN � f) � hI; (+2) i):n

So f := [(IN; hI; (+2) i)]. Then we take e := f: 0 .
Let us now de�ne a bijection g: E ! $ E1 . We wish

g:e = f: 0 where

�: (f:n) = (en ; f: (n + 1))

where � is hhd; tl i , so we de�ne

g:e := [(IN; (n 7! (en ; n + 1)))] :0 :

For the inverse, we de�ne
g[:l := (n :: hd:(tl (n) :l)) :

We prove g � g[= I:

g:(g[:l) = l

, f: 0 = l wheref := [(IN; (n 7! ((g[:l)n ; n + 1)))] f de�nition gg

(f = (n 7! tl (n) :l) f generalizationg

, 8 n :: �: (tl (n) :l) = (I � (n 7! tl (n) :l)) :((g[:l)n ; n + 1) f anamorphismg

, 8 n :: hd:(tl (n) :l) = (g[:l)n ^ tl :(tl (n) :l) = tl (n+1) :l f pairingg

, True

And g[� g = I:

g[:(g:e) = e

, 8 n :: hd:(tl (n) :(f: 0)) = en wheref := [(IN; (n 7! (en ; n + 1)))]

(8 n; m :: hd:(tl (n) :(f:m)) = en+ m

(8 (m :: hd:(tl (0) :(f:m)) = em+0)

^ 8 (n; m :: hd:(tl (n+1) :(f:m)) = hd:(tl (n) :(f: (m + 1))) f induction on ng

, True f de�nition f g

7.1.1 Final F -algebras. Looking at �nal F -algebras in any category with �nal ob-
jects is not very interesting, for these are always that object (forTYPE N , the trivial
unit algebra, all carriers having exactly one element). Dually, initial F -coalgebras are
the initial object (for TYPE N , the empty algebra).

7.2. ANAMORPHISM SCHEMES 87

7.1.2 Dualizing plain algebras. In subsection5.2.2we gave an alternative scheme
for mutually inductive types, plain algebras. This scheme seems less suited for dualiza-
tion.

The operations were typed by:

� j :M : �(k: B j :: T(djk)) ! T(cj) :

A dual algebra (U; �) would be typed by

� j :M : T(cj) ! �(k: B j :: T(djk)) ;

for � is the generalized product constructor in the category TYPE op. This is no longer
a plain algebra. It seems not to be very useful because neither operations� nor � [admit
multiple arguments, and each operation having alternative single result types that are
unrelated seems di�cult to make sense of.

7.2 Anamorphism schemes

Equation (7.1) for an anamorphism f : (X ; �) ! (U; �) can take on a somewhat di�erent
shape if it is combined with pattern matching, and furthermore if F happens to be the
sum of other functors.

First we eliminate � on the left-hand side:

f = � [� F:f � � : (7.2)

Now, suppose thatX can be split up over n patterns � i (x0: X 0
i): X , so that:

8x: X :: 9!i : < n ; x0: X 0
i :: x = � i x0 :

Then (7.2) may be written as a list of equations

f � �� i = � [� F:f � � 0
i (7.3)

where � 0
i := � � �� i .

Next, if F is a �nite sum, F:Y = �(j : < m :: F 0
j :Y), one has actually a list of

constructors
� j : F 0

j :U ! U := � [� � j

or equivalently [�] := � [. Then, if some� 0
i has the shape� j � � 00

i , the respective equation
(7.3) reduces to

f � �� i = � j � F 0
j :f � � 00

i : (7.4)

Example 7.2 (Processes) Co-inductive types o�er elegant models for (inde�nitely
proceeding) processes, viewing these as incremental stream transformers. For example,
the type of simple processes that can input data values from channelsi : I and output

88 CHAPTER 7. CO-INDUCTIVE TYPES

data values over channelso: O, can make �nitary nondeterministic choices and silent
steps, and can halt, is the �nal coalgebra (Sproc(I; O); �) with Sproc(I; O): Type and

� : Sproc(I; O) ! (I � (Data . Sproc(I; O))

+ O � Data� Sproc(I; O)

+ �(n: IN :: Sproc(I; O)n)

+ Sproc(I; O)

+ 1

)

[outp; inp; choose; step; halt] := � [

Here, inp:(i; s) represents a process that requires an input from channeli and contin-
ues with processsi; outp:(o; c; s) outputs value c over channelo and continues with s;
choose:(n; s) chooses some arbitraryk: < n and continues with sk, and halt:0 represents
the process that just halts. step:s represents a process that performs some internal steps
without external action, and continues with s.

The choosealternative may be omitted if one represents a nondeterministic process
by a set of deterministic processes.

Now, consider the following program, written in CSP notation (Communicating Se-
quential Processes, Hoare [41]). It reads a number x from input channel A, and then
repeatsx times reading a numbery from A and outputting y2 to channel B .

A?x; �j [x > 0 �! A?y; B !(y2); x := x � 1]j :

To give the process de�ned by this program, we �rst de�ne X to be a suitable state
space. Between each input or output action there has to be a distinguished state.

X : Type := 1 + IN + IN 2

The mapping of states to processes,f : X ! Sproc(I; O), is then given by the following
equations of the form (7.4).

f: (0; 0) = inp:(A; (x :: f: (1; x)))

f: (1; x) = if x > 0 then inp:(A; (y :: f: (2; x; y))) elsehalt:0

f: (2; x; y) = outp:(B; y2; f: (1; x � 1))

The intended process is nowf: (0; 0), as the initial state is (0; 0): X .
Processes that operate in an environment that may be changed by the process itself

can be modeled by �nal coalgebras in the categoryTYPE N , where type N is the set of
possible environment states. This makes it possible to let the range of possible actions
depend on the current environment state. (End of example)

Within a domain theory of partial and in�nite objects (section 9.1), and hence in
programming languages with partial objects, processes can be represented as continuous
functions from lazy streams to lazy streams, which are also calledstream transformers.
Dybjer and Sander [25] represented a system of concurrent processes using the stream

7.3. DUAL RECURSION 89

approach. One needs a \network transfer function" to combine the separate agents
into a single stream transformer. They used a functional calculus in which types are
basically predicates so that �nal coalgebras can be obtained as the greatest �xed points
of monotonic predicate transformers (as in section10.2).

We refer to Malcolm [52] for some more examples and properties of �nal coalgebras,
called \terminal data structures" there.

7.3 Dual recursion

We have a look at how the derived non-dependent recursors of chapter6 dualize. De-
pendent recursors are not dualizable, as the dual of a dependent function would have to
be something where the type of the argument depends on the function result, which is
impossible.

All the following dual recursors can be transformed into a pattern-matching scheme
like 7.4.

7.3.1 Algebraic recursion. As the scheme of algebraic recursion in section6.1
works for any category with products, and products in categoryCop are sums inC, we
have the following corollary.

Corollary 7.2 If (T ; �) is a �nal F -coalgebra in a categoryC with binary sums, then

U: C
 : U ! F:(T + U)

9!f : U ! T :: � � f = F:[Id; f] �
(7.5)

Example 7.3 Let (T; �) := � (X 7! E � X 2) be the coalgebra of non-wellfounded labeled
binary trees. Given a labele: E and a tree t: T, we can construct a trees with

�:s = (e; s; t)

by taking s := f: 0 wheref : 1 ! T is, using (7.5), the unique solution to:

� � f = (IE � [IT ; f]2) � K(e;((1; 0); (0; t))) :

So we apply (7.5) to := K(e;((1; 0); (0; t))).

7.3.2 Mendler recursion. Mendler's recursor dualizes too (only for non-dependent
functions of course) to:

U: Type ;
X : Type ; i : T ! X ; h: U ! X ` sX (i; h): U ! F:X
where s is natural

9!f : U ! T :: � � f = sT (I; f)
(7.6)

Example 7.4 The sames: T as in example7.3 is obtained by taking for f : 1 ! T the
unique solution to:

� � f = K(e; f:0; I:t) :

So we apply (7.6) to sX (i; h) := K(e; h:0; i:t) . Check that this is well-typed.

90 CHAPTER 7. CO-INDUCTIVE TYPES

7.3.3 Liberal mutual recursion. Rule (6.11) dualizes trivially, yielding an f : U !
Td in TYPE M that satis�es � d � f = Fd:[Id; f =] � .

7.4 Dual equations

We shall now look at the e�ect of adding equations to a �nal coalgebra, by applying the
categorical notion of an algebra with equations, as described in paragraph4.4.3, to the
dual category Cop where C := TYPE N . This is not to be confused with the terminal
interpretation of equations in algebraic speci�cation, described in section7.5.

A law E in the category Cop is a functor H : C ! C with two natural transformations
E j : U :! HU , where U is the forgetful functor (X ; �) 7! X . An F -coalgebra (X ; �)
satis�es law E when E0(X ; �) = X ! H:X E1(X ; �), that is, when for all i : N ; x: X i ,

E0(X ; �) i :x = H i :X E1(X ; �) i :x : (7.7)

Now, we prove that a �nal algebra with equations is obtained from a �nal algebra without
equations by removing all elements that do not satisfy the equations and the elements
that contain these elements.

Theorem 7.3 If, for a functor F : C ! C and law E, there exists a �nal F -coalgebra
(T; �), then the �nal (F ; E)-coalgebra exists as well and is the greatest subalgebra of
(T; �) that satis�es law E, namely coalgebra(T0; �) where:

T0 :=
[

(X : � T j: 8i : N ; x: 2 X i :: � i :x 2 Fi :X ^ (7:7))

where the union and subset on tuples should be taken pointwise, and the functor is
extended to subsets (par.4.1.7).

Proof. We consider only the caseN = 1, so we can forget about the subscriptsi .
(T0; �) is clearly an (F ; E)-coalgebra. Let 	 be another one; we must exhibit a unique
homomorphism 	 ! (T0; �) in ALG (F ; E).
We have a uniqueF -homomorphism f : 	 ! (T ; �), because (T; �) is �nal. As E is a
natural transformation and 	 satis�es E , the range f [] satis�es E too. So f 2 	 !
(T0; �). As any other homomorphism to (T0; �) is a homomorphism to (T; �) as well, it
must equal f .

Actually, no really useful example of a �nal (F ; E)-coalgebra is known to me.

7.5 Terminal interpretation of equations

In the tradition of \algebraic speci�cation" [87], which we sketched in4.7, one distin-
guishes between the initial and terminal interpretation of an algebraic speci�cation. A
speci�cation consists of an algebra signature � together with a set of equations and
sometimes inequations (6=). Normally, only �nitary signatures are allowed.

The initial interpretation of a speci�cation is just the initial object in the category
of all �-algebras that satisfy the equations. This corresponds to our notion of initial
algebra with equations. Any inequations are superuous: if they are not satis�ed in this
initial algebra, the speci�cation is inconsistent.

7.6. CONCLUSION 91

The terminal interpretation of a speci�cation is di�erent, though. This is the �nal
object in the category of all \term-generated" �-algebras that satisfy both the equations
and inequations. An algebra � is term-generated i� the unique homomorphism from the
initial �-algebra to � is surjective. Put otherwise, the terminal interpretation is the ini-
tial �-algebra modulo the greatest equivalence relation that satis�es the (in-)equations,
when this exists. Thus, these terminal algebras are de�nitely not co-inductive types.

Presence of inequations is essential here; otherwise the terminal interpretation would
trivially be the unit algebra. Normally, an algebraic speci�cation includes some stan-
dard speci�cation of one or more types whose elements are required to be distinct, like
booleans, characters, or integers.

7.6 Conclusion

We described the dualization of inductive types, which are types with in�nitely deep ob-
jects, for example inde�nitely proceeding processes. The rigid form of recursive equation,
needed to construct objects of these types, could be transformed into a more natural
de�nition scheme.

The notion of algebra with equations can be dualized too, and is meaningful in the
category of types, but this dual form of equation does not seem to be very useful.

Co-inductive types are not to be confused with the terminal interpretation of an
algebraic speci�cation.

92

Chapter 8

Existence of inductively de�ned
sets

We characterized inductive types in chapter5 by means of polynomial functors; now we
shall show that for a polynomial functor F , in set theory, an initial F -algebra and a �nal
F -coalgebra indeed exist. The axioms of set theory are listed in sectionA.1. We outline
two alternative proofs. Manes [54, p. 74] lists a number of works that present a rigorous
construction of (an equivalent of) initial F -algebras for polynomial functorsF .

The �rst proof, in section 8.1, is the standard construction of an initial F -algebra,
by taking the trans�nite limit F (u) :; for some ordinal numberu.

Section8.2 gives a more elementary proof, after an idea of Kerkho� [45], which works
in type theory too, and which dualizes yielding �nal co-algebras.

In section 8.3, we add equations to an initial F -algebra. For adding equations to a
�nal F -coalgebra, we refer to section7.4.

8.1 Using trans�nite ordinal induction

Given a polynomial F , we are going to de�ne a trans�nite sequence of sets so that its
limit gives an initial F -algebra.

For � (kappa) a cardinal number, we de�ne

Y � � X := Y � X ^ cardY � � :

A functor F : SET ! SET is boundedi� it has some rank. It has rank � (or is � -based)
i� for all X : Set ,

F:X =
[

(Y : � � X :: F:Y) :

Note that bounded functors are monotonic: they preserve (�).

Theorem 8.1 1. Any polynomial functor F is bounded.

2. For any bounded functor F there exists an initial F -algebra (T; �). Actually, �
can be the identity, so that F:T = T.

8.1. USING TRANSFINITE ORDINAL INDUCTION 93

Proof 1. Let F:X = �(x: A :: X Bx). We calculate a rank � of F .

�(x: A :: X Bx) �
S

(Y : � � X :: �(x: A :: Y Bx))

, �(x: A :: X Bx) � �(x: A ::
S

(Y : � � X :: Y Bx))

(8 x: A :: X Bx �
S

(Y : � � X :: Y Bx)

, 8 x: A; u: X Bx :: 9Y : � � X :: u 2 Y Bx

(8 x: A; u: X Bx ; Y := f i : Bx :: ui g :: Y � � X ^ u 2 Y Bx

, 8 x: A; u: X Bx :: cardf i : Bx :: ui g � � ^ True

(� = max(x: A :: cardBx)

2. Let the rank of F be � . For some ordinal u, we de�ne a trans�nite sequence of sets
T: Setsu by ordinal recursion:

T0 := ;

Tsn := F:Tn

Tv :=
[

(w: < v :: Tw) for limit ordinals v

Now, Tu is the limit of the whole sequence, and if it satis�esF:Tu � Tu then (Tu ; I) is
an F -algebra. So we try:

F:Tu � Tu

,
S

(Y : � � Tu :: F:Y) � Tu

, 8 (Y : � � Tu :: F:Y � Tu)

To prove this condition, assumeY: � � Tu . Requiring that u is a limit ordinal (require-
ment 1), we have that for all y: 2 Y there is somevy < u with y 2 Tvy . HenceY � Tmaxv ,
and:

F:Y � F:Tmaxv = Ts(maxv) : (8.1)

Now note that if � < u (2) then:

card(Domv) = cardY � � < u :

So if u is a regular cardinal (3) (see sectionA.4), then:

maxv �
X

v < u ;

hences(maxv) < u as u is a limit. Combined with (8.1) and monotony of T, we obtain
our present goal,F:Y � Tu .

So we are done if we �nd au that is a limit ordinal (requirement 1), that is bigger
than � (2), and that is a regular cardinal (3). Taking u := maxh� + ; ! i satis�es all this.
(� + is the least regular cardinal greater than� , see sectionA.4.)

This proof does not dualize to �nal coalgebras, becauseT0 would then have to be a
set of all sets, which does not exist. Indeed, �nal coalgebras of the form (U; I) generally
do not exist in ZFC. But within Aczel's set theory with anti-foundation (section A.7),
it is possible to build such algebras; see [4].

94 CHAPTER 8. EXISTENCE OF INDUCTIVELY DEFINED SETS

8.2 Kerkho�’s proof

An alternative construction is the following one, somewhat simpli�ed from Kerkho� [45].
It needs no ordinal recursion but only natural numbers and powersets. Furthermore, it
can be dualized to model co-inductive types, and it can be formalized within our extended
type theory as well.

We want to construct an initial algebra (T: Set ; � : �(x: A :: TBx) ! T). Elements
of T are built from some a: A and a tuple s: TBa of sub-elements, so we think of them
as trees, where each node has a labelx: A and a tuple of subtrees indexed overBx . The
idea is to represent such a tree by its set of nodes, where each node is characterized by
its label together with the sequence of indices from

S
(x: A :: Bx) that leads to the node.

Theorem 8.2 (Kerkho�) For polynomial F , there exists an initial F -algebra.

Proof. As in paragraph 2.9.2, let X � := �(n: IN :: X n) be the type of �nite sequences,
so that hi: X � , and hxi ++ l : X � for x: X , l : X � . We'll de�ne S to be the type of arbitrary
sets of node representations,� to be the operator that combines a tuple of such sets into
a new one with a single root node, so that (S; �) is an F -algebra, and then de�ne T to
be the subalgebra ofS generated by� .

Let F:X = �(x: A :: X Bx).

S := P(
S

(A; B) � � A)

�: (a: A; s: SBa): S := f (hi; a) g [f y: Ba; (l; x): 2 sy :: (hyi ++ l; x) g

T :=
\

(X : � S j: � [F:X] � X)

Now, theorem 4.3 says that (T; �) is initial, provided that � is injective. To prove this,
assume:

�: (a; s) = �: (a0; s0)

First, as we have (hi; a) 2 �: (a; s), and as it is not possible that (hi; a) = (hy0i ++ l0; x0)
for somey0: Ba; (l0; x0): 2 s0

y0, it follows that (hi; a) = (hi; a0) so a = a0.
Secondly, we provesy � s0

y for arbitrary y: Ba.

(l; x) 2 sy

) (hyi ++ l; x) 2 �: (a; s) f def. � g

, (hyi ++ l; x) 2 �: (a; s0) f assumptiong

, 9 y0: Ba; (l0; x0): 2 s0
y0 :: (hyi ++ l; x) = (hy0i ++ l0; x0) f def. � g

, 9 y0: Ba; (l0; x0): 2 s0
y0 :: y = y0^ l = l0^ x = x0

, (l; x) 2 s0
y

By symmetry we have s0
y � sy , so that s = s0.

The di�erence with Kerkho� is that he constructed the \free" F -algebra over a setC,
which is the initial (F + K C)-algebra; he had

S := P((C [A [
S

(A; B)) �)

8.2. KERKHOFF'S PROOF 95

�: (a; s) := f hai g [f y: Ba; l : 2 sy :: ha; yi ++ l g

�:c := f hci g

T :=
\

(X : � S j: � [F:X] [� [C] � X)

A dual construction (dual with respect to set inclusion) yields an F -coalgebra (U; �).
The proof that this coalgebra is �nal is very di�erent, though.

Theorem 8.3 For polynomial F , there exists a �nal F -coalgebra.

Proof. Let S and � be as above. Then de�ne:

U :=
[

(X : � S j: X � � [F:X])

�: (t: U) := (a; s) where (hi; a) 2 t ;
sy := f (l; x) j: (hyi ++ l; x) 2 tg :

Note that � : U ! F:U is the inverse of � (on U, not on S). This gives an F -coalgebra
(U; �); we'll prove that it is �nal. Let (V ;) be anotherF -coalgebra; we have to construct
a unique homomorphismf : (V ;) ! (U; �), so that � � f = F:f � , or:

8v: V :: f:v = �: (F:f: (:v)) (8.2)

An inductive de�nition of f would yield only a partial function. Rather, we de�ne
the collection of subsetsf:v : S for v: V by simultaneous induction as the least tuple of
sets such that

8v: V :: �: (F:f: (:v)) � f:v :

That is, for v: V and (a; w) := :v :

(hi; a) 2 f:v

y: Ba; (l; x): S ` (l; x) 2 f:w y) (hyi ++ l; x) 2 f:v

This has the form of a �xed point equation on the lattice (S; �)V , so by Knaster-Tarski
(theorem 3.6) we have indeedf : V ! S and (8.2).

We �rst check the type of f :

f 2 V ! U

, f [V] � U

(f [V] � � [F:f [V]] f de�nition Ug

((F:f �)[V] � F:f [V] f f = � � F:f � g

, F:f � 2 V ! F:f [V]

(F:f 2 F:V ! F:f [V] f : V ! F:V g

(f 2 V ! f [V]

, True

Thus, f is a homomorphism indeed. For uniqueness, supposeg is a homomorphism
too. As �: (F:g:(:v)) = g:v and f is minimal, we have f:v � g:v . But then f:v = g:v,
because of the following lemma, and we are done.

96 CHAPTER 8. EXISTENCE OF INDUCTIVELY DEFINED SETS

Lemma. If u; u0 2 U and u � u0, then u = u0.
We prove for l :

S
(A; B) � , x: A the following, by induction on the length of the �nite

sequencel:
8u; u0: U; u � u0 :: (l; x) 2 u0) (l; x) 2 u (8.3)

First we note that for any u, u0, by de�nition of U we haveu = �: (a; s) and u0 = �: (a0; s0)
for certain a; a0: A, s: UBa , s0: UBa 0

. Given u � u0 and the de�nition of � , it follows then
that a = a0 and sy � s0

y for all y: Ba.
We check (8.3) for the empty list: if (hi; x) 2 u0, then we have x = a0 = a so

(hi; x) 2 u.
Then, assume (8.3) as induction hypothesis. If (hyi ++ l; x) 2 u0, then we have

(l; x) 2 s0
y , so by hypothesis (l; x) 2 sy , hence (hyi ++ l; x) 2 u. This completes the

induction, the lemma, and the theorem.

8.3 Algebras with equations

In section 4.4, we introduced equations or laws. We show now that one can always
add laws to an initial F -algebra in TYPE (and also in SET), when quotient-types are
available. The dual theorem, that one can always add laws to a �nal coalgebra, was
already shown in section7.4 .

Theorem 8.4 For any polynomial endofunctor F on TYPE , and law E = (H ; r), if
ALG F has an initial object, then ALG (F ; E) has one as well.

Proof. Let F:X = �(x: A :: X Bx), and (T; �) be initial in ALG F . We de�ne a con-
gruence relationR: P(T2) as follows. It is inductively de�ned by the clauses:

h: H:T ` r (T; �):h 2 R (8.4)

a: A; t; t 0: TBa ` 8 y: Ba :: (ty ; t0
y) 2 R) (�: (a; t); �: (a; t0)) 2 R (8.5)

j= T j � R

R[� R

R � R � R

The �rst two clauses may be written as r (T; �) 2 H:T ! R and (�; �) 2 F:R ! R.
Using the quotient types of C.4.2, we take T0 to be T modulo this congruence, and

we de�ne � 0 so that == inR : (T . T==R) is a homomorphism, �== inR : (T ; �) ! (T0; � 0):

T0 := T==R

� 0 := f a: A; t: TBa :: ((a; (y :: == inR ty)) ; == inR (�: (a; t))) g

First we have to show that this � 0 is really a function. So assumea: A, t; t 0: TBa ,
and == inR ty = == inR t0

y for y: Ba. As R is an equivalence relation, we have (ty ; t0
y) 2 R

for all y, hence (�: (a; t); �: (a; t0)) 2 R by the last clause of R, and == inR (�: (a; t)) =
== inR (�: (a; t0)).

Secondly,F -algebra (T0; � 0) should satisfy lawE, that is, r0(T0; � 0) = H:T 0! T 0 r1(T0; � 0).
As the r j : HU :! U are natural transformations, and as�== inR is a homomorphism, we
have

�== inR � r j (T; �) = r j (T0; � 0) � H:(�== inR) :

8.3. ALGEBRAS WITH EQUATIONS 97

But by the �rst clause of R, we have

�== inR � r0(T; �) = �== inR � r1(T0; � 0) ;

so we are done ifH:(�== inR) is surjective, that is, has a right-inverse. Now note that
�== inR must have a right-inverseg by the axiom of choice, and thenH:g is a right-inverse
of H:(�== inR) .

Thirdly, supposing that (U;) is another (F ; E)-algebra, we must provide a unique
homomorphism f : (T0; � 0) ! (U;). For a function f : T0 ! U we have:

f is a homomorphism

, f � � 0 = � F:f

, f � � 0� F:(� == in) = � F:f � F:(� == in) f � == in is surjectiveg

, f � � == in � � = � F:(f � � == in) f def. � 0g

, f � � == in = ([U;]) f initiality (T; �) g

So we can take
f := � == elim([U;]): ;

where we must prove that for (x; x 0): 2 R, one has ([]):x = ([]):x0 . For this we need
the minimality of R. So de�ning

S := f (x; x 0): T2 j: ([]):x = ([]):x0g ;

we prove that R � S by checking that S satis�es the �ve clauses that de�ne R. Relation
S is clearly reexive, symmetric, and transitive. To check (8.4), we have for h: H:T

([]):(r0(T; �):h) = ([]):(r1(T; �):h)

because ([]) � r j (T; �) = r j (U;) � H:([]) by naturality of r j , and r0(U;) = r1(U;)
as (U;) satis�es law E.
To check (8.5), when (ty ; t0

y) 2 S for y: Ba, then we have (�: (a; t); �: (a; t0)) 2 S because
([]) is a homomorphism, i.e. ([]):(�: (a; t)) = : (a; (y :: ([]):ty)) .

98

Chapter 9

Partiality

Up till now, all objects were fully de�ned. Functional programming languages that
employ so-calledlazy (non-strict) evaluation require quite di�erent recursive types. In
these languages objects can be de�ned, some parts of which are unde�ned. \Unde�ned"
means here that the part is given by a program whose computation proceeds inde�nitely,
without producing any output. (Note that a non-terminating program may still produce
fully de�ned in�nite objects.)

Classically, such types are modeled by adding a special value? to represent an
unde�ned (sub-)value. A recursive type T with one constructor � : F:T ! T may then
be represented by an initial algebra (T: Type ; [�; K ?]: F:T + 1 ! T). Constructively,
this does not work, as it is in general undecidable whether a program will produce
anything or not. We shall give an alternative representation in 9.3.

First, in section 9.1, we give a brief overview of the standard theory of complete
partial orders (cpo's). This theory can be used to interpret recursive object de�nitions,
classically as well as constructively.

In 9.2, we treat the simpli�ed case of optional objects, which are either unde�ned or
fully de�ned. These may be used to model partial functions or procedures in a language
without lazy evaluation.

In 9.3, we give a new constructive representation of the cpo of recursive types with
lazy parts, using �nal coalgebras in the category of strict types.

Finally, section 9.4 shows how recursive object de�nitions can be interpreted in this
representation without using the cpo structure.

9.1 Domain theory

There are many constructions of categories of domains that model recursive data types,
see e.g. Scott [77]. Smyth and Plotkin set up [79] a categorical framework that generalizes
the construction of recursive domains in most categories occurring in computational
semantics.

One of these categories is the category ofcomplete partial orders (cpo's). We de�ne
this category, and give three �xed-point theorems: 9.1 shows how to interpret recursive
object de�nitions, 9.3 shows how to interpret recursive type de�nitions, and theorem9.4
shows how to prove properties of recursively de�ned objects.

9.1. DOMAIN THEORY 99

We de�ne �rst the category of partial orders, then ! -chains over a partial order, then
the category of cpo's. The object and arrow parts of these categories are given by means
of structure de�nitions (paragraph 2.6.3); but the arrow part might in fact be obtained
from the de�nition of the object part by means of a straightforward procedure.

De�ne PoSet : Cat by
X : PoSet :=: (X : TYPE ;

(�): � X 2;
(�) � (�) � (�);
(�) \ (�) [= (= X)
)

f : X ! Y in PoSet :=: (f : X ! Y in TYPE ;
(f; f) 2 (�) ! (�)
);

! chain(X : PoSet) := f s: X ! j: 8i : ! :: si � si +1 g

De�ne CPO : Cat by
D: CPO :=: ((D; (v D)): PoSet ;

? D : D; 8(x: D :: ? v x);
s: ! chainD `

F
s: D; 8x: D :: (

F
s v x , 8 i : ! :: si v x)

);
f : D ! E in CPO :=: (f : D ! E in PoSet ;

f: ? D = ? E;
s: ! chainD ` f:

F
s =

F
(f ! :s)

)

Relation `x v y' may be understood as `Partial objectx is an approximation of y', and
? is the unde�ned object, which approximates everything.

A continuous function f : D ! c E between two cpo's is a function that is monotonic
with respect to v and that preserves limits of ! -chains. Note that arrows f : D ! E
in CPO are continuous functions that preserve? too.

Theorem 9.1 (�xed points in a cpo) Any equation x = f:x where f : D ! c D, has
a least solution in D, called �x f . That is, one has

f: (�x f) = �x f

f:x v x) �x f v x

Proof. Take s0 := ? , si +1 := f:s i . By induction one has 8i : ! :: si v si +1 , so we can
de�ne �x f :=

F
s. Then

f: (
G

s) =
G

(i :: f:s i) =
G

(i :: si +1) =
G

(i :: si) ;

and if f:x v x, then by a simple induction 8i : ! :: si v x, so
F

s v x.

Category CPO is closed under products, sums, continuous function space, and taking
�xed points (modulo isomorphism) of suitable endofunctors, by Scott's inverse limit
(colimit) construction, as follows.

100 CHAPTER 9. PARTIALITY

A cochain in any category C with ! -products is an ! -tuple, T: C! , with arrows
� i : Ti +1 ! Ti . A coconeis a structure (T; � ; S;) where (T; �) is a cochain,S an object,
and where arrows i :! : S ! Ti commute with � i :

 i = i +1 �� � i :

Given a cocone (T; � ; S;), we call (S;) a colimit of (T; �) i� for any cocone (T; � ; S0; 0)
there is a unique homomorphism (S0; 0) ! (S;).

Theorem 9.2 Every cochain (T; �)) has a colimit.

Proof. Take
S := f t: �(! ; T) j: 8i : ! :: t i = � i :t i +1 g ;

then (T; � ; S; �) is a cocone, and for any cocone (T; � ; S0; 0) one has h 0i : (S0; 0) !
(S; �).
Assuming � : (S0; 0) ! (S; �) too, one hash 0i = � because 0

i = � �� � i .

Theorem 9.3 (�xed points in CPO) (Scott) Any functor F : CPO ! CPO that
preserves colimits of cochains has a unique �xed point (modulo isomorphism)�F ,
F (�F) �= �F , yielding both an initial F -algebra and a �nal F -coalgebra.

Proof. (sketch) Given functor F , we de�ne a cochain (T; �) by:

T0 := f?g

Ti +1 := F:Ti

� 0 := x 7! ?

� i +1 := F:� i

Let (S;) be its colimit, take �F := S. Now we de�ne a constructor:

� : F:(�F) ! �F := x 7! (0 :: ? j i + 1 :: F: i :x)

To construct � [, note that (F:�F ; F ! :) is a colimit of

(F ! :T ; F ! :�) = ((i :: F:Ti); (i :: F:� i)) = ((i :: Ti +1); (i :: � i +1)) :

But as ((i :: Ti +1); (i :: � i +1); � F ; (i :: i +1)) is a cocone as well, there must be a unique
homomorphism

� [: (�F ; (i :: i +1)) ! (F:�F ; (i :: F: i)) :

The unique homomorphisms required for initiality and �nality are (see also Paterson
[67], where they are calledreduce F � and generate F)

�x (g 7! � [�� F:g �� �) : (�F ; �) ! (X ; �)

and
�x (g 7! �� F:g �� �) : (X ;) ! (�F ; � [) :

(end of proof sketch)

9.2. OPTIONAL OBJECTS 101

Theorem 9.4 (�xed point induction)

f : D ! c D
P(x: D): Prop
s: ! chainD ` 8 (i : ! :: P(si))) P(

F
s)

P(?)
8(x: D :: P(x)) P(f:x))

P(�x f)

Proof. Take s0 := ? , si +1 := f:s i as in theorem 9.1, then one has8i : ! :: P(si) and
�x f =

F
s, so P(�x f).

One of the �rst computer veri�cation systems was LCF [35, 70], Logic of Computable
Functions. It has �xed point induction as a primitive rule, using a syntactic check for
chain-completeness.

9.2 Optional objects

We wish to lift a type A to a type " A with A � t " A and a special value? : " A, called
\unde�ned". (Such a type " A is often named À? ', but we do not want to use subscripts
for this.) Partial functions from A to B may then be represented by total functions from
A to " B .

The post�x predicate x# means x̀ is de�ned', and " A is partially ordered, as follows:

x: " A ` x#: Prop := 9a: A :: x = " A a

x; y: " A ` x v y := (x#) x = y) ;

and this gives a cpo (classically), for

s: ! chain" A `
G

s :=
�

si if si #, for somei
? if 8i :: si = ?

:

So (" B)A is a cpo too, and any continuous functione: (" B)A ! c (" B)A must have a
unique least �xed point f = e:f . This gives us the possibility of recursive de�nition of
partial functions.

There are several ways to de�ne such a type" A within our calculus:

9.2.1 Explicit options. Classically, the idea is to simply add a singleton type toA,
using a sum:

Opt A := A + 1 ;

? := � 1:0

� 0 : A � t Opt A :

Constructively, this does not give a cpo. For, to construct a value of typeOpt A one
must e�ectively decide whether it has to be ? or somea: A. But the limit of an ! -chain
s should be? if and only if all si equal ? , and this cannot be e�ectively decided.

102 CHAPTER 9. PARTIALITY

Similarly, a mapping e: (Opt B)A ! (Opt B)A that is monotonic (which means that
a more de�ned argument gives a more de�ned result) can classically be shown to have a
unique least �xed point f = e:f , but this �xed point is not constructively de�nable, in
general. For, given an argumenta, it cannot be e�ectively decided whether computation
of fa will terminate.

9.2.2 Propositional options. An alternative is to think of an optional object as
a proposition that tells whether the object is de�ned or not, together with the actual
value in case the proposition is true. Thus, one can only access the value if one has a
proof of the proposition.

" A := �(D : Prop :: AD)

? := (False; ())

x 7! (True; (() :: x)) : A � t " A

This " A gives (using strong existential quanti�er elimination) a constructive cpo, for we
can de�ne:

G
(s: ! chain" A) := (9(i : ! :: fst si); 9 elim((i ; d) :: snd(si d)))

(Check that for (i ; d); (i 0; d0): �(i : ! :: fst si), one has that snd(si d) = snd(si 0d0).) So
continuous mappingse: (" B)A ! c (" B)A have (constructible) �xed points.

This construction is not possible in Nuprl [18], for its type theory does not have
strong 9 elim. However, Nuprl has recursive de�nition of partial functions as a primitive
rule. It employs a (restrictive) syntactic test for continuity of recursive de�nitions.

9.2.3 Lazy options. If one has co-inductive types, there is another alternative.
Given a type A, we de�ne a co-inductive type T that represents computations of objects
of A. It has constructors � : A ! T and � : T ! T, so that a nonterminating computation
can be represented by�: (�: (: : :)), repeating � inde�nitely. Type " A is then the quotient
type (section C.4.2) of T modulo the relation given by � , so that �:x and x are identi�ed.

(T; �) := � (K A + Id);

[�; �] := � [;

? : T := �: ?

" A := T==�

? : " A := == in(? : T)

(x 7! == in(�:x)) : A � t " A

Note that � induces an equivalence� � on T, and that T is partially ordered by:

(x: T)# := 9a: A :: x � � �:a

x v y := (x#) x � � y) :

To get a constructive de�nition of
F

(s: ! chain(" A)), we have to do a simultaneous
quotient elimination on all si : " A. This is possible by a construction similar to the one
in C.4.5. It then su�ces to construct

F
(t: ! chainT): T.

9.3. BUILDING RECURSIVE CPO'S BY CO-INDUCTION 103

Note that if there are some i; k : ! and a: A such that t i = � (k) :(�:a), then for any j ,
one necessarily hast i + j � � �:a , and we should have

F
t � � �:a .

Now, one cannot e�ectively decide whether suchi and k exist. Rather, we de�ne an
anamorphism f : (IN ; �) ! (T ; �) such that f:n tries only i and k up to bound n, and
yields �: (f: (n + 1)) if that does not succeed. So, making improper use ofif , we de�ne
informally:

f:n := if t i = � (k) :(�:a) for some i; k : � n, a: A then �:a else�: (f: (n + 1)) :

The proper de�nition requires two local recursions over IN, and is left to the reader.
Finally we de�ne

F
t := f: 0 .

9.3 Building recursive cpo’s by co-induction

We now generalize the construction in paragraph9.2.3of types with lazy optional objects
to recursive type de�nitions. That is, we build a solution to the domain equation T �=
" (F:T), where F is polynomial, using co-induction.

The value ? should represent an object that takes in�nite time to compute. If we
add a constructor � : T ! T (zeta) to represent a value that takes one step more than
its argument, then ? can be represented by an in�nite sequence of� 's.

(T; �) := � (F + Id)

[�; �] := � [

? : T := �: ?

Actually, T should be taken modulo a congruence' that identi�es any �:x with x.
To obtain this congruence, we �rst de�ne the approximation relation (v): � T2 as the
greatest relation such that, for all x: F:T ; y: T :

9(n: IN :: � (n) :(�:x) v y)) 9 (m: IN; z: F:T :: y = � (m) :(�:z) ^ x F:(v) z) :

Put in relational calculus:

� � � (�) � (v) � F:(v) � � � � (�) : (9.1)

Here, F:(v): � (F:T)2 stands for F lifted to relations as in section D.3, applied to (v),
and � (�) is the reexive, transitive closure of � , i.e.

� (�) =
[

(n: IN :: � (n)) =
\

(Q: PT2 j: � [(=) [Q � Q � Q) :

Note that ? v x, for any x: T. Then we de�ne (') := (v) \ (v) [.

Theorem 9.5 1. Relation v is a preorder.

2. When we extendv to T==�, then (T==�; (v); ?) is an ! -complete partial order, at
least if F is a polynomial, F:X = �(a: A :: X Ba).

104 CHAPTER 9. PARTIALITY

Proof 1. Relation v is reexive, for (= T) satis�es (9.1) so (=) � (v). And v is
transitive, i.e. (v) � (v) � (v), follows again from v being maximal, for

� � � (�) � ((v) � (v))

� F:(v) � � � � (�) � (v) f (9.1) g

� F:(v) � F:(v) � � � � (�) f (9.1) g

= F:((v) � (v)) � � � � (�)

2. By de�nition of ' , preorder v gives a partial order on T==(').
Proving that ! -chains overv have limits is rather complicated. Let s: T ! be a chain,

si v si +1 , we have to de�ne
F

s: T. We follow the method of paragraph 9.2.3.
The idea is that, if there are somei; k 0: ! and u0: F:T such that si = � (k0) :(�:u 0),

then all si + j must necessarily equal� (kj) :(�:u j) for certain kj and uj , and uj F:(v) uj +1

(exercise). Hence alluj equal (a; vj) for a �xed a and vj : TBa , and vj y v vj +1 y for y: Ba.
So (j :: vj y) are chains again, and

F
s should equal, for somen,

� (n) :(�: (a; (y ::
G

(j :: vj y)))) :

As trying an unbounded number of i and k cannot be done constructively, we de�ne
a homomorphismf : (! chainT � IN) ! T such that f: (s; n) tries only values of i and k
up to bound n, and yields �: (f: (s; n + 1)) if that does not succeed.

f: (s; n) := if si = � (k) :(�: (a; v0)) for some i; k : � n and (a; v0): F:T
then let vj be such that si + j = � (k0) :(�: (a; vj)) in

�: (a; (y :: f: ((j :: vj y); 0)))
else�: (f: (s; n + 1))

We leave the constructive de�nition of i , k, a and the vj to the reader. Finally we de�ne
F

s := f: (s;0) .

9.4 Recursive object de�nitions

The use of a cpo in section9.3 to de�ne recursive objects in T is something of a detour.
In this section we give a more direct construction ofT-elements out of recursive object
de�nitions, a construction which does not use the partial order at all.

Suppose that we have a system of mutually recursive tree expressions. We wish to
construct the (in�nite or partial) trees that are de�ned by these expressions. For this
purpose we need, given a typeV representing tree variables, a typeEV that represents
tree expressions with variables fromV. The family of types EV with its operations is de-
�ned as a co-inductive algebra, and includes a constructor� : EV ! EV to accommodate
nontermination.

Let F be polynomial, F:X = �(x: A :: X Bx) and (T; �) := � (F + Id) as in 9.3. Given
a valuation, i.e. a binding of expressions to variables,t: TV , any expressione: EV should
de�ne a tree evalt :e: T . Elements of EV may have one of the following forms:

� �: (x: F:EV), representing a tree constructed from subtrees

9.4. RECURSIVE OBJECT DEFINITIONS 105

� �: (e: EV), equivalent to just e

� �: (v: V), representing a variable occurrence

� : (d: EV ; c: �(x: A :: EV + Bx)), representing a case analysis on the result of tree
expressiond. If d evaluates to some tree�: (a; u), then evaluation of : (d; c) should
boil down to evaluation of ca under the valuation (t; u): TV + Ba . A suggestive
program notation for : (d; c) might be:

cased is �: (a; u) =) ca

where expressionca may contain variables referring to the tuple of treesu: TBa .

Thus, we de�ne E as follows.

F 0 : TYPE Type ! TYPE Type

(F 0:X)V := F:X V + X V + V + (X V � �(x: A :: X V + Bx))

(E ; � 0) := �F 0

[�; �; �;] := � 0[

We omit the index V of the operations. Note that there is an embedding [(V :: � ��
[� 0; � 1])]V : T � t EV .

To de�ne the evaluation function as a homomorphism, we need a substitution opera-
tion. For a �xed type W , we de�ne the tuple of substitution functions substV : (EV + W �
E W

V) ! EV by the equations:

substV :(�:x; t) = �: (F:(substV � hI; K ti):x)

substV :(�:d; t) = �: (substV :(d; t))

substV :(�: (0; v); t) = �:v

substV :(�: (1; w); t) = �:tw

substV :(: (d; c); t) = : (substV :(d; t); (x :: substV + Bx :(cxnEr ; tnE W
� 0

)))

where we use thatEV is functorial in its subscript V , and

r : (V + W) + Bx ! (V + Bx) + W := [[� 0 � � 0; � 1]; � 1 � � 0] :

To see the need for this, note thatsubstV + Bx requires an argument of type (EV + Bx + W �
E W

V + Bx) whereas we havecx: EV + W + Bx and t: E W
V . For well-de�nedness of subst, note

that these equations can be given the shape of a dual recursion (paragraph7.3.1)

subst= � [� F 0:[I; subst] � �

for some� : D ! E + F 0:D in TYPE Type where DV := EV + W � E W
V .

Now suppose we have a tuple of recursive expressions,

t: E V
V :

106 CHAPTER 9. PARTIALITY

In context t we de�ne, for any expressione: EV , the tree evalt :e that is denoted by e when
parametersv: V are bound to tv. This evalt is de�ned as the unique homomorphism

evalt : (EV ; �) ! (T ; �)

for some� : EV ! F:EV + EV by:

evalt :(�:x) = �: (F:evalt :x)

evalt :(�:e) = �: (evalt :e)

evalt :(�:v) = �: (evalt :tv)

evalt :(: (�: (a; u); c)) = �: (evalt :(substV :(ca; u)))

evalt :(: (�:e; c)) = �: (evalt :(: (e; c)))

evalt :(: (�:v; c)) = �: (evalt :(: (tv; c)))

evalt :(: (: (e; d); c)) = �: (evalt :(: (e;(x :: : (dx; c)))))

One may prove that if evalt :d ' �: (a; u), then evalt :(: (d; c)) ' eval(t;u) :ca .

9.5 Conclusion

We introduced the most basic notions of recursive domain theory, and de�ned simple
classical and constructive domains for representing optional objects. We then developed
in 9.2 a representation for lazy optional objects by means of co-induction within the
strict type theory of ADAM , which we generalized in9.3 to lazy recursive types. While
this representation of types is quite elegant, the representation of actual recursive object
de�nitions is not. If one wishes to use such objects in a constructive type theory, it
seems preferable to include them in the theory as primitives.

107

Chapter 10

Related subjects

10.1 Impredicative type theories

Second-order, or impredicative, or polymorphic, type theories like the Calculus of Con-
structions [21] and second-order typed lambda calculus allow the formation of types in
the lowest universe, which we callData : Type here, by quanti�cation over types from
a higher universe:

A: Type
D: Data A

�(A; D): Data

Thus, Data is very much like our Prop , except that Prop has additional equality
rules stating that equivalent propositions are equal, and that all proofs of the same
proposition are equal. Furthermore, their use is di�erent, for objects in Data are used
for actual computation, while objects in Prop are used for stating properties only. The
impredicative quanti�cation allows one to de�ne all kinds of weakly initial and �nal
algebras, without using further primitive notions.

Example 10.1 The type of booleans can be de�ned by

Bool := �(X : Data ; x: X ; y: X :: X)

true := (X ; x; y :: x)

false := (X ; x; y :: y)

b: Bool; E : Data ; e0; e1: E ` if b then e0 elsee1 := bEe0e1

(End of example)

A drawback of such impredicative encodings is that dependent types likeT: �(x: Bool ::
Data) cannot use an elimination on the impredicative object x, because expression
`xData T0T1' would be wrongly typed.

Luo's ECC [48] extends the Calculus of Constructions with generalized sums and
a hierarchy of universes as inADAM . Ore [66] extended ECC further with disjoint
sums (sums over a �nite type) and inductive types at the predicative level. We may
call this system ECCI. It is equivalent to ADAM without equality types and strong
proof elimination; data types are to be built at the predicative level rather than in the
impredicative universe Prop .

108 CHAPTER 10. RELATED SUBJECTS

10.1.1 Weak initial algebras

The weak initial algebra (T; �) that has a sequence of constructors� j : Fj :T ! T can be
impredicatively de�ned by: (�: C ! C N is the diagonal functor X 7! (i :: X))

T: Data := �(X : Data ; � : F:X ! � :X :: X)

� j : Fj :T ! T := y 7! (X ; � :: � j :(Fj :(x 7! xX�):y))

In particular, a weak initial F -algebra for F : Data ! Data is given by:

� wF : Data := �(X : Data ; � : F:X ! X :: X)

� : F:� wF ! � wF := y 7! (X ; � :: �: (F:(x 7! xX�):y))

Given another F -algebra (U;), there is a homomorphism

([U;]): � wF ! U := x 7! xU

for which we have the reduction rule ([U;]) � � = > � F:([U;]) . One cannot prove that
this homomorphism is unique. For instance, given (weak) binary products, we cannot
construct a weak paramorphism [[]] such that [[]] � � = > � F:hId; [[]]i , nor even a true
� [such that � [:(�:y) = > y , nor a (trans�nite) induction property like (6.5).

In section D.7 we give an impredicative de�nition of IN in typed lambda calculus, and
prove that induction holds by naturality for all terms of type IN. This generalizes easily
to type � wF , and one may expect that the naturality property holds for generalized
calculi like CC too. Yet this would not yield an induction theorem within the calculus.

One might restrict, as suggested in [73], all quanti�cations over � wF as to use only
its standard elements, being those elements that satisfy trans�nite induction:

St(x: � wF) := �(U: Data � wF ; h: �(y: F:� wF :: (F 0:U)(y) ! U(�:y)) :: Ux)

where (F 0:U)(y) stands, as in paragraph6.2.3, for the product of Uz for all immediate
predecessorsz of �:y . In particular, if F:X = �(a: A :: X Ba), then

(F 0:U)(a; t) = �(y: Ba :: U(ty)) :

A declaration `x: �F ' may then be replaced by x̀: � wF ; St x ' Now, if one's calculus has
subtypes, one can use the subtypef x: � wF j: St xg for �F . If it does not have subtypes,
as the Calculus of Constructions, this restriction of quanti�cations to standard elements
does not give a satisfactory solution, for then a quanti�cation over all types cannot be
applied to the class of all standard elements of� wF .

So it will be more satisfactory to extend the calculus with inductive types as a
primitive notion (at the impredicative level). This is done by Coquand and Paulin in
[22], using type de�nitions as described in subsection5.3.1and a recursor as we described
in paragraph 6.2.3.

Ore [66] discusses extending CC with inductive types either at the impredicative or
predicative level.

10.2. USING TYPE-FREE VALUES 109

10.1.2 Weak �nal algebras

An analogous treatment as in10.1.1is possible for co-inductive types. The dual impred-
icative de�nition of weak �nal coalgebras utilizes �, but this � can be translated into a
double use of �:

� wF : Data := � w(X : Data ; � : X ! F:X :: X)

:= �(Y : Data ; �(X : Data ; � : X ! F:X ; x: X :: Y) :: Y)

� : � wF ! F:� wF := (X ; � ; x) 7! F:(z 7! (X ; � ; z)) :(�:x)

:= u 7! u(F:� wF)(X ; � ; x :: F:(z 7! (X ; � ; z)) :(�:x))

Given another F -coalgebra (U; �), the mediating morphism (anamorphism) is

[(U; �)]: U ! � wF := u 7! (U; � ; u) :

10.2 Using type-free values

The notion of type as mainly used in this thesis comprises that types are introduced
together with their values; there are no values without types. An alternative is to de�ne
types as sets of basically type-free values. A suitable universe of values is the set of
untyped lambda terms, to be taken modulo conversion.

When types may be built by unrestricted comprehension, i.e.f x j: 	(x)g where 	(x)
is a formula from second-order logic, then one gets inductive types by taking simply

�F :=
\

(X j: F:X � X) :

Such a system with unrestricted second-order comprehension cannot admit types as
values themselves, because this would lead to inconsistency.

10.2.1 Henson’s calculus TK

Martin Henson [39] introduced a calculus with kinds organized into a hierarchy of levels,
in order to avoid inconsistency. Unlike the hierarchy of universes in type theory, kinds
of a higher level do not collect kinds of previous levels, nor do they admit greater
cardinalities, for the kind that contains everything, f x j: Trueg, is already of level zero.
Rather, kinds of a higher level admit a greater de�nitional complexity.

� Terms are built from constants c, application (t t), lambda abstraction �x:t and
�X:t where x is a term variable and X a kind variable of some speci�c level, and
may furthermore contain kind expressions and logical formulae as primitive values

� Atomic formulae include t 2 T, t = t0, and t# (meaning \ t is de�ned"), where t, t0

are terms andT is a kind

� Formulae are built from atomic formulae by the ordinary propositional connectives
and by quanti�cation over either all terms or all kinds of some speci�c level

� Types are kinds of level 0

110 CHAPTER 10. RELATED SUBJECTS

� Kinds of level n are either (1) kind variables of level at most n, (2) compre-
hensionsf x j: 	(x)g over lambda terms where formula 	(x) may contain kind-
quanti�cations over levels below n only, or (3) inductive kinds �(� ; K) of level n

Inductive kinds of level n have the form �(� ; K), where �(z; x) is a formula that contains
kind quanti�cations below level n only, and K is a kind of level n. Kind �(� ; K) is the
smallest kind X such that

K � X and f z j: 8x :: �(z; x)) x 2 X g � X : (10.1)

So, when there would be no level restriction on comprehension, � would be de�nable by

�(� ; K) :=
\

(X j: (10:1)) :

Put otherwise, �(� ; K) is the well-ordered type generated by the relation

x � z := z =2 K ^ �(z; x) :

An an initial F -algebra, it is

� (X 7! K [f z j: 8x :: �(z; x)) x 2 X g) :

Note that the second argument of � is really superuous, as by taking � 0(z; x) :=
x � z we have

�(� ; K) = �(� 0; ;) :

Therefore we �nd this type unnecessarily complicated. The comprehension and induction
rules given in [39] and some other publications are actually erroneous | and the claimed
consistency proof awed. For example, the induction rule draws a conclusion8z: 2
�(� ; K) :: z without a premise 8z: 2 K :: z . By taking �(z; x) := False, one would
obtain 8z :: z for every formula z . Later publications, like [40], had correct rules.

A more fundamental objection is that the usefulness of kinds and formulae as values
is negligible, because terms may not be used in place of kinds or formulae. Henson seems
to miss this point. We note that the higher level abstraction facilities are quite limited:
one can abstract over kinds, but not over functions on kinds. Finally, we remark that
the intuitive basis for this hierarchy of kinds is rather weak.

10.3 Inductive universe formation

Predicative universes of types or sets, such as ourType i , are described by listing the
rules for constructing their elements. Then one might add a principle that the universe
is actually the least (or initial) one that is closed under these rules, by giving a universe
elimination (or recursion) principle. This would make the universe an initial algebra in
a category of families of types and extensions between them. N.P. Mendler discusses the
categorical semantics of such recursion rules in [61].

One might strengthen type theory by adding a rule for introducing new inductive
universesinside the systemby listing their introduction rules. The di�erence between

10.3. INDUCTIVE UNIVERSE FORMATION 111

universes and ordinary inductive types is that introduction rules for universes, like �-
formation (B.9), when they have a premise thatA be a type in the universe, may in
subsequent premises quantify over the type (associated with)A itself.

For this purpose it is best to treat universes �a la Tarski, namely as a pair (U; T)
where U is a type and T assigns to each \code"A: U a type TA. So a universe is a
family of types.

For any type S, we de�ne a category FAM S. Its object are families in FamS, and
its morphisms are given by:

(D ; s) ! (D 0; s0) in FAM S := f f : D ! D 0 j: 8d: D :: sd = s0(f:d)g : (10.2)

A universe formation principle might read: For any endofunctor F on FAM Type
that satis�es some constraints, there is an initial F -algebra. The constraints that are
required here are much more di�cult to express than for ordinary inductive types, and
we will not try to do so.

Example 10.2 The type constructor � gives rise to an endofunctor P on FAM Type ,
such that there is a morphism p: P:(U; T) ! (U; T) just when the universe is closed
under �, i.e. when for a: U and b: UT a there is somec: U with Tc �= �(x: Ta :: T(bx)).
This P is given by:

P:(U; T) := (�(a: U :: UT a);

((a; b) :: �(x: Ta :: T(bx))))

and for f : (U; T) ! (U0; T0) in FAM Type the de�nition of P:f is obtained from (10.2):

P:f 2 P:(U; T) ! P:(U0; T0)

, 8 a: U; b: UT a; (a0; b0) := P:f: (a; b) ::

�(x: Ta :: T(bx)) = �(x: T0a0 :: T0(b0x)) f (10.2) for P:f g

(8 a: U; b: UT a; (a0; b0) := P:f: (a; b) ::

f:a = a0 ^ 8 x: Ta :: f:bx = b0x f8 a: U :: Ta = T0(f:a)g

, 8 a: U; b: UT a :: P:f: (a; b) = (f:a ; f T a:b)

We can do the same for other type constructors, and de�ne an endofunctorF such
that the carrier of an initial F -algebra may serve as the de�nition of the universeType 0.
The object part of F is as follows:

F:(U; T): FAM Type := (f N j Fin(n: IN) j Prop j Holds(P: Prop)
j Pi(a: U; b: UT a) j Sigma(a: U; b: UT a) g;
(N :: IN
j Fin(n) :: n
j Prop :: Prop
j Holds(P) :: P
j Pi(a; b) :: �(x: Ta :: T(bx))
j Sigma(a; b) :: �(x: Ta :: T(bx))
))

112 CHAPTER 10. RELATED SUBJECTS

10.4 Bar recursion

Though the scheme of bar recursion introduced by Spector [80] has little to do with
inductive types, we include it here because it is so remarkably di�erent from our other
recursion schemes. It de�nes a functionf : A � ! B on �nite sequences by recursive
application to longer sequences, until a special termination condition holds.

Well-de�nedness of such a function depends on a property that a computable function
c: A ! ! IN is continuous in the sense that its value on an in�nite sequencet depends
only on a �nite pre�x tjn of t:

8t: A ! :: 9n: IN :: 8u: A ! :: (t jn = ujn) c:t = c:u) : (10.3)

Let a type A with some default valuea: A be given. We de�ne an embedding of �nite into
in�nite sequences. (Alternatively, we may restrict the de�nition to nonempty sequences
and replace à' by s0.)

s: A � ` [s]: A ! := (i :: if i < # s then si elsea)

The termination condition of f mentioned above isc:[s] < # s. The point is that, as s
grows in length, c:[s] must become constant and the condition will be satis�ed whens
is long enough.

Theorem 10.1 (Bar recursion) Classically, one can derive:

c: A ! ! IN
c is continuous
b: A � ! B
e(: B A): A � ! B

9!f : A � ! B ::
8s: A � :: f:s = if c:[s] < # s then b:s elsee(x :: f: (s ++ hxi)) :s

Proof. The equation for f obviously has a least solutionf : A � ! " B in the domain of
partial functions. Then for any s: A � such that f:s = ? one has

c:[s] � # s ^ 9 (x: A :: f: (s ++ hxi) = ?) :

Let g: �(s: A � ; f:s = ? :: f x: A j: f: (s ++ hxi) = ?g) be a corresponding choice operator.
To prove totality of f , supposef:s = ? for some s: A � . De�ne t: A ! using total

induction by
t i := if i < # s then si elseg(tj i � 1)

and see that, for i : � # s, one hasf: (t j i) = ? , hencec:[t j i] � # tj i = i .
Let n be according to (10.3) for t, then for i : � n we havec:t = c:[t j i] as tjn = [tj i]jn .
Taking i := maxh# s; n; c:t + 1 i , it follows that c:t = c:[t j i] � i � c:t + 1, contradiction.
Thus f:s = ? cannot be, andf is total.

Function c actually de�nes a well-founded relation by

j�j := f s: A � ; c:[s] � # s; x: A :: (s ++ hxi ; s) g :

In a constructive calculus, the continuity condition for c is automatically satis�ed and
may be omitted from the premises. In that case, the principle of bar recursion is es-
sentially stronger than algebraic recursion in typed polymorphic lambda calculus, as
Barendsen and Bezem prove [10].

113

Chapter 11

Reections and conclusion

In this thesis, we played and experimented with language notations, language de�nition,
and constructive type theories, employing these in studying abstract formulations of
principles for inductive types, and the relationships between these. It was not our
primary aim to solve speci�c problems, but rather to unify di�erent approaches and to
obtain an overall perspective on them. Looking back we can make a number of reections
on the areas mentioned.

11.1 Mathematical language

We developed the languageADAM as a medium to express principles of inductive types.
We want to make the following remarks.

11.1.1 Ambiguity. One of the characteristics ofADAM is the great amount of am-
biguity that we allow in de�ning and extending the language. We found this comfortable
in shaping notations and identi�ers that are easy to use, but it may make automatic
checking of concrete text di�cult or unfeasible. However, actual writing in a formal
calculus usually takes place through interactive proof editing, where the author can im-
mediately indicate how to resolve any ambiguities, and proofs are stored in a format that
represents the internal structure rather than the concrete appearance. Thus, ambiguity
is not insurmountable, but it requires attention of the author not to obscure his text.

11.1.2 Generalized typing. ADAM is based on constructive type theory. The
availability of generalized type constructors made it possible to treat many constructive
calculi as sublanguages, and allowed a uni�ed treatment of parametrization and �nite
and in�nite products. Whether it is desirable or necessary to have a constructive type
theory as the logical foundation of the language remains to be seen; we discuss this in
section 11.2.

11.1.3 Proof notation. We did not de�ne a formal proof notation, but it is clear
that it should be a structured, readable representation of natural deduction style proofs,
without the obligation to write down all intermediate results. The very terse proof

114 CHAPTER 11. REFLECTIONS AND CONCLUSION

representation of pure type theory is generally too unwieldy to read, but may be held
available to be used for small, almost evident proofs and for proofs that the reader is
expected to skip.

Sometimes a linear proof style is convenient. Such a style can very well be embedded
within a natural deduction framework, but it can never replace it fully. More remarks
on proof notation appear in section11.4.

11.1.4 Re�nement and scope rules. Creative thought has to be given to the
subject of scope rules. Often, during the construction of an object or proof, one makes
de�nitions that one would like to extend beyond the current (sub-)proof. This conicts
with the scope rules as used in any modern programming language. Linear proofs have
even more di�culty with this (see e.g. U0 on page77), because a de�nition made within
a line of a linear proof would by ordinary rules not even extend to the following lines
that lay outside the local expression.

Somewhat related is the representation of stepwise re�nement. Part of a construction
may be left open to be �lled in later on, perhaps guided by side conditions on the
construction. In appendix C we experiment a bit with \goal variables" to �ll temporary
gaps, which are given a value further on in the proof. These are not to be confused with
the \place holders" that may be used in interactive editing [50] to temporally hold open
places, for these disappear from the proof when they are �lled in. Again there are scope
problems, for it is not evident which identi�ers that were visible at the open place may
be used in its re�nement.

11.1.5 Variable abstraction. We introduced a double-colon notation to be used
both for simple variable abstraction (x :: bx), quanti�cation 8x: A :: Px , families (x: A ::
bx), simple case distinction on an enumerated type (false:: b0 j true :: b1), and pattern
matching (2 :: b j (x; y) +< z :: cxyz). We found it comfortable to work with and clearer
than a little dot (as in 8x: A:Px) when the declarations x: A take up a bit more space,
especially as we can extend these with propositional assumptions and local de�nitions. It
extends nicely to pattern matching, unlike the dot or bracket abstraction [x]bx . We liked
the equivalence between �nite tuples (t0; t1): T0 � T1 and abstractions (i :: t i): �(i : 2 :: Ti).

11.2 Constructive Type Theory

11.2.1 Objections. We have used type theory as the mathematical foundation of
our research. There are some problems connected with this. The �rst is the gap between
a single-valued predicate and a term denoting the same object. We had to introduce
some extra machinery to bridge it (appendix C). It arises as soon as propositions are
distinguished from data types. Original Martin-L•of type theory did not make this dis-
tinction, but it is needed for higher order quanti�cation. Our solution was satisfactory,
but we had to give up the property that any closed expression of some type is reducible
to head canonical form for that type, for reasons discussed in subsectionC.3.2. Taken
together, it removed part of the original simplicity of the propositions-as-types idea.

Secondly, the representation in type theory of equality proofs and type conversion
either is rather clumsy, or just omitted from proof terms.

11.3. LANGUAGE DEFINITION MECHANISM 115

Thirdly, generalized type theory requires parameters to be used for instantiating
polymorphic objects and for supplying proofs to operations that have conditions on their
arguments. If we understand the meaning of a term to be its computational content,
these parameters are superuous and make object expressions unnecessarily complicated.

11.2.2 Universes. In this thesis, we assumed a hierarchy of universesType i , but
usually we did not specify in which universe we worked. Most developments could be
given in any universe, and it would be desirable if the calculus supported a formalization
of this, by means of some kind of \universe parameters". For example, the description
of category theory should be parametrized with the universe from which the classes of
objects and arrows may be chosen. Next, the theory may be applied to the big category
of categories itself by instantiating it to a higher universe.

Rather than having a �xed hierarchy, universes might be formed inside the calculus
by specifying their basic types and type constructors. The latter may either be chosen
from a �xed set, or perhaps, as suggested in section10.3, be user-de�ned.

A simpler and easily realisable solution is to allow the formation of theparametrized
universe Type (�) of all types generated from a family of basic types �. Then one could
de�ne Type 0 := Type hi; Type 1 := Type hType 0i , etc.

11.2.3 Alternatives. When selecting a foundation for mathematical language, I
would make the following observations.

� Do not use proof information in terms. This gives unnecessary overhead and is
counterintuitive for most mathematicians.

� Use classical logic by default, for most mathematicians do not care about construc-
tivism. Constructive arguments may be specially distinguished, if needed.

� An interesting simple type theory is given by Lambek and Scott [46, p. 128]. Its
class of types contains only the singleton type 1, binary productsA � B , in�nity
IN, powertypes PA, and a type of propositions
.

11.3 Language de�nition mechanism

We used a form of two-level grammar, or De�nite Clause Grammar with equations, to
de�ne part of our language ADAM . We �nd it both very elegant and powerful, as it
subsumes Horn clause logic. It is really a form of logic programming with equations, but
note that we regard predicates as special syntax classes rather than translating syntax
classes into predicates on strings of characters, as is more common. A lot of research is
going on in this area, see e.g. [24].

The mechanism can be used to de�ne both the basic foundational theory and the
concrete language with its semantics, but also search strategies for �nding missing parts
of proofs. It is possible that a (prototype) implementation of a language be automati-
cally generated from the language de�nition, provided that the de�nition is set up with
executability in mind. One ingredient of the de�nition mechanism we did not touch
upon is the following.

116 CHAPTER 11. REFLECTIONS AND CONCLUSION

11.3.1 Proving grammar properties. We de�ned the basic theory around a pred-
icate, `� ` t: T ', and the concrete language around classes like `Term(� ; ; t; T)'. We
claimed the de�nition to be such that the following holds:

Whenever one hasTerm � ; (t; T), then � ` t: T ;

yet we did not prove this. There is need for a formal notation for stating and proving
such grammar properties, for example by checking that each production rule forTerm
corresponds to one or a few rules for̀ .

Besides simple implications, one has to check well-de�nedness of syntactic operations,
like:

For any Term t; Subst� , one hasTerm t[�] :

This involves an induction on the structure of terms. Existential properties \For all
x, there is a y with p(x; y)" can be eliminated (as is often done in automatic theorem
proving) by introducing an additional syntactic operation: \For all x, p(x; f (x))". This
transformation is called a \Skolemization". Elementary automatic theorem proving can
probably check all grammar properties we need, when we provide a list of them and
indicate on which variables to perform induction.

11.4 Proofs and proof notation

11.4.1 What is a proof? A (formal) proof of a statement in the basic theory is
normally its derivation tree. There is no necessity to encode this tree as an object in
the theory. If we have developed a mathematical language and veri�ed that a proof
formulated in this language guarantees derivability of the statement in the basic theory,
then the derivation tree of such a proof can be accepted as a formal proof indeed. The
textual representation of such a proof can only be accepted when there is some reasonable
upper bound on the amount of computation needed to verify it.

11.4.2 Modularization. The basic theory should be embedded within a logical
framework [42] for the modularization and parametrization of theories. The framework
may also provide facilities for information hiding, like \Abstract Data Types".

11.4.3 Proof format. Leslie Lamport [47] has designed a format for \Structured
Proofs" in natural deduction style, featuring a neat numbering scheme for referring to
proof steps and assumptions, and allowing linear proofs where appropriate. Such a
format may very well be used as a standard format for proofs of theorems.

11.4.4 Local structure. Proofs for distinct steps of a deduction could be given by
means of an expression that gives complete combinatorial information of all derivation
steps and required facts, but normally one would be satis�ed with giving just hints.
Checking these hints would require some proof search, which can be de�ned through
logic programming. It may be useful for some facts and assumptions to be marked as
\active", meaning that they may be used without being hinted at.

11.5. INDUCTIVE TYPES 117

11.4.5 Equality proofs. Suppose we have (a reference to) a proofp proving an
equality a = b (or a sequence of such proofs). A proof ofta = tb, where tx may be a
complicated term, say f (g(x); c), has a number of intermediate steps likeg(a) = g(b),
derived by extensionality of g. A natural notation for the full proof might be to insert
p for variable x in tx , properly marked, e.g. as

%f (g(� p �); c) :

Here, `%' marks the start of the extensionality proof format, and `(� �)' marks the inser-
tion of ordinary proof notation.

Essentially the same format can be used for naturality proofs: given a polymorphic
term

x: S[�] ` t[x]: T [�]

and a relation R: A � B , the extended relation (sectionD.3) might be noted %T(� R �),
and given a proof p proving (a; b) 2 %S(� R �), we would have by naturality (theorem
D.1):

%t(� p �) proving (t[a]; t[b]) 2 %T(� R �) :

11.5 Inductive types

We started with inductive subset de�nitions given by means of rule sets, well-founded
relations, or monotonic operators. We went on with the description of inductive types,
de�ned by means of construction and elimination rules or as the initial object of the
category of algebras of appropriate signature.

The initial algebra approach allowed us to separate the investigation of forms of
inductive type de�nition from the study of forms of (structural) induction and recursion
over an inductive type. For an overview of these forms, we refer to the conclusions of
chapter 5 (page73) and 6 (page83). Here we list some of the decisions to be made when
including inductive types in a language de�nition.

� Do the inductive types appear as �xed points of functors, or as initial algebras of
appropriate signatures? The �rst option is a special case of the second.

� Are inductive types to be generated by

1. providing actual parameters for one of the admissible forms of signature or
functor, or

2. writing down the desired signature or functor, which has to be matched
against the admissible forms, or

3. writing down the signature or functor according to (inductive) production
rules (section5.3)?

� For families of mutually inductive types, does each type from the family have a
�xed (set of) constructors, or may one have \plain" algebra signatures where the
codomain of a constructor may depend on its parameters?

Similarly, for recursive function de�nitions:

118 CHAPTER 11. REFLECTIONS AND CONCLUSION

� Are they to be given by providing actual parameters for some recursor, or by
writing down the desired recursion equations where the correctness checker has to
match these to the admissible forms of recursion?

� Does one allow dependent recursion, and if not, does one include a uniqueness
condition?

� Does one allow liberal mutual recursion, using either equality types or syntactic
equality checks?

11.6 Directions for further research

The work and ideas presented in this thesis call for further research in the following
directions.

1. Language de�nition method. Research on the method of using two-level gram-
mar to de�ne a semi-decidable language which is formally reduced to a foundational
theory:

(a) experiment with using the method on a small language;

(b) formally de�ne the method.

2. Mathematical language.

(a) A suitable foundation remains to be established, especially when constructive
and classical reasoning are to be combined in a single system.

(b) Develop proof notations for ADAM , including e.g. readable notations for
structuring the argumentation, modularization, easy use of equality, better
scoping rules for de�nitions made within a proof.

(c) Formally de�ne a usable subset ofADAM .

(d) Write a readable manual for ADAM .

3. Inductive types.

(a) Analyze and compare how inductive types as included in current languages
follow our schemes.

(b) De�ne a good concrete notation for inductive types in a general language like
ADAM .

4. Relational notation.

(a) The naturality theorem for simple types should be generalized to dependent
types. This will require a non-standard interpretation of generalized type
expressions, where type variables are replaced by relations as in11.4.5.

(b) The same interpretation may be used for replacing type variables by categor-
ical arrow sets. Thus, one type expression can de�ne both the object and
arrow part of a category.

11.6. DIRECTIONS FOR FURTHER RESEARCH 119

(c) Internalize naturality: naturality of objects in ADAM should be available
within ADAM itself.

120

Appendix A

Set theory

This appendix contains some basic notions of set theory, and two models of set the-
ory within type theory. First we list the axioms of Zermelo-Fraenkel set theory with
choice (ZFC). Then we present two well-known classes of in�nite numbers, namely or-
dinals and cardinals. (Here we used the outline by Manes [54, pp. 71{72], who cites
Monk [63].)

In type theory one can de�ne a big type in Type 1 that gives a model of ZFC. We
present two models inA.5 and A.6; the latter one uses an inductive type with equations.

Finally, non-wellfounded sets are described inA.7.

A.1 ZFC axioms

We introduce Set as a primitive sort, together with a binary predicate membership,
(2): � Set2, and abbreviate

x � y := 8(z: 2 x :: z 2 y) :

Please do not get confused by the overloaded use of `2 ', `� ' and other set operations:
they are de�ned for subset types, for families, and for models of ZFC as well. The �rst
interpretation will not be used in this appendix.

The axiom of extensionality is about equality of sets:

s; t: Set ` 8 (x :: x 2 s , x 2 t)) s = t (A.1)

There are �ve axioms stating the existence of primitive sets, each accompanied with
axioms describing the members of these sets.

Separation: If P(x) is a propositional formula with parameter x:

P: Prop Set ; s: Set ` f x: 2 s j: P(x)g: Set ;

x 2 f x: 2 s j: P(x)g , x 2 s ^ Px (A.2)

Just as in ADAM , we use the symbol j̀:', read \such that", instead of the more conven-
tional `j' or `:' because we �nd the latter two too symmetric and want to use them for
other purposes. Note also that `:2 ' is used for introducing a variable that ranges over a
set.

A.2. SET ENCODINGS 121

Union , Power set, and In�nity :

s: Set `
[

s: Set ;

x 2
[

s , 9 (y: 2 s :: x 2 y) (A.3)

s: Set ` P (s): Set ;

x 2 P (s) , x � s (A.4)

` ! : Set ;

9(y: 2 ! :: 8z :: z 62y) ^ 8 (y: 2 ! :: y [f yg 2 !) (A.5)

where y [f yg 2 ! abbreviates the formula 9z: 2 ! :: 8u :: u 2 z , u 2 y _ u = y .
Replacement. If F is a unary operation (that may be given as a predicate):

s: Set ; F : SetSet ` f x: 2 s :: Fx g: Set ;

y 2 f x: 2 s :: Fx g , 9 (x: 2 s :: y = Fx) (A.6)

Many more operations on sets may be derived, for example:

; : Set := f x: 2 ! j: Falseg

x: Set ` f x g := f z: 2 ! :: x g

x; y: Set ` f x; y g := f z: 2 ! :: Fz g

whereFz :=
�

x if z = ;
y if z 6= ;

x [y :=
[

f x; y g

x \ y := f z: 2 x j: z 2 yg

The axiom of foundation or regularity says that the membership relation2 is well-
founded. We formulate it in a constructive form:

P: Prop Set ` 8 (x :: 8(y: 2 x :: Py)) Px)) 8 (x :: Px) (A.7)

The axiom of choice says that, given a mapping to nonempty sets, there exists a
function picking one element of each set. (We use the encodings for functions given
below.)

s: Set ` (8x: 2 doms :: s(x) 6= ;)) (9f :: 8x: 2 doms :: f (x) 2 s(x)) (A.8)

A.2 Set encodings

We may use the following standard encodings of pairs, functions, and naturals, using
only the above axioms and operations.

hx; yi := f f xg; f x; yg g

fst p :=
[

f x: 2
[

p j: 9y: Set :: p = hx; yig

sndp :=
[

f y: 2
[

p j: 9x: Set :: p = hx; yig

122 APPENDIX A. SET THEORY

X � Y :=
[

f x: 2 X :: f y: 2 Y :: hx; yi g g

domf := f p: 2 f :: fst pg

codf := f p: 2 f :: sndpg

Y X := f f : P(X � Y) j: 8x: 2 X :: 9!y: Set :: hx; yi 2 f g

f (x) :=
[

f y: 2 codf j: hx; yi 2 f g

0 := ;

n + 1 := n [f ng

A.3 Ordinals

Ordinals are special sets, but the classOrd of all ordinals is too big to be a set itself.
We give two de�nitions of this class.

A.3.1 Inductive de�nition of ordinals. The classOrd is the least class (i.e. the
intersection of all classes)X : � Set such that:

1. For any x in X , its successorx [f xg is in X ;

2. The union of any set of X -members is inX .

Note that, as the empty set ; is the union of the empty set of ordinals, it is an ordinal
by clause 2. It is named 0 as well.

This de�nition gives us a principle of trans�nite induction: any predicate on sets
that is closed under the clauses above holds for all ordinals. Unfortunately, it is a second
order de�nition that cannot be given in �rst order logic. However, the following one is
equivalent [63]:

A.3.2 First order de�nition of ordinals. A set (of sets)x is 2-transitive i� when-
ever y 2 x and z 2 y then z 2 x. An ordinal is an 2-transitive set x such that all y 2 x
are also2-transitive.

If x, y are ordinals then (using the axiom of foundation) exactly one ofx 2 y, x = y,
y 2 x occurs (classically), so thatOrd is linearly ordered via:

x � y := x = y _ x 2 y

If X is a nonempty set (or class) of ordinals then
T

X is an ordinal and is in X ; in
particular, X has a least element. Further, for ordinalsx, y, x � y holds i� x � y.

A.4 Cardinals

A cardinal is an ordinal which is not equipotent (equipotent means \in bijective corre-
spondence") with a smaller ordinal. The class of cardinals is notedC̀ard '.

Given any setA there exists (classically) a unique cardinalcard(A) that is equipotent
with A. So cardinals are useful for measuring the size of sets.

A.5. A MODEL OF ZFC 123

If x is a cardinal, x+ denotes the next largest cardinal. There is no largest cardinal,
that is, x+ always exists. A cardinal x is regular i� x is in�nite and for every family
y: FamCard with each yi < x and card(Domy) < x , it is the case that card� y < x . The
�rst in�nite cardinal, ! , is regular, and for any in�nite cardinal x, x+ is regular.

A.5 A model of ZFC

Within type theory, one may represent a set together with all its element sets by a
directed graph (N : Type 0; S: � N 2) together with a designated root n: N .

Given graph (N ; S), a nodex: N corresponds to the set of those sets that correspond
to the nodes in S[x] = f y: N j: (x; y) 2 Sg. A partial interpretation as sets of such
triples (N ; S; n) is recursively speci�ed by:

[[N ; S; n]] = f m: 2 S[n] :: [[N ; S; m]] g :

We de�ne the type T of directed rooted graphs, followed by an inductive de�nition of
a partial equivalence relation � on T. Only triples where the root starts a wellfounded
tree appear in � .

T : Type 1 := f (N : Type 0; S: � N 2; n: N) g

R: PT2 ` De�ne (� R): PT2 by

(N ; S; n) � R (N 0; S0; n0) := 8x: 2 S[n] :: 9x0: 2 S0[n0] :: ((N ; S; x); (N 0; S0; x0)) 2 R

(�): PT2 :=
\

(R: PT2 j: (� R) \ (� R) � R)

Now ZFC: � P T will be the subtype of all � -equivalence classes. (For non-wellfounded
sets, seeA.7.)

ZFC: � P T := f t: T ; t � t :: jt �j g

P; Q: ZFC ` P 2ZFC Q := 9(N ; S; n): 2 Q; x: 2 S[n] :: (N ; S; x) 2 P

We now de�ne the ZFC set constructions on the typeT of triples. So, let (N ; S; n): T
be a triple, P: P(T) a predicate and F : TT an operation on T.

f T t 2 (N ; S; n) j: P(t)g :=
(1 + N ;

f x: 2 S[n]; P(N ; S; x) :: ((0; 0) ; (1; x))
j (x; y): 2 S :: ((1; x); (1; y))
g; (0; 0))

S
T (N ; S; n) :=

(1 + N ;
f x: 2 S[n]; y: 2 Sx :: ((0; 0); (1; y))
j (x; y): 2 S :: ((1; x); (1; y))
g; (0; 0))

PT (N ; S; n) :=

124 APPENDIX A. SET THEORY

(1 + P(S[n]) + N ;
f P: P(S[n]) :: ((0; 0) ; (1; P))
j P: P(S[n]); x: 2 P :: ((1; P); (2; x))
j (x; y): 2 S :: ((2; x); (2; y))
g; (0; 0))

f T x 2 (N ; S; n) :: Fxg :=
let (M y ; Qy ; my) := F (N ; S; y) in
(1 + �(y: 2 S[n] :: M y);

f y: 2 S[n] :: ((0; 0); (1; y; my))
j y: 2 S[n]; (u; v): 2 Qy :: ((1; y; u); (1; y; v))
g; (0; 0))

! T :=
(1 + IN;

f i : IN :: ((0; 0) ; (1; i))
j i : IN; j : < i :: ((1; i); (1; j))
g; (0; 0))

It is straightforward to extend these constructions to ZFC, e.g.
S

ZFC Q :=
S

(t: 2 Q ::
S

T jt �j). We leave it to the reader to check that they satisfy the axioms, and that the
axioms of extensionality, foundation, and choice are satis�ed.

A.6 An inductive model of ZFC

Yet a simpler model uses an inductive type. Note thatFam0: TYPE 1 ! TYPE 1 is a
polynomial functor, with

Fam0(X : TYPE 1) := �(D : Type 0 :: X D) ;

Fam0(h: A ! B) := (D ; a) 7! (D ; hD :a) :

We de�ne a membership relation (2 f): � X � Fam0 X and a subfamily relation (� f): �
Fam2

0 X :

x: T; t: FamT ` x 2 f t := 9d: Domt :: x = td

t; t 0: FamT ` t � f t0 := 8x: 2 f t :: x 2 f t0

An initial Fam0-algebra contains families of families of familiesad in�nitum . Modulo
the appropriate equation these families model sets.

(ZFC; �) := � (Fam0; E) where

E(X ; �) := f f : Fam2
0 X ; f 0 � f f 1 ^ f 1 � f f 0 :: (�:f 0; �:f 1) g

x 2ZFC y := 9(f : Fam0 ZFC; i : Domf :: y = �:f ^ x = f i)

The (total) interpretation [[�]]: (ZFC . Set) is recursively de�ned by:

[[�:f]] = f x: 2 f f :: [[x]] g

A.7. ANTI-FOUNDATION 125

The extensionality axiom (A.1) follows easily from E(ZFC; �) � (= ZFC) and the
following lemma.

Lemma A.1 For x: ZFC, f : Fam ZFC, one has:

x 2ZFC �:f , x 2 f f

Proof. (is trivial.
) : we must prove that if �:f = �:f 0 and x 2 f f 0, then x 2 f f . Note that, as E(X ; �)

is an equivalence, one has (=ZFC) = E(ZFC; �), so if �:f = �:f 0 then f 0 � f f .

We de�ne the operations required by the axioms (A.3) till (A.6), writing ` 2 ' for 2ZFC,
by:

f x: 2 s j: P(x)g := �: (x: 2 s; Px :: x)
[

s := �: (y: 2 s; x: 2 y :: x)

P(s) := �: (P: P(ZFC) :: �: (x: 2 s; Px :: x))

! := �: (i : IN :: �: (h:i)) where

h:0 := hi;

h:(k + 1) := h:k ++ h�: (h:k)i

f x: 2 s :: Fx g := �: (x: 2 s :: Fx)

To check their properties, one applies lemmaA.1 over and again.
Finally, the foundation axiom (A.7) holds by induction over the de�nition of ZFC,

and the lemma.

A.7 Anti-foundation

Peter Aczel [4] proposed an alternative view on sets, in which non-wellfounded sets are
permitted. He removed the foundation axiom (A.7) from ZFC, and replaced it by an
anti-foundation axiom (AFA), stating that, given a directed graph, each node x in it
corresponds to a set such that the elements of the set are the sets that correspond to
the subnodes ofx in the graph. Thus:

s: Set ; R: P(s � s) ` 9 !f : Set s :: 8x: 2 s :: fx = f [R[x]] (A.9)

We may call this system ZFA. A noninductive model of ZFA can be obtained from our
T as de�ned in section A.5, by using the dual equivalence relation:

(� 0) :=
[

(R: PT2 j: R � (� R) \ (� R))

ZFA := f t: T :: jt � 0j g

Remark that � 0 is total, that is, (= T) � (� 0) .

126

Appendix B

ADAM’s Type Theory

In this appendix we de�ne the type theory ATT that forms the foundation of the language
ADAM described in chapter 2. It includes impredicative propositions, a hierarchy of
universes, strong sums for non-propositions, naturals, �nite types, and equality types�a
la Martin-L•of. Without the naturals, �nite types, and equality types, it would be Luo's
Extended Calculus of Constructions [48].

As this calculus serves merely as a logical foundation, notational convenience is not
of primary importance. However, we include a few derived notations to make direct
employment of the calculus, as in the examples of appendixC, more comfortable.

We also outline a set-theoretical semantics of the calculus inB.10, assuming a su�-
ciently strong set theory.

B.1 Abstract syntax

We have the following abstract syntax for terms and contexts, where `::=', j̀', `f ', `g',
and `.' are metasymbols, andT � stands for a possibly empty list of expressions from
classT . We assume a syntax classVar of variables, a classConst of constants, and a
class Nat of naturals, with addition `+' and comparison ` < ', to be used for indexing
constants.

Term ::= Var

j Const(Term;�)

j (Var :: Term) :

Context ::= f Var : Term; g� :

Statement ::= Term: Term :

So (abstract) terms are built from variables, constants with a list of arguments, and
abstractions (v :: t), which are like �v:t in lambda calculus. As in typed lambda calculus
�a la Curry, abstractions do not carry the type of the bound variable with them, so terms
will not have unique types.

A context � consists of a sequence of assumptions of the formv: T, where v is a
variable and T a term (representing the type of v). We will de�ne a derivability relation

B.2. META-PREDICATES 127

� ` t: T . The intended meaning is that, for any correct assignment of values to the typed
variables in �, term t represents a value of typeT.

We write ` ' for an anonymous variable. Among the constants inConst we use the
following primitive ones, listed with their arity, notational sugar, and intended meaning.

Prop 0 Type of all propositions
Type i 0 for any Nat i Type of all types of level i
� 1 Cartesian product of a family of types
@ 2 f (a) := @(f; a) Selecting a component from a tuple or function
� 1 Disjoint sum of a family of types
(;) 2 (a; b) := (;)(a; b) Element of a disjoint sum
� elim 1 Elimination on a disjoint sum
n 0 for any Nat n Finite type with elements 0; : : : ; n � 1
(;n) n for any Nat n; (a0; : : : ; an� 1) := (;n)(a0; : : : ; an� 1)

Element of a cartesian product over �nite type n
IN 0 Type of natural numbers
s 1 Successor of a natural
IN rec 2 Recursion over the naturals
8 1 Universal quanti�cation of a family of propositions
hyp 1 Proof of a universal proposition by hypothesis
app 1 Application of a proof of a universal proposition
9 1 Prop. stating existence of an inhabitant of a type
9 in 1 Proof of an existential proposition
9 elim 1 Elimination on an existential proposition
= 1 (a = A a0) := @(=(A); (;2)(a; a0))

Equality predicate on any type
eq 0 Trivial proof of equality
ac 1 Proof by the axiom of choice

Parentheses may be omitted when no ambiguity arises.

B.2 Meta-predicates

The calculus de�nes a substitution operation and two predicates on terms and contexts.

B.2.1 Substitution. s[v := t] for terms s, t and variable v, or more generallys[�]
where � is a list of single substitutions, f Var := Term; g� � , is de�ned as usual:

v[�] := t if in(f v := tg; �), for some t

v[�] := v otherwise

c(t0; : : : ; tn� 1)[�] := c(t0[�]; : : : ; tn� 1[�])

(w :: s)[�] := (w0 :: s[w := w0][�]) (w0 free in neither (w :: s) nor �)

The use of named variables may of course be replaced by some numbering scheme.

128 APPENDIX B. ADAM'S TYPE THEORY

B.2.2 Reduction. Reduction is a reexive and transitive binary predicate t = > t 0

on terms. It is inductively de�ned by structural rules

t = > t
t = > t 0 t0 = > t 00

t = > t 00

t i = > t 0
i (i = 0 ; : : : ; n � 1)

c(t0; : : : ; tn� 1) = > c(t0
0; : : : ; t0

n� 1)

t = > t 0

(v :: t) = > (v0 :: t0[v := v0]) (v0 not free in (v :: t))

and rules related to speci�c constants:

(v :: b)(a) = > b[v := a]

� elim(t)(a; b) = > t (a)(b)

(t0; : : : ; tn� 1)(k) = > t k

IN rec(b; t)(0) = > b

IN rec(b; t)(sx) = > t (x)(IN rec(b; t)(x))

Two terms are called convertible when they reduce to the same thing: t == t0 when
there is some termt00such that t = > t 00and t0 = > t 00.

Reduction has the Church-Rosser property: ift = > t 0 and t = > t 00, then t0 = > t 000

and t00= > t 000for some term t000. Hence we have that convertibility is transitive.

B.2.3 Derivable judgements. A judgement consists of a context � and two terms
t, T. Derivability of judgements is denoted by an in�x turnstyle and colon, `� ` t: T ',
and is de�ned by a set of rules. Intuitively, such a judgement represents the assertion
that for any assignment to the variables in � of values of the respective type, the term
t denotes a value of the type denoted byT. See sectionB.10 for a formal semantics.

The structural rules for variable occurrences are:

� ` A: Type i

�; v: A ` v: A
(B.1)

� ` t: T
� ` A: Type i

�; v: A ` t: T
(B.2)

and the type T of a judgement may be replaced by a type that is convertible toT:

� ` t: T
T == T0

� ` t: T0 (B.3)

The rule for introducing a bound variable is

�; x: A ` b: Bx

� ` (x :: b): �(A; B)
(B.4)

B.3. UNIVERSES 129

All other rules are of the form
� ` t0: T0

...
� ` tn� 1: Tn� 1

� ` t0: T0

for arbitrary �, and we will write them on a single line, as

t0: T0; : : : ; tn� 1: Tn� 1 ` t0: T0

As a derived rule, derivability is closed under substitution:

�; x: A; � 0 ` t: T
� ` a: A

�; � 0[x := a] ` t[x := a] : T[x := a]

B.3 Universes

A universe is a type whose elements are types themselves. There is a universeProp of
propositions and a cumulative hierarchy of universesType i , each being an inhabitant
of the next one.

` Prop : Type 0 (B.5)

` Type i : Type i +1 (B.6)

P: Prop ` P: Type i (B.7)

T: Type i ` T: Type j when i < j (B.8)

If the subscript i of Type is irrelevant, it will not be shown.

B.4 Products

The type �(A; B) is thought of as the product of all Bx for x: A; see rule (B.4) for
introducing its elements.

In the following rules exponentiation of types is used,TA , which stands itself for a
product type �(A; (:: T)). So we have` (x :: t): TA when x: A ` t: T and x doesn't
occur free in T. Rule (B.14) (extensionality) refers to the equality predicate described
in section B.8.

A: Type i ; B : Type A
i ` �(A; B): Type i (B.9)

A: Type i ; P : Prop A ` 8 (A; P): Prop (B.10)

f : �(A; P) ` hypf : 8(A; P) (B.11)

f : �(A; B); a: A ` fa : Ba (B.12)

p: 8(A; P); a: A ` app(p; a): Pa (B.13)

f; g : �(A; B); h: 8(A; (x :: fx = Bx gx)) ` h: (f = �(A ;B) g) (B.14)

130 APPENDIX B. ADAM'S TYPE THEORY

A pair (A; B) as in (B.9) is called a family of types. We de�ne the following alternative
notations. In the �rst one, variable v may occur in B .

(v: A :: B) := (A; (v :: B))

B A := �(: A :: B)

P) Q := 8(: P :: Q)

B.5 Sums

In the rules for strong �, we use a primitive constant � elim rather than operations fst
and snd.

A: Type i ; B : Type A
i ` �(A; B): Type i (B.15)

B : Type A ; a: A; b: Ba ` (a; b): �(A; B) (B.16)

T: Type �(A ;B) ; t: �(x: A :: �(y: Bx :: T(x; y))) ` � elimt: �(�(A; B); T)(B.17)

Thus, the expression �̀ elim(x :: (y :: txy))' denotes the function that maps (x; y) to txy .
A pattern-matching notation suggestive of this is given in sectionB.11.

B.6 Finite types

Any Nat n denotes a type with n elements, named by theNat 's 0 till n � 1.

` n: Type i (B.18)

` k: n where k < n (B.19)

T: Type n ; t i : T(i) for i < n ` (t0; : : : ; tn� 1): �(n; T) (B.20)

Sequences of arbitrary length are denoted using angle brackets. This allows elegant
de�nitions of �nite products and sums:

ht0; : : : ; tn� 1i := (n; (t0; : : : ; tn� 1))

B0 � B1 := � hB0; B1i

B0 + B1 := � hB0; B1i

Q0 ^ Q1 := 8hQ0; Q1i

B.7 Naturals

The rules for naturals are exactly as inADAM , paragraph 2.9.1.

` IN: Type i (B.21)

` 0: IN (B.22)

x: IN ` sx: IN (B.23)

T: Type IN ; b: T(0); t: �(x: IN :: �(h: Tx :: T(sx))) ` IN rec(b; t): �(IN; T)(B.24)

B.8. EQUALITY 131

B.8 Equality

Rules for the equality predicate are the following.

a: A; b: A ` (a = A b): Prop (B.25)

a: A ` eq: (a = A a) (B.26)

: (A = Type B); a: A ` a: B (B.27)

P; Q: Prop ; h: (P) Q) ^ (Q) P) ` h: (P = Prop Q) (B.28)

P: Prop ; p; q: P ` eq: (p = P q) (B.29)

This simple version of type conversion (B.27) has a drawback: correct terms need not
normalize, because in an inconsistent context any two types can be proven equal. One
has, for example,

A: Type ; h: (A = Type (A ! A)) ` (x :: xx)(x :: xx): A :

An explicit conversion construct, as suggested inC.3.2, third point, would prevent this.
In any case, terms that are correct in the empty context reduce to head normal form.

There must be an equality rule for all language constructs, stating that two terms
constructed from equal subterms are equal. We do not list all these, but one simple and
two more complicated cases are:

a = A a0; b = B b0 ` (a; b) = A� B (a0; b0) (B.30)

A = Type A0; B = Type A B 0 ` �(A; B) = Type �(A0; B 0) (B.31)

A = Type A0; (a; b) = A 2 (a0; b0) ` (a = A b) = Prop (a0 = A 0 b0) (B.32)

This su�ces to derive symmetry and transitivity of equality. But rules like (B.31) have
a snag: the type ofB 0: Type A 0

has to be converted via (B.27) to get B 0: Type A . An
alternative would be to use an equality predicate indexed bytwo type expressions, which
have to denote equal types, thus:

: A = B ; a: A; b: B ` (a A = B b): Prop

B.9 Existential propositions

As discussed in appendixC, we add strong existential propositions and the axiom of
choice. For A a type, 9A means À is inhabited'.

A: Type i ` 9 A: Prop (B.33)

a: A ` 9 in a: 9A (B.34)

T: Type 9A ;
t: �(x: A :: T(9 in x));
d: 8(x; y: A :: tx = ty) ` 9 elim(t): �(9A; T) (B.35)

B : Type A ; p: 8(x: A :: 9(Bx)) ` acp: 9 �(A; B) (B.36)

132 APPENDIX B. ADAM'S TYPE THEORY

Note: in appendix C we write 9 elim(tj; d), rather than 9 elimt, to make the proof
obligation d explicit.

As discussed inC.3.2, we cannot use a reduction rule9 elim(t)(9 in a) = > ta . Rather
we add an equation:

` eq: (9 elim(t)(9 in a) = ta) (B.37)

B.10 Semantics

We wish to assign a simple set-theoretical semantics [[t]]� to terms t (under valuation
�), such that any function f : A ! B simply denotes the set of pairsf x: 2 [[A]]� ::
hx; [[f]]�:x i g . Unfortunately, an abstraction (v :: t) doesn't show up the type A of its
bound variable v. Therefore we introduceannotated terms, where abstractions (v ::A t)
are annotated with this type A. Annotated terms are given by:

ATerm ::= Var

j Const(ATerm ;�)

j (Var ::ATerm ATerm) :

For any Term t, we de�ne its class ofannotations, a subclass ofAterm .

� The only annotation of a variable v is v;

� An annotation of c(t0; : : : ; tn� 1) is c(t0
0; : : : ; t0

n� 1) where eacht0
i is an annotation of

t i .

� An annotation of an abstraction (v :: t) is (v ::A 0 t0) where A0 is any ATerm and t0

is an annotation of t.

All propositions denote subsets off;g . In particular, we will have [[False]]� = ; and
[[True]]� = f;g , and all terms that denote proofs are mapped onto the empty set; . Thus,
our semantics pays no respect to the computational contents of proofs.

For any Const c and any list of sets �s of length arity of c, we de�ne a set [[c]](�s).
Empty argument lists are omitted. Note that we use the set encoding of sectionA.2.

[[Prop]] := Pf;g

[[8]](hA; P i) := f ; j : 8x: 2 A :: ; 2 P(x)g

[[9]](A) := f ; j : 9x: 2 A :: Trueg

[[hyp]](x); [[app]](x; y); [[9 in]](x); [[ac]](x); [[eq]]

:= ;

[[9 elim]](t) := f p: 2 t :: h;; sndpi g

[[�]](hA; B i) := f f : 2 (
[

codB)A j: 8x: 2 A :: f (x) 2 B (x)g

[[@]](f; a) := f (a)

[[�]](hA; B i) := f x: 2 A; y: 2 B (x) :: hx; yi g

[[;]](a; b) := ha; bi

[[� elim]](t) := f x: 2 domt; y: 2 domt(x) :: hhx; yi ; t(x)(y)i g

B.10. SEMANTICS 133

[[n]] := n

[[;n]](t0; : : : ; tn� 1) := fh0; t0i ; : : : ; hn � 1; tn� 1ig

[[IN]] := !

[[s]] := f x: 2 ! :: hx; x + 1 i g

[[IN rec]](b; t) :=
\

(f : � ! � domt(0) j:

h0; bi 2 f ^ 8hx; yi : 2 f :: hx + 1 ; t(x)(y)i 2 f)

[[=]](A) := f x; x 0: 2 A :: h[[;2]](x; x 0); f ; j : x = x0gi g

[[Type i]] :=
\

(U j: ! � U ^ [[IN]] ; [[Prop]] 2 U

^ 8 A: 2 U; B : 2 UA :: [[�]] hA; B i ; [[�]] hA; B i 2 U

^ 8 j : < i :: [[Type j]] 2 U)

The last line gives an iterated inductive de�nition of [[Type i]] of the form
T

(U j: F:U �
U) for a monotonic functor F that is not bounded in the sense of section8.1. Existence
of such an inductive set cannot be shown inZFC, for [[Type 0]] yields already a model of
ZFC (see sectionA.5). So this requires a strengthening ofZFC, that allows one to give
inductive set de�nitions with clauses of the form

8 A: 2 U; B : 2 UA :: � (A; B) 2 U :

We think a suitable large-cardinal axiom will do.
Substituting a special constant ! for i with j < ! for all Nat j , the resulting set

D := [[Type !]] may serve to model types, andE :=
S

D to model values.
A valuation is a partial function � : Var ! E . The semantics of an annotated termt

assigns to any valuation� a set [[t]]� 2 E :

[[v]]� := � (v) for Var v

[[c(t0; : : : ; tn� 1)]]� := [[c]]([[t0]]�; : : : ; [[tn� 1]]�)

[[(v ::A b)]]� := f x: 2 [[A]]� :: hx; [[b]](� j v 7! x)i g

The semantics of an annotated context �0 is a set [[� 0]] of valuations:

[[fg]] := f;g

[[� 0; v: T0]] := f � : 2 [[� 0]]; x: 2 [[T0]]� :: (� j v 7! x) g

We de�ne an annotated term to be correct in an annotated context � 0, as follows.

� Any variable v is correct in � 0

� A term c(t0; : : : ; tn� 1) is correct in � 0 if each t i is correct in � 0 and moreover, if c
is @ andn is 2, then

8� : 2 [[� 0]] :: [[t1]]� 2 dom[[t0]]�

and if c is 8, �, or �, and n is 1, then

8� : 2 [[� 0]] :: fst[[t0]]� = dom snd[[t0]]�

134 APPENDIX B. ADAM'S TYPE THEORY

� An abstraction (v ::A b) is correct in � 0 if b is correct in � 0; v: A

Validity is de�ned by:

� 0 j= t0: T0 := 8� : 2 [[� 0]] :: [[t0]]� 2 [[T0]]�

� 0 j= s0 = t0 := 8� : 2 [[� 0]] :: [[s0]]� = [[t0]]�

Now, we hope to have a theorem like the following, but the details of assigning annota-
tions are tricky:

Conjecture (Soundness).

1. If � ` T : Type , and � 0; T0 are correct annotations of � ; T , and if s == t and s0; t0

are correct annotations ofs; t in � 0 and � 0 j= s0; t0: T0, then � 0 j= s0 = t0

2. If � ` t: T , then for any correct annotations � 0; T0 of � ; T , there is a correct
annotation t0 of t such that � 0 j= t0: T0

B.11 More derived notations

B.11.1 � -elimination. One may use the following notations for elimination on a
�-type.

((x; y) :: txy) := � elim(x :: (y :: txy))

fst := ((x; y) :: x)

snd := ((x; y) :: y)

B.11.2 Subtypes. When A is a type, and P a predicate onA, then �(A; P) repre-
sents the type of all a: A that come with a proof p: Pa. As all proofs of a proposition are
equal, we have that (a; p) = (a0; p0) just when a = a0. This type gets a special notation.

f x: A j: Pxg := �(x: A :: Px)

(aj; p) := (a; p)

One may read j̀:' as \such that" and ` j;' as \because of". Both bind weaker than `::'.
As the proof componentp of (aj; p) is irrelevant, we sometimes write just a.

135

Appendix C

Proof elimination in Type Theory

When Type Theory is to be used as a fully edged foundation of mathematics, presence
of powersets, or equivalently impredicative propositions, is indispensable. We remark
that, e.g., the `iota' or Frege's description operator denoting the element of a one-element
set is not representable in current type theories. We propose an existential quanti�er
with a new elimination rule, and show how the iota operator and quotient types are then
representable. We use a version of type theory that uni�es �nite and in�nite products
and sums in a particularly elegant way.

This material was distributed earlier, together with appendix B, as report [15].

C.1 Introduction

The basic thought of Brouwer's intuitionistic logic was, a proposition should only be
acknowledged as true if we have a construction validating its truth. Martin-L•of's In-
tuitionistic Type Theory (ITT) [56] was developed to clarify this: a proposition was
identi�ed with its set of constructions, called a type, and proofs were identi�ed with
constructions. From a construction for the existential statement 9(x: A :: Bx), which
is identi�ed in ITT with the generalized sum type �(x: A :: Bx), one can construct the
witnessing element ofA by the function fst: �(x: A :: Bx) ! A.1

ITT does not allow impredicative quanti�cation; it makes no sense to the orthodox
intuitionist to quantify over the class of all propositions before this class is completed. If
Type 0 is a universe of types, then types involvingType 0 cannot reside inType 0 itself.

In traditional set theory, on the other hand, even in a constructive version, onecan
construct the powerset PT of any set T. This is a set whose elements are de�nable
by arbitrary predicates on T, even those involving quanti�cation over the powerset PT
itself. Thus, the class of propositions is considered to be understooda priori .

Coquand and Huet introduced a type theory, the Calculus of Constructions (CC) [21],
that has a type of propositions (Prop , residing insideType 0) that allows impredicative

1Subscripts stand for variables that may occur in an expression. The symbol '::' separates typed
bound variables from the body of a quanti�cation. We have (x :: bx): �(x: A :: B x).

136 APPENDIX C. PROOF ELIMINATION IN TYPE THEORY

quanti�cation. The system has no �-constructor. While Luo [48] added (strong) � for
the higher type universes, it cannot be consistently added forProp [43]. (Propositions
in Prop are normally interpreted as sets that have at most one element, but � builds
types with more elements.) One can only de�ne weak existential quanti�cation:

9w(x: A :: Px) := 8(X : Prop :: 8(x: A :: Px) X)) X)

From a proof of such an existential proposition one cannot construct the witnessingx: A
inside the system, even if this witness is provably unique. Formally, there is no function
f : 9w(x: A :: Px) ! A, and not even a function f : 9w!(x: A :: Px) ! A, as CC does not
allow object construction using proof information. Addition of the latter f would be
perfectly valid in the standard set interpretation.

Now, our purpose is to develop type theory into a complete alternative to traditional
set theory as a foundation of mathematics. It is not our purpose to extract programs
from constructions by omitting redundant proof information. Any kind of reasoning
representable in set theory (but not speci�c to sets) should be representable in our type
theory. This involves:

� An impredicative universe of propositions (Prop) should be present, so that pow-
ertypes are de�nable: PT := (T ! Prop). This makes a type theory into a topos.
Two propositions are equal if they are equivalent. Two proofs of the same propo-
sition are always equal. We will use some appropriate set notations, particularly
`2 ' for subset membership.

� Extra rules for equality types should be present, including type conversion and
extensionality. This is standard in ITT, not in CC. A readable notation for fully
formal equality proofs is missing. We will use a semi-formal notation, which should
guarantee the existence of a proof object.

� For any ordinarily de�nable object, there should be an expression in type theory
denoting it. Equivalently, function comprehensionshould be possible: from a proof
that a relation R: P(A � B) is single valued, the corresponding functionf : A ! B
should be constructible.

In this paper we take a type theory that satis�es the �rst two requirements, and study the
last point. Traditionally, a (constructive) object de�nition may consist of a description,
being a predicate together with a (constructive) proof that the predicate is satis�ed by
one and only one object. Gottlob Frege [31, x 11] introduced a description operator �̀ '
(iota) into predicate calculus to denote this object. In a type theory where propositions
are distinguished from types, like CC, one cannot obtain the object from the proof.

Let T be the subtype of objects satisfying the predicate. Assume we have

p: 9x: T :: 8y: T :: x = T y :

We need an expression that extracts the object, say�T (p): T. Rather than adding primi-
tive rules for � , we propose an equivalent principle in sectionC.3 for making use of proof
information in object expressions.

C.2. THE BASIC SYSTEM 137

An essentially equivalent principle is proposed by Pavlovi�c in [71, par. 32], but not
worked out. The `new set type' f x : AjjPxg proposed by Constable [19, section 3.1]
for Nuprl is based on the same idea too, but doesn't really increase the strength of the
system: as Nuprl has no impredicative propositions, one can use a �-type modulo the
appropriate equivalence.

C.2 The basic system

In this paper, we use the variant of type theory described in appendixB, which includes
impredicative propositions, a hierarchy of universes, strong sums for non-propositions,
�nite types and equality types �a la Martin-L•of.

Although proofs of propositions always have a proof expression, we won't often show
this expression. A really practical formal language for proofs would be much more
elaborate. Rather, we use the usual informal language to describe proofs.

In our expressions we will also usegoal variables, starting with a question mark like
`?1', and usually followed by a typing. These represent subexpressions to be de�ned
later on. All names that are visible in the context of a goal variable may be used in its
de�nition as well.

C.3 Strong existence

C.3.1 New rules

We introduce a new existential quanti�er with a stronger elimination rule than one has
for 9w as de�ned in section C.1. Actually, we de�ne 9 not as a quanti�er, but as a
constructor operating on types, see rule (C.1). The quanti�er is then recovered via the
subset type by

9(A; P) := 9f x: A j: Pxg :

The rules are suggested by viewing the proposition9T as the quotient type of T
modulo the equivalence relation that identi�es everything in T. This quotient type
contains at most one equivalence class indeed.

A: Type ` 9 A: Prop (C.1)

a: A ` 9 in a: 9A (C.2)

T: Type 9A ;
t: �(x: A :: T(9 in x));
d: 8x; y: A :: tx = ty ` 9 elim(tj; d): �(9A; T) (C.3)

Note that d is not always shown. The expected reduction rule is

9 elim(tj; d)(9 in a) = > (ta) ; (C.4)

but see the next subsection.

138 APPENDIX C. PROOF ELIMINATION IN TYPE THEORY

C.3.2 Di�culties with reduction to canonical form

Looking at (C.4), we see that in order to reduce anobject expression `(9 elimt)(p)' one
must obtain the canonical form of the proof expressionp. Therefore, if we wish to
preserve the attractive property of constructive type theory that any closed expression
of some type is reducible to head canonical form for that type, we must take care of the
following points.

� Proof information is no longer irrelevant and cannot be removed from some lan-
guage constructs. For example, objects of a subtypef x: A j: Pxg cannot be just
single a: A for which there exists a proofp: Pa, but must really be pairs (aj; p).

� There should be reduction rules for all noncanonical constructs for proof objects.
For example, if we have theaxiom of choice (which holds trivially in pure ITT,
without Prop , by the identi�cation of proofs and constructions),

B : Type A ; p: 8(x: A :: 9(Bx)) ` acp: 9 �(A; B) ; (C.5)

then we must also add a reduction rule to the e�ect that

ac(x :: 9 in bx) = > 9 in(x :: bx) : (C.6)

Here we encounter a serious problem: not allp: 8(x: A :: 9 Bx) reduce to the form
(x :: 9 in bx). An ad-hoc solution is to make both 9 in and ac implicit, so that
reduction rule (C.6) becomes void. An alternative is to use anuntyped 9 out, and
reduction rules:

acp = > 9 in(x :: 9 out(px))

9 out(9 in a) = > a

� Rule (B.28) says that equivalent propositions are equal. However, a canonical proof
term of a proposition need not be a canonical term of an equivalent proposition.
Therefore, the type-conversion rule (B.27) has to specify a conversion on terma
too. The rule might look like

e: (A = Type B); a: A ` (e �> a): B

together with a bunch of reduction rules for all constructs that prove equality
between types.

In short, the system appears to become rather ugly.
We aim for elegance and therefore choose to part with this property of reduction to

canonical form. However, as the calculus is still constructive, one may devise a procedure
to extract from a given proof a separate term containing its computational content.
Several implemented type theories, including Nuprl and the Calculus of Constructions,
do already use such a procedure.

C.4. APPLICATIONS 139

C.4 Applications

C.4.1 Iota

C.4.1 From `exists' to `iota'. Now, using 9 elim we can de�ne � , the construct
that, from a proof that a type has a unique element, constructs that element. First,
!A is the subtype that, if A has a unique element, contains that single element, and is
empty otherwise. Next � is de�ned by a 9 elim on fst: !A ! A, with a very simple proof
that fst does always yield the same result on !A.

!(A: Type) := f x: A j: 8y: A :: x = A yg

�A : 9!A ! A := 9 elim(fst j; (xj; p); (yj; q): !A :: py(: x = y))

C.4.2 From `iota' to `exists'. The converse is also possible: we can derive (C.1{
C.3) with 9 de�ned as 9w when we assume�A : 9!A ! A.

9(A: Type) := 8(X : Prop :: 8(x: A :: X)) X)

9 in(x: A) := (X :: (h :: hx))

9 elim(tj; d) := (p: 9A :: ?1:Tp)

The context of the goal ?1 is

t: �(x: A :: T(9 in x));
d: 8x; y: A :: tx = ty ;
p: 9A :

To solve ?1:Tp, we de�ne S to be the subtype containing all tx for x: A,

S := f u: Tp j: 9x: A :: u = tx g :

Such a type might be noted asf x: A :: tx g. For x: A let six: S := (tx j; 9 in(xj; eq)) be
the correspondingS-element.

Using p and d we can prove that S has a unique element:

s: 9!S := p(9!S)(x: A :: 9 in(six j; (yj; e): S :: ?2:tx = y)) :

The de�nition of ?2, using d and e: 9(x: A :: y = tx), is left to the reader. Then we take

?1 := fst(�Ss) :

C.4.2 Quotient types

Another application arises with quotient types. These are sometimes added to type
theory as primitives [18], but with the strong-existence construct we cande�ne them in
much the same way as they are de�ned in set theory. Furthermore, there is a construction
dealing with quotient types that should follow from the rules, but which is not derivable
in ordinary type theory.

140 APPENDIX C. PROOF ELIMINATION IN TYPE THEORY

C.4.3 Speci�cation. We wish quotient types to satisfy the following rules:

A: Type ; R: PA2 ` A==R: Type (C.7)

a: A ` == inR a: A==R (C.8)

x; y: A; r : (x; y) 2 R ` == inR x = == inR y (C.9)

T: Type A==R ;
t: �(x: A :: T(== in x));
d: 8(x; y): 2 R :: tx = ty ` == elim(tj; d): �(A==R; T) (C.10)

== elim(t j; d)(== in a) = > ta (C.11)

A typing `(x; y): 2 R' abbreviates x; y: A; r : (x; y) 2 R. Note that it is not necessary
to require that R be an equivalence relation. Note also that the rules for9 are exactly
those for == with R instantiated to the total relation ((x; y) :: True), except that 9A is a
proposition rather than only a type.

C.4.4 Implementation. We present a de�nition of quotient types satisfying the
speci�cation above. It corresponds to the normal set-theoretic construction: A==R is
the subtype of those subsets ofA that are equivalence classes of somex: A, where the
equivalence class ofx is the least subset ofA that contains x and is closed underR.

Let Equiv(Q: PA2) be the proposition stating that Q is an equivalence relation. First
we de�ne the in�x relation � R , read `equivalent modulo R' as the least equivalence
containing R. The so-called `section' (x � R): PA stands for the predicate (or subset)
(y :: x � R y), which is the equivalence class ofx.

(� R) :=
\

(Q: PA2 j: R � Q ^ EquivQ)

A==R := f P: PA j: 9x: A :: P = (x � R) g (= f x: A :: (x � R)g)

== inR (x: A) := ((x � R) j; 9 in(xj; eq))

== elim(t j; d) := ((P j; e) :: 9 elim((xj; p) :: (?1)tx j; (xj; p); (yj; q) :: ?2:tx = ty) e)

The goal variables in this last de�nition still have to be �lled in. From the required
typing (C.10) of == elim one can deduce that the types of the bound variables are:

t: �(x: A :: T(== in x))
d: 8(x; y): 2 R :: tx = ty
P: PA
e: 9x: A :: P = (x � R)
x: A; p: (P = (x � R))
y: A; q: (P = (y � R))

So the subexpressiontx has type T(== inR x), while type T(Pj; e) is required. A type
conversion can be inserted at ?1, for:

== inR x

= ((x � R) j; 9 in(xj; eq)) f de�nition == ing

= (Pj; e) f by p: (P = (x � R)), and proof equalityg

C.4. APPLICATIONS 141

Next, a proof for tx = ty has to be inserted at ?2. Remark that we have (x � R) = (y � R)
by assumptionsp and q, hencex � R y follows from y � R y.

tx = ty

(8 x; y: A :: (x � R y) tz = ty) f becausex � R yg

, (� R) � Q f taking Q := ((x; y) :: tx = ty) g

(R � Q ^ EquivQ f de�nition � Rg

, True f by d, and Q being an equivalenceg

This completes the de�nition of == elim.
Finally, (C.9) is derivable:

== inR x = == inR y

((x � R) = (y � R) f de�nition == in, and proof equalityg

, 8 z: A :: (x � R z) = (y � R z) f extensionalityg

(x � R y f� R is an equivalenceg

((x; y) 2 R f R � (� R)g

C.4.5 A problem with quotients. Let's return to the basic system, without our
strong existence rules. Rules for quotient types (C.7{ C.11) may be (and have been)
added as primitive rules. We present a speci�cation that cannot be solved by these
rules, presumably. The rules from sectionC.3, including the axiom of choice (C.5), do
solve it.

Assume we have a quotient typeA==R, where R is an equivalence relation, and a
function f on in�nite A-tuples that respectsR:

A: Type ; R: PA2; EquivR

f : A ! ! A

u; v: A ! ` 8 (i : ! :: (ui ; vi) 2 R)) (fu; fv) 2 R

(In relational notation, the latter property may be expressed as (f; f) 2 R! ! R.)
The problem is to construct a corresponding function onA==R:

f 0: (A==R)! ! A==R such that 8u: A ! :: f 0(i :: == in ui) = == in(fu)

We would naturally expect this to be possible as follows. Suppose we have a tuple
x: (A==R)! . Then:
1. For any i : ! there exists au: A with x i = == in u.
2. Thus there exists, by the axiom of choice, a tupley = (i :: yi) with x i = == in yi .
3. For such ay, one has== in(fy): A==R.
4. The property of f says that the value of== in(fy): A==R is independent of the partic-
ular choice of theyi | had we chosen other values zi with x i = == in zi , then would any
zi be in the same equivalence class asyi , so (yi ; zi) 2 R for all i , and hence (fy; fz) 2 R,
so == in(fy) = == in(fz).
5. Thus, we can de�ne f 0(x) := == in(fy) where y is chosen as in step 2.

142 APPENDIX C. PROOF ELIMINATION IN TYPE THEORY

When we try to formalize this, we get stuck. The problem is that the quotient
elimination rule (C.10) eliminates only a single element at a time. Repeated application
works for a �nite number of elements, but we have to eliminate anin�nite number.

One might replace (C.10) with a stronger rule, but that would miss the point as the
present rules already determineA==R uniquely, up to isomorphism.

C.4.6 Our solution. We show how the 9-rules together with the axiom of choice
(C.5) solve the problem.

Assumex: (A==R)! . We make the following steps, mirroring the proof above.

s1:8x: A==R :: 9u: A :: x = == in u

:= == elim(u :: 9 in(uj; eq))

s2:9 �(i : ! :: f u: A j: x i = == in ug)

:= ac(i :: s1(x i))

s3: �(i : ! :: f u: A j: x i = == in ug) ! A==R

:= (y :: == in(f (i :: fst yi)))

s4:8(y; z: �(i : ! :: f u: A j: x i = == in ug) :: s3(y) = s3(z))

:= ?1

s5:A==R := s2n 9 elim(s3 j; s4)

The skipped proof ?1 runs as follows, for giveny, z:

s3(y) = s3(z)

((f (i :: fst yi); f (i :: fst zi)) 2 R f by (C.9)g

(8 i : ! :: (fst yi ; fst zi) 2 R f for f respectsRg

(8 i :: 8(uj; e); (vj; e0): f u: A j: x i = == in ug :: (u; v) 2 R f Type of yi , zi g

(8 u; v: A; == in u = == in v :: (u; v) 2 R

To prove this last proposition, assuming== in u = == in v:

(u; v) 2 R

, == in un == elim(u :: (u; v) 2 R j; ?2) f by ==-reduction and ?2 belowg

, == in vn == elim(u :: (u; v) 2 R j; ?2) f assumptiong

, (v; v) 2 R f by ==-reductiong

, True f R is reexiveg

Finally, ?2: 8(u; u0): 2 R :: ((u; v) 2 R) = ((u0; v) 2 R) is solvable by symmetry and
transitivity of R, and propositions being equal when they are equivalent.

C.4.3 Inductive types

In set theory, the existence of a single in�nite set ! su�ces to construct all inductive
sets, for example by the construction of Kerkho� [45]. The new rules allow us to mirror
this construction in our strong type theory, as is shown in section8.2 of this thesis.

C.5. CONCLUSION 143

C.5 Conclusion

Set theory is embeddable in type theory, by de�ning a big typeSet : Type 1 and a relation
(2): PSet2 such that all ZF axioms are formally derivable. Such a model is de�ned in
section A.5. This implies that type theory is stronger than ZF set theory (because of
the extra universes), but only at the level of �rst order propositions about sets.

However, as to construct objects of other types, or to construct new types (within
the universeType 0), there are constructions possible in set theory that cannot be done
in current type theories. We have shown how the addition of a rule for strong proof
elimination �lls this de�ciency. Some type constructors (quotients, inductive types) that
have been proposed as primitives become derivable.

We have seen that, if one wishes to use the logic of type theory as a reduction
system, our new principle resists the idea of proof irrelevance (sectionC.3.2). To avoid
complications in the proof system, we suggested to distinguish terms as they occur in
the proof system from reducible terms as they may be extracted from proofs.

144

Appendix D

Naturality of Polymorphism

From the type of a polymorphic object we derive a general uniformity theorem that
the object must satisfy. We use a scheme for arbitrary inductive type constructors.
Applications include natural and dinatural transformations, promotion and induction
theorems. We employed the theorem in section6.3 to prove equivalence between di�erent
recursion operators.

The issue was suggested to us by J.G. Hughes of Glasgow University who mentioned
property (D.1) during a lecture in Groningen in October 1988. It was discussed in
Backhouse's research club which led to our theorem. After sending Hughes an earlier
version of our notes we received the draft of a paper [83] from Philip Wadler who derives
the same main theorem as we do but in a more formal setting, and gives many promotion-
like applications. His paper gave us some entries to the literature.

This is a revision of our report [14]. The notation has been partly adapted to this
thesis, and the proofs of theoremsD.2 and D.4 have been simpli�ed through replacing
inductive arguments by additional applications of the naturality theorem.

D.1 Introduction

Objects of a parametric polymorphic type in a polymorphic functional language like
Miranda or Martin-L•of-like systems enjoy the property that instantiations to di�erent
types must have a similar behavior. To state this speci�cally, we use greek letters as
type variables, andT[�] stands for a type expression possibly containing free occurrences
of � . Stating t: T[�] means that term t has polymorphic type T[�] (in some implicit
context), and hence t: T[A] for any particular type A. Such instances are sometimes
written with a subscript for clarity: tA : T [A]. Thus the quanti�cation 8� is implicit.
Some type expressionsT[�] are functorial in � . I.e., there is a polymorphic expression
T[p]: T[�] ! T [�] when p: � ! � , such that T[IA] = IT [A] and T[p �� q] = T[p] �� T [q],
where I is the identity function and (��) denotes forward function composition. It has
often been observed (e.g. [76]) that polymorphic functions f : U[�] ! V [�], where U, V
are functorial, must be natural transformations:

For any p: A ! A0, one hasf A �� V [p] = U[p] �� f A 0 : U[A] ! V [A0] (D.1)

D.1. INTRODUCTION 145

Illustration:
U[A] V [A]-f A

? ?
U[p] V [p]

U[A0] V [A0]-f A 0

For example, any function rev: � � ! � � , where � � is the type of lists over � , must satisfy
for p: A ! A0:

revA �� p� = p� �� revA 0

Unfortunately, type expression (U[�] ! V [�]) is generally not functorial itself, be-
cause (!) is contravariant in its �rst argument. One can extend statement (D.1) to
dinatural transformations in the sense of Mac Lane [51, pp. 214-218], but such a state-
ment is still not provable by induction on the derivation of type correctness of f . In this
appendix we develop a generalization to arbitrary types that is provable for all lambda-
de�nable objects of some type. The generalization allows one to derive many properties
of polymorphic objects from their type alone, properties which are conventionally proven
by induction using the de�nition of the object, for example \promotion" theorems on
functions like:

foldr: (� � � ! �) � � ! (� � ! �)

This promotion theorem says forp: A ! A0, q: B ! B 0, c: A � B ! B and c0: A0� B 0 !
B 0, if

c �� q = (p � q) �� c0: A � B ! B 0

then:
foldr(c; b) �� q = p� �� foldr(c0; qb) : A � ! B 0

If one identi�es natural numbers with objects of polymorphic type (� ! �) ! (� ! �),
one can even derive Peano's induction axiom.

The essential theorem is in fact Reynolds' abstraction theorem [75]. (The inconsis-
tency in his modelling of polymorphic objects as set-theoretic functions on the class of
all types is rather irrelevant.) The basic idea had already been given by Plotkin [74], and
a more complicated variant is formed by the logical relations of Mitchell and Meyer [62].
It was generally regarded as merely a representation independence theorem for datatype
implementations, while its implications for deriving properties of functional programs
seem to have been unrecognized at that time. Quite di�erent approaches are used in
Bainbridge, Freyd et al. [9, 32], based on dinatural transformations in a category called
LIN of certain coherent spaces and linear maps, and in Carboni et al. [17] where the so-
called Realizability Universe is constructed. Both approaches appear to be conceptually
far more complicated than Reynolds'. There is also a paper by John Gray [36] which
deals only with naturality of some particular operations like currying.

Our contribution consists of the inclusion of arbitrary initial types, some applications
of a di�erent kind than Wadler's applications, a very attractive proof of the dinaturality
property, and a proof of equivalence between two di�erent recursion operators. We
expect the theorem to hold for generalized typed lambda calculus too, but leave this to
further research.

146 APPENDIX D. NATURALITY OF POLYMORPHISM

Survey. In section D.2 we shall de�ne a typed lambda calculus, and inD.3 we show how
type constructors correspond to relation constructors. InD.4 we derive the main natu-
rality theorem; in D.5 we give some simple applications; inD.6 we derive a dinaturality
result which could not be proven directly. In D.7 we add second-order quanti�cation
and derive mathematical induction for the encoded natural numbers. InD.8 we see how
polymorphism over types that support certain operations can be treated. For a �nal ap-
plication, proving the equivalence between categorical recursion and Mendler recursion,
we refer to theorem6.4 in this thesis.

D.2 Polymorphic typed lambda calculus

The proof of the naturality theorem is by induction on the derivation of the type of an
object. So we need to specify the derivation rules of the polymorphic functional language
that we shall use. This language may be either a programming language with �xpoints,
where the semantic domain of a type is a cpo, or a purely constructive language where
types are at sets and all functions are total.

We will use typed lambda calculus. The syntax for types and for terms is:

T ::= � j (T ! T) j � T � :

t ::= x j (t t) j �x:t j � j j � elim(t �) :

Besides type variables� , we have (!) as the function type constructor, and an un-
speci�ed number of other type constructors �, each one constructing from a sequence
of types U of some �xed length the least datatype that is closed under a number of
object constructors � j . Each constructor � j has a sequence of arguments of types
Fjl [U; � U]. The types Fjl [�; �] must be functorial in � , so for q: B ! B 0 we have
Fjl [A; q]: Fjl [A; B] ! Fjl [A; B 0]. The functions Fjl [A; q] are required to preserve rela-
tions too (D.3), but this is guaranteed by naturality. We use a categorical elimination
construct � elim (compare Hagino [37]), from which other eliminators may be de�ned.

Note that we often write a single meta-variable, like Ù', to stand for a sequence,
`U0; : : : ; Un� 1'. Furthermore, a type expression Ù ! V ', where U is a sequence, stands
for `U0 ! � � � (Un� 1 ! V)'.

The derivability judgement ` t has type T under the assumptions x j : Sj ' is noted
x: S ` t: T , and is generated by the following rules:

x: S ` x j : Sj f Var-intro g
x: S ` f : U ! V ; x: S ` u: U) x: S ` (f u): V f (!)-elimg

x: S; y: U ` v: V) x: S ` �y:v : U ! V f (!)-intro g
x: S ` � j : Fj [U; � U] ! � U f �-intro g

x: S ` vj : Fj [U; V] ! V (each j)) x: S ` � elim(v): � U ! V f �-elim g

There is an untyped congruence relation (==) on terms, called conversion, which is
generated by:

(�y:v u) == v[y := u]

(� elim(v) (� j d)) == (vj (Fj [�; � elim(v)] d))

D.3. TURNING TYPE CONSTRUCTORS INTO RELATION CONSTRUCTORS 147

We will de�ne a typed extensional equivalence in sectionD.3. In section D.7 we will
add second-order quanti�cation (in terms of which initial and �nal datatypes can be
de�ned).

Note that we derive the theorem using only lambda terms, without any reference to
models. One can derive the same results as we do in an arbitrary model, see Wadler [83].

D.3 Turning type constructors into relation constructors

Observe that, although we cannot extend a functionp from A to A0 to a function from
(U[A] ! V [A]) to (U[A0] ! V [A0]), property (D.1) suggests us to consider the binary
relation between f : U[A] ! V [A] and f 0: U[A0] ! V [A0] that is given by f �� V [p] =
U[p] �� f 0. We will use this observation to extend a relation (instead of a function)
betweenA and A0 to one betweenT[A] and T[A0].

De�nition. A relation R: � A � A0 is a set of pairs of terms of typesA and A0, taken
modulo conversion. (Had we used a programming language permitting the construction
of non-terminating programs then we would use elements of the corresponding cpo's and
R would be required to be closed under directed limits: ifV � R is (pairwise) directed,
then

F
V 2 R. In particular, (? A ; ? A 0) 2 R as ? is the limit of the empty set.)

While we use a colon (:) for typing, (2) denotes relation-membership.

De�nition. We will lift any type-constructor � to a relation-constructor such that for
any relation sequenceR: � A � A0 (i.e. Ri : � A i � A0

i) one has:

� R: � � A � � A0

First, as (A ! B) is the greatest type such that for f : A ! B one has8x: A : fx : B , we
de�ne for Q: � A � A0, R: � B � B 0:

Q ! R := f (f; f 0): (A ! B) � (A0 ! B 0) j: 8(x; x 0): 2 Q : (fx; f 0x0) 2 Rg (D.2)

That is to say, the pair of functions should map related arguments to related results, as
illustrated by:

A B-f

oQ oR

A0 B 0-f 0

If � � is the initial type that is closed under object-constructors

� j : Fj [�; � �] ! � �

where eachFjl may be interpreted as a relation constructor that satis�es for relations
P; Q: � � A � � A0, R: � A � A0

8(g; g0): 2 P ! Q : (Fjl [A; g]; Fjl [A0; g0]) 2 Fjl [R; P] ! Fjl [R; Q] ; (D.3)

and preserves identity, then we de�ne � R to be the least relation that is closed under:

(� j ; � j) 2 Fj [R; � R] ! � R (D.4)

This makes sense since forP � Q we haveFj [R; P] � Fj [R; Q] by (D.3), taking g and
g0 to be the identity I.

148 APPENDIX D. NATURALITY OF POLYMORPHISM

Thus, the induction principle for � R is: if we wish to prove a predicateP for all
pairs in � R, then, considering P as a relation P: � � A � � A0, we must show for each
j :

8(d; d0): 2 Fj [R; P] : (� j d; � j d0) 2 P (D.5)

Check for example that all pairs in � R are convertible to (� j d; � j d0) for some j and
(d; d0): 2 Fj [R; � R]

Example. Some relation-constructors corresponding to common type-constructors are

Q + R := f (x; x 0): 2 Q :: (inl(x); inl(x0)) g

[f (y; y0): 2 R :: (inr(y); inr(y0)) g

Q � R := f (x; x 0): 2 Q; (y; y0): 2 R :: ((x; y); (x0; y0)) g

Bool := f (true; true); (false; false)g

and IN and R� are the least relations such that:

IN = f (0; 0)g [f (z; z0): 2 IN :: (s(z); s(z0)) g

R� = f (nil; nil)g [f (x; x 0): 2 R; (z; z0): 2 R� :: (x +< z; x 0+< z 0) g

Now, for any type-expressionT[�] containing only type-variables from the sequence
� , we have extended a relation-sequenceR: � A � A0 to a relation T[R]: � T [A] � T [A0].
However,T is not necessarily a functor on relations, for it need not preserve composition.

Notice that the same schemes (D.2) and (D.4) describe extensional equality onA !
B and � A in terms of the equality on the A and B . Thus we can use the relational
interpretation of a type to de�ne extensional equality:

De�nition. Extensional equality on a closed typeT is given by T[] as a relation:

(j= t = t0: T) := (t; t 0) 2 T[]

We will often write just t = t0 rather than j= t = t0: T . We shall consider only relations
that are closed under this extensional equality. Equality for terms of types containing
variables will be de�ned in the next section.

D.4 Naturality of expressions

If we can derive t: T [�] then not only tA : T [A] for any type-sequenceA, by an ap-
propriate substitution theorem, but also (tA ; tA 0) 2 T[R] for any relation-sequence
R: � A � A0. (It is to be understood that overloadedoperators, like the e�ective equality-
test (== A): A � A ! Bool in Miranda, may not be used as if they where polymorphic.)
Taking the context into account, we have the following main theorem, similar to the
abstraction theorem in [75], the fundamental theorem of Logical Relations in [62], and
the parametricity result in [83]:

Theorem D.1 (Naturality) If x: S[�] ` t[x]: T [�] then for any sequencesA; A 0; R; s; s0,
where R: � A � A0 respects extensional equality, and(sj ; s0

j) 2 Sj [R], one has:

(tA [s]; tA 0[s0]) 2 T[R]

D.4. NATURALITY OF EXPRESSIONS 149

Remark: we say that t[x] is natural . The theorem may be generalized to relations of
arbitrary arity.

Proof. By a straightforward induction on the derivation of x: S[�] ` t[x]: T [�]. We
check all rules:

Var-intro. The judgement isx: S[�] ` x j : Sj [�]. By assumption we have (sj ; s0
j) 2 Sj [R]

indeed.

(!)-elim. The hypotheses say (f [s]; f [s0]) 2 U[R] ! V [R] and (u[s]; u[s0]) 2 U[R].
Then by de�nition of (!) on relations we obtain:

(f [s]u[s]; f [s0]u[s0]) 2 V [R]

(!)-intro. The hypothesis for the premisex: S[�]; y: U[�] ` v[x; y]: V [�] says that for
any (s; s0): 2 S[R] and (u; u0): 2 U[R] one has (v[s; u]; v[s0; u0]) 2 V [R].
So ((�y:v [s; y])u; (�y:v [s0; y])u0) 2 V [R] as relations are closed under conversion.
Hence:

(�y:v [s; y]; �y:v [s0; y]) 2 U[R] ! V [R]

� -intro. We must show:

(� j ; � j) 2 Fj [U[R]; � U[R]] ! � U[R]

This is an instance of (D.4).

� -elim. The (global) hypothesis is: (vj [s]; vj [s0]) 2 Fj [U[R]; V [R]] ! V [R] for each j .
We must show:

(� elim(v[s]); � elim(v[s0])) 2 � U[R] ! V [R]

We use a local induction on the generation of �U[R]. Thus we will prove � U[R] �
P where:

P := f (t; t 0): � U[A] � � U[A0] j: (� elim(v[s])t; � elim(v[s0])t0) 2 V [R]g

Note that:
(� elim(v[s]); � elim(v[s0])) 2 P ! V [R] (D.6)

We check (D.5) for each j :

(d; d0) 2 Fj [U[R]; P]

) (Fj [�; � elim(v[s])]d; Fj [�; � elim(v[s0])]d0) 2 Fj [U[R]; V [R]] f (D.3) on (D.6)g

) (vj [s](Fj [�; � elim(v[s])]d); vj [s0](Fj [�; � elim(v[s0])]d0)) 2 V [R] f global hyp.g

, (� elim(v[s])(� j d); � elim(v[s0])(� j d0)) 2 V [R] f conversiong

, (� j d; � j d0) 2 P f def. Pg

The theorem suggests the following de�nition:

150 APPENDIX D. NATURALITY OF POLYMORPHISM

De�nition. Extensional equality under a sequence of assumptionsx j : Sj , noted

x: S[�] j= t[x] = t0[x]: T [�] ;

holds i�, for all sequences A; A 0; R: � A � A0; (s; s0): 2 S[R] one has (tA [s]; t0
A 0[s0]) 2

T[R].

Convention. All of the following de�nitions and theorems may be taken in the context
of a set of assumptions, and all terms should be taken modulo extensional equality under
these assumptions.

De�nition. A type expressionT[�] is called functorial (in �) if there is an expression
T[p] that satis�es

p: � ! � ` T [p]: T [�] ! T [�] (D.7)

and that preserves identity, j= T[I] = I: � ! � . We shall shortly proof that because of
naturality, T preserves composition too.

Many applications arise by using a sequence of function-like relations:

De�nition. For p: A ! A0 let the graph of p be:

(p) := f x: A :: (x; px) g

A relation R: � A � A0 is called function-like if R = (p) for somep: A ! A0. (Note that,
in a cpo, (p) is closed under directed limits i� p is continuous and strict, i.e. p? A = ? A 0.)

Fact. For function-like relations we have, if p: A ! A0, q: B ! B 0:

(p) ! (q) = f (f; f 0) j: f �� q = p �� f 0: A ! B 0g (D.8)

(p) [! (q) = f f : A ! B :: (f; p �� f �� q) g (D.9)

using R[:= f (x; y): 2 R :: (y; x) g

Also useful might be, for f : A0 ! B :

(p �� f; f �� q) 2 (p) ! (q) (D.10)

For functorial type expressions, the functorial interpretation must coincide with the
relational interpretation:

Theorem D.2 If T[�] is functorial, then for any p: A ! B ,

(T[p]) = T[(p)] :

Proof. We derive:

(I; p) 2 (IA) ! (p) f (D.8)g

) (T[I]; T [p]) 2 T[(IA)] ! T [(p)] f naturality Tg

, (I; T [p]) 2 (IT [A]) ! T [(p)] f preservation of identityg

, (T[p]) � T [(p)] f de�nition (T[p]), !g

D.5. APPLICATIONS 151

and:

(p; I) 2 (p) ! (I B) f (D.8)g

) (T[p]; T [I]) 2 T[(p)] ! T [(IB)] f naturality Tg

, (T[p]; I) 2 T[(p)] ! (IT [B]) f preservation of identityg

, T[(p)] � (T [p]) f de�nition (T[p]), !g

So we have, for example, (p � q) = (p) � (q) and can safely omit the parentheses. Notice
that p ! q can only be read as (p) ! (q), for � ! � is not functorial.

Theorem D.3 Any functorial T [�] must preserve composition, i.e., ifp: A ! B and
q: B ! C, in some context, then j= T[p �� q] = T[p] �� T [q]: A ! C.

Proof.

(p �� q; q) 2 (p) ! (IC) f (D.8)g

) (T[p �� q]; T [q]) 2 T[(p)] ! T [(IC)] f naturality Tg

, (T[p �� q]; T [q]) 2 (T[p]) ! (IT [C]) f theorem D.2g

, T[p �� q] = T[p] �� T [q] f (D.8)g

The naturality theorem specializes for polymorphic t: T [�] and p: A ! A0 to:

(tA ; tA 0) 2 T[(p)] (D.11)

So if f : U[�] ! V [�], and hence (f; f) 2 U[p] ! V [p] by (D.11), then f is a natural
transformation indeed.

D.5 Applications

Example D.1 A simple application is to prove that f = �x:x is the only polymorphic
function of type f : � ! � . Naturality of f says: for anyR: � A � A0 we have (f; f) 2
R ! R.
Now, �x type A and a: A. Taking R := f (a; a)g yields (fa; fa) 2 R, as (a; a) 2 R. So
fa = a for all a, hencef = �x:x by extensionality of functions.

(In an alternative language where types are cpo's there are two solutions. Ifa 6= ? ,
we must take R := f (? ; ?); (a; a)g and get fa 2 f? ; ag. Furthermore, for any b: B we
can get (fa; fb) 2 f (? ; ?); (a; b)g. So in casefa = ? we have fb = ? for all b, hence
f = �x: ? ; and in casefa = a we obtain fb = b and hencef = �x:x .)

Example D.2 Let � be a (post�x) functor, say of lists, so for p: A ! A0 we have
p� : A � ! A0� and (p�) = (p) � . Let f be a function with the type of foldr, i.e.:

f : (� � � ! �) � � ! (� � ! �)

152 APPENDIX D. NATURALITY OF POLYMORPHISM

Naturality of f on function-like relations says: if p: A ! A0, q: B ! B 0 then

(f; f) 2 (p � q ! q) � q ! (p� ! q)

i.e. if (c; c0): 2 (p � q ! q) and (b; b0): 2 (q) then (f (c; b); f (c0; b0)) 2 (p� ! q).
Using (D.8) this equivales: if

c �� q = (p � q) �� c0: A � B ! B 0

then:
f (c; b) �� q = p� �� f (c0; qb) : A � ! B 0

(This is a generalization of the promotion-theorem for forward lists [52].) Notice that
the result is independent of the de�nition of f .

In particular, we have for � : A0� B 0 ! B , as by (D.10) ((p� q)��� ; � �� q) 2 (p� q ! q):

f ((p � q) �� � ; b) �� q = p� �� f (� �� q; qb) (D.12)

Another instance yields, as +< �� foldr(c0; b0) = (I � foldr(c0; b0)) �� c0 and foldr(c0; b0) nil = b0:

f (+<; nil) �� foldr(c0; b0) = f (c0; b0)

Example D.3 1 Finally, we give an application using ternary relations. Let (+) be a
functor, say of non-empty lists, and (=B) a (polymorphic) mapping of operators � : B �
B ! B into � =: B + ! B .

We will prove: if f; g : A ! B , and � : B � B ! B is commutative and associative,
then for l : A+ ,

� =(f + l) � � =(g+ l) = � =((f � A g)+ l)

where � A : (A ! B) � (A ! B) ! (A ! B) is the lifted version of � . We will regard �
as a ternary relation � : � B � B � B so that:

(x; y; z) 2 � := x � y = z

We derive:

8l : A+ : (� =(f + l); � =(g+ l); � =((f � A g)+ l)) 2 �

(
(f + ; g+ ; (f � A g)+) 2 A+ ! � +

^ (� =;� =;� =) 2 � + ! �

(
(f; g; (f � A g)) 2 A ! �
^ (� ; � ; �) 2 � � � ! �

f naturality of (+), (=) g

,
8x: A : fx � gx = (f � A g)x
^ 8 (x j ; yj ; zj): 2 � : (x0 � x1; y0 � y1; z0 � z1) 2 �

,
true
^ 8 x j ; yj : (x0 � x1) � (y0 � y1) = (x0 � y0) � (x1 � y1)

(� is commutative and associative
1Suggested by Roland Backhouse

D.6. DINATURAL TRANSFORMATIONS 153

D.6 Dinatural transformations

Mac Lane [51] de�nes \dinatural transformations". A result by Backhouse [6, section 6]
on a dinaturality property in relational calculus inspired us to the following derivation
of dinaturality for polymorphic objects from general naturality. (Backhouse' theorem,
second half, bears a relationship to our property (D.15), written as T[p k p] � T [p k I] �
T [I k p]).)

De�nition. A difunctor T[� k �] is given by a type T[� k �] and a term T(x k y) typed
by

x: � ! � 0; y: � ! � 0 ` T(x k y): T[� 0 k �] ! T [� k � 0] (D.13)

(note the contravariance in �) such that identity is respected.

Take care not to confuse, forp: A ! A0, the term T(p k p): T[A0 k A] ! T[A k A0]
with the relation T[p k p]: � T [A k A] � T[A0 k A0].

Normally, any type expressionT[�] can be written as a difunctor such that T[�] =
T[� k �], by separating all covariant and contravariant type variable occurrences, as
follows.

If T [�] = � i , take T[� k �] := � i and T(x k y) := yi .
If T [�] = U[�] ! V [�], a difunctor is given by:

T[� k �] := U[� k �] ! V [� k �]

T(x k y) := U(y k x) �! V (x k y)

using u �! v := �f: (u �� f �� v)

Remark that, as a relation, (u �! v) = (u[) ! (v) by (D.9).
If T [�] = � U[�], one needs a difunctorial type constructor � 0(� k �) such that

� U = � 0(U k U). Normally, if � is already functorial one can take just � 0(� k �) := � � ,
otherwise the language is required to contain such a constructor. Then one takes:

T[� k �] := � 0(U[� k �] k U[� k �])

T(x k y) := � 0(U[y k x] k U(x k y))

Theorem D.4 (dinaturality) When ` t: T [�] where T can be written as a difunctor,
T[�] = T[� k �], then for any p: A ! A0 one has:

` T(I k p) tA = T(p k I) tA 0 (D.14)

Proof. Naturality of T(x k y) as typed by (D.13) gives, using (I; p) 2 IA ! p and
(p; I) 2 p ! IA 0 :

(T(I k p); T(p k I)) 2 T[p k p] ! T[IA k IA 0] : (D.15)

Naturality of t: T [� k �] gives:

(tA ; tA 0) 2 T[p k p] :

Together this gives (T(I k p) tA ; T(p k I) tA 0) 2 T[IA k IA 0] . As T preserves identity
relations, we obtain (D.14).

154 APPENDIX D. NATURALITY OF POLYMORPHISM

Corollary D.5 All polymorphic functions f : U[�] ! V [�], where U and V can be
written as difunctors, are dinatural transformations . That is to say, they satisfy for
p: A ! A0 :

U(p k I) �� f A �� V (I k p) = U(I k p) �� f A 0 �� V (p k I) : U[A0 k A] ! V [A k A0]

Example D.4 Any function

f : (� � � ! �) � � ! (� � ! �)

will satisfy for p: A ! A0, q: B ! B 0:

((p � q �! I) � I) �� f AB �� (I� �! q) = ((I � I �! q) � q) �� f A 0B 0 �� (p� �! I)

Applied to some (� ; b): (A0� B 0 ! B) � B , this is our result (D.12) in section D.5.

D.7 Second-order languages

We may use a second-order language, where, say,8�:T [�] is a type with:

x: S ` t: T [�]; where � does not occur free inS) x: S ` t: 8�:T [�]

x: S ` t: 8�:T [�]) x: S ` t: T [U]

The appropriate extension of relations is, if R[Q]: � T [A] � T [A0] for any Q: � A � A0

(that is closed under extensional equality):

8�:R [�] := f (t; t 0) j: 8A; A 0: Type :8Q: � A � A0: (t; t 0) 2 R[Q]g

As an application, we de�ne type IN, z: IN and s: IN ! IN by:

IN := 8�: ((� ! �) ! (� ! �))

z := �f:�a:a

s := �m:�f:�a:f (mfa)

We will prove Peano's induction-axiom.

Theorem D.6 When for P: � IN one has

z 2 P ^ 8 m: 2 P :: sm 2 P

then n 2 P for all n: IN.

Proof. Remember that naturality of n says that for any types A, A0, and relation
Q: � A � A0, we have (n; n) 2 (Q ! Q) ! (Q ! Q).
The proof is in two steps.

1. Take a predicate-like relation Q := f n: 2 P :: (n; n) g. The assumptions say (s; s) 2
(Q ! Q) and (z; z) 2 Q, hence by naturality of n we get (ns; ns) 2 (Q ! Q) and
(nsz; nsz) 2 Q, i.e. nsz 2 P.

2. What remains to prove is nsz = n, i.e. for any type A, f : A ! A, a: A we must
prove nszfa = nfa .
Taking Q := f (m; x): IN � A j: mfa = xg, naturality guarantees (nsz; nfa) 2 Q
provided (s; f) 2 (Q ! Q) and (z; a) 2 Q. But these properties hold by de�nition
of s and z.

D.8. OVERLOADED OPERATORS 155

D.8 Overloaded operators

We remarked that polymorphic functions may not use overloaded operators, like an e�ec-
tive equality-test (== A): A � A ! bool that is de�ned only for some types A. However,
if we require types instantiated for type-variables to support certain operations, we can
give similar requirements on relations. Such restrictions may be provided explicitly by
a \type class" in the language Haskell [38].

De�nition. Let z be the class of types� with associated operationsvi : Ti [�], and let A
and A0 be two \instances" of z with operations t i : Ti [A] and t0

i : Ti [A0]. The same written
in Haskell:

class z � where f v1 :: T1[�] ;; ...;; vn :: Ti [�] g
instance z A where f v1 = t1 ;; ...;; vn = tn g
instance z A0 where f v1 = t0

1 ;; ...;; vn = t0
n g

A relation R: � A � A0 is said to respect classz, i� for each i , one has (t i ; t0
i) 2 Ti [R].

For example, consider the classEq of types a with equality-test:

class Eq a where (==) :: a -> a -> Bool

Relation R respectsEq i� for all (x; x 0): 2 R, (y; y0): 2 R one has (x == y) = (x0 ==
y0) : Bool . Note that not all relations have this property, hence (==) is not natural.
But one can prove the following variant:

Restricted naturality. If expressions has type S[�] for any instance � of classz as
above, which is expressed in Haskell by

s :: z � => S[�]

then for any relation R: � A � A0 that respects z we have that (s; s) 2 S[R].

Acknowledgement. Thanks are due to Roland Backhouse and Wim Hesselink for
many comments that greatly improved upon our presentation.

156

Index

� (relational composition), 37
�� (forward composition), 28
�� (morphism composition), 51
� (backward composition), 28
! (unique element type), 34
(;), 31
(;), 29
(j), 32, 39
+, 32
: (function application), 28
0, 33, 40
::, 27, 31
::=, 32
:=, 24
:=:, 30
=, 33
==, 128
= > , 128
= t , 26
? (goal variable), 137
[] (relational image), 38
(length of a sequence),33
ALG , 54, 59
Alg , 53
CAT i , 51
CPO , 99
Card , 122
Cat i , 50
De�ne by , 30, 32
� (diagonal functor), 52
Dom, 31
FAM, 111
Fam, 31
I (identity function), 28
Id (identity object), 51
K (constant function), 28
IN, 33
IN rec, 33
Ord , 122
P (subset type), 37
� (generalized product), 27
Prop , 34

Set , 120
� (generalized sum), 29
Sign (signatures), 53
TYPE i , 51
Type i , 26
Variables, 25

(anonymous variable), 24
ac (axiom of choice), 35
? (unde�ned object), 99, 101
card, 122
(de�nedness), 101
eq, 33{ 35
9 elim, 35, 137
9 in, 35
9, 35
n (reverse application), 27
fst, 29
2, 37
� (iota description operator), 35, 136, 139
� (subobject inclusion), 53
7! (function abstraction), 28
� (initial F -algebra), 68
� rec, 77
� (�nal F -coalgebra),85
! chain, 99
! , 33
� (product projection), 28
== (quotient type), 140
raa (reductio ad absurdum), 36
s (successor),33
� (sum injection), 29
� , 37, 58
snd, 29
v (approximates), 99
� , 37
� t (coercion), 25
� , 32, 52
! , 27, 50
! c (continuous function space),99
:! (natural transformations), 51

. , 29
" (optional objects), 101

INDEX 157

` , 24
` (derivability), 128
[], 29
h i (sequences),32
h i (tupling function), 28
[()] (anamorphism), 85
([]) (catamorphism), 54
[[]] (paramorphism), 75
f j : g, 36, 37
f :: g, 37
j j , 37

[(relational inverse), 37
op (dual category), 52
� (�nite sequences), 33
< (relational left domain), 37
> (relational right domain), 37

abstract syntax class,19, 20
ADAM, 8, 18
ALF, 12
algebra, 53
algebra with equations, 57
algebra, �-, 54
algebra, F -, 54
algebraic recursion,74
Algebraic Speci�cation, 63
ambiguity, 113
anamorphism, 85, 87
anti-foundation, 125
ATT (ADAM's Type Theory), 126
Automath, 11
axiom of choice,35, 121

Backus-Naur form, 32
bar recursion, 112
binary tree, 41
boolean,32

cardinal, 122
carrier, 53
catamorphism, 54
category, 50
CC, 12, 107
co-inductive types, 85
coalgebra,F -, 85
cocone,100
coercion,25
concrete syntax class,19, 22
cons list, 41
constructive type theory, 10
context, 126
continuous function, 99

convertible, 128
coproduct, 53
cpo, 98
CSP, 88
CTT, 10

declaration, 25
declaration type, 30
de�nition, 24
dependent recursion,76
description operator, 136
deterministic, 45
DEVA, 12
dialgebra, 54
dinaturality, 153
domain, 31
domain theory, 98
dual, 52

ECC, 107
enumeration, 32
equality, 33
exponential type, 27
extensionality, 27

family, 31
�nal, 52
�nite type, 31
�xed point, 99
�xed point induction, 101
forgetful functor, 59
function space,27
functor, 51
functorial, 144

generalized product,10
generalized type system,10
goal variables,137

homomorphism, 54

impredicativity, 11, 107
inclusion map, 53
induction, 13
in�nite list, 43, 86
inherited parameter, 20
initial, 52
initial interpretation, 90, 91
iterated inductive de�nition, 42
iteration, 55
ITT, 11

join list, 41

	Front page
	Abstract
	Title page

