7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

Inductive types in constructive languages
Bruin, Peter Johan de

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1995

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Bruin, P. J. D. (1995). Inductive types in constructive languages. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 26-10-2021

https://research.rug.nl/en/publications/inductive-types-in-constructive-languages(87db58af-1fd6-4030-a862-98b5651d6be8).html

107

Chapter 10

Related subjects

10.1 Impredicative type theories

Second-order, or impredicative, or polymorphic, type theories like the Calculus of Con-
structions [21] and second-order typed lambda calculus allow the formation of types in
the lowest universe, which we call Data: Type here, by quantification over types from
a higher universe:

A: Type

D:Data?

II(A; D): Data
Thus, Data is very much like our Prop, except that Prop has additional equality
rules stating that equivalent propositions are equal, and that all proofs of the same
proposition are equal. Furthermore, their use is different, for objects in Data are used
for actual computation, while objects in Prop are used for stating properties only. The
impredicative quantification allows one to define all kinds of weakly initial and final
algebras, without using further primitive notions.

Example 10.1 The type of booleans can be defined by

Bool := II(X:Data; z: X; y: X :: X)
true = (X;z;y:x)
false = (X;z;y::vy)

b: Bool; E:Data; eg,e1: E + if bthen egelse e1 := bFEegey

(End of example)

A drawback of such impredicative encodings is that dependent types like 7: II(x: Bool ::
Data) cannot use an elimination on the impredicative object x, because expression
‘xDataTyT)’ would be wrongly typed.

Luo’s ECC [48] extends the Calculus of Constructions with generalized sums and
a hierarchy of universes as in ADAM. Ore [66] extended ECC further with disjoint
sums (sums over a finite type) and inductive types at the predicative level. We may
call this system ECCI. It is equivalent to ADAM without equality types and strong
proof elimination; data types are to be built at the predicative level rather than in the
impredicative universe Prop.

108 CHAPTER 10. RELATED SUBJECTS

10.1.1 Weak initial algebras

The weak initial algebra (7';0) that has a sequence of constructors 6;: F;.T' — T can be
impredicatively defined by: (A:C — CV is the diagonal functor X s (i :: X))

T:Data := II(X:Data; ¢: F.X — A.X :: X)
0;: F;.T7 =T = y— (X;0:¢.(Fj.(v—2X¢)y))

In particular, a weak initial F-algebra for F: Data — Data is given by:

uwF:Data := II(X:Data; ¢: F.X — X = X)
T FpuwF — pwF = y— (X500 ¢ (F.(x— x2X0)y))

Given another F-algebra (U;4), there is a homomorphism
(U;Y): pwF = U = z— 2Uy

for which we have the reduction rule (U;¢]))or => 1oF.(U;%]) . One cannot prove that
this homomorphism is unique. For instance, given (weak) binary products, we cannot
construct a weak paramorphism [¢] such that [¢)] o7 => 1o F.(Id, [¢/]), nor even a true
7Y such that 7°.(7.y) => y, nor a (transfinite) induction property like (6.5).

In section D.7 we give an impredicative definition of IN in typed lambda calculus, and
prove that induction holds by naturality for all terms of type IN. This generalizes easily
to type puwF', and one may expect that the naturality property holds for generalized
calculi like CC too. Yet this would not yield an induction theorem within the calculus.

One might restrict, as suggested in [73], all quantifications over u,F' as to use only
its standard elements, being those elements that satisfy transfinite induction:

St(x: uw F) := T(U:Data"; h:Tl(y: F.p F = (F'.U)(y) — U(r.y)) = Ux)

where (F'.U)(y) stands, as in paragraph 6.2.3, for the product of Uz for all immediate
predecessors z of 7.y. In particular, if F.X = X(a: A :: XB?), then

(F'.U)(a;t) = H(y: Ba:: U(ty)) .

A declaration ‘z: uF’ may then be replaced by ‘z: uw F'; Stz > Now, if one’s calculus has
subtypes, one can use the subtype { z: uwF' |: Stz} for pF. If it does not have subtypes,
as the Calculus of Constructions, this restriction of quantifications to standard elements
does not give a satisfactory solution, for then a quantification over all types cannot be
applied to the class of all standard elements of uF'.

So it will be more satisfactory to extend the calculus with inductive types as a
primitive notion (at the impredicative level). This is done by Coquand and Paulin in
[22], using type definitions as described in subsection 5.3.1 and a recursor as we described
in paragraph 6.2.3.

Ore [66] discusses extending CC with inductive types either at the impredicative or
predicative level.

10.2. USING TYPE-FREE VALUES 109

10.1.2 Weak final algebras

An analogous treatment as in 10.1.1 is possible for co-inductive types. The dual impred-
icative definition of weak final coalgebras utilizes X, but this > can be translated into a
double use of II:

vyF:Data = X, (X:Data; ¢: X — F.X 1 X)
:=II(Y:Data; II(X:Data; ¢: X — F.X;x: X = Y) 2 Y)
S:vwF — FuuF = (X;¢;2) — F.(z — (X;¢;2)).(¢p.x)

=u— u(FF) (X000 Fo(z — (X;¢52)).(¢.))
Given another F-coalgebra (U;¢), the mediating morphism (anamorphism) is

(U;0):U — vy F == u— (U; d;u) .

10.2 Using type-free values

The notion of type as mainly used in this thesis comprises that types are introduced
together with their values; there are no values without types. An alternative is to define
types as sets of basically type-free values. A suitable universe of values is the set of
untyped lambda terms, to be taken modulo conversion.

When types may be built by unrestricted comprehension, i.e. { z |: ¥(x)} where ¥(z)
is a formula from second-order logic, then one gets inductive types by taking simply

pF = ((X|: FX CX).

Such a system with unrestricted second-order comprehension cannot admit types as
values themselves, because this would lead to inconsistency.

10.2.1 Henson’s calculus TK

Martin Henson [39] introduced a calculus with kinds organized into a hierarchy of levels,
in order to avoid inconsistency. Unlike the hierarchy of universes in type theory, kinds
of a higher level do not collect kinds of previous levels, nor do they admit greater
cardinalities, for the kind that contains everything, { x |: True}, is already of level zero.
Rather, kinds of a higher level admit a greater definitional complexity.

e Terms are built from constants ¢, application (¢t), lambda abstraction Az.t and
AX.t where x is a term variable and X a kind variable of some specific level, and
may furthermore contain kind expressions and logical formulae as primitive values

e Atomic formulae include t € T, ¢t = ¢/, and ¢| (meaning “t is defined”), where ¢, ¢/
are terms and T is a kind

e Formulae are built from atomic formulae by the ordinary propositional connectives
and by quantification over either all terms or all kinds of some specific level

e Types are kinds of level 0

110 CHAPTER 10. RELATED SUBJECTS

e Kinds of level n are either (1) kind variables of level at most n, (2) compre-
hensions {z |: ¥(x)} over lambda terms where formula ¥(z) may contain kind-
quantifications over levels below n only, or (3) inductive kinds Z(®, K) of level n

Inductive kinds of level n have the form Z(®, K'), where ®(z, x) is a formula that contains
kind quantifications below level n only, and K is a kind of level n. Kind Z(®, K) is the
smallest kind X such that

KCX and {z|Vr:u®(z,x)=2ecX}CX. (10.1)
So, when there would be no level restriction on comprehension, = would be definable by
E(®,K) = [(X |: (10.1)) .
Put otherwise, Z(®, K) is the well-ordered type generated by the relation
r<z:=z2¢ KNP(z,x) .
An an initial F-algebra, it is
WX — KU{z | Vo:®(z,x)=>2eX}).

Note that the second argument of Z is really superfluous, as by taking ®'(z,x) :=
x < z we have
2(P,K) = E(9,0) .

Therefore we find this type unnecessarily complicated. The comprehension and induction
rules given in [39] and some other publications are actually erroneous — and the claimed
consistency proof flawed. For example, the induction rule draws a conclusion Vz: €
E(P, K) :: 1z without a premise Vz: € K :: ¢z . By taking ®(z,x) := False, one would
obtain Vz :: 1z for every formula 1z. Later publications, like [40], had correct rules.

A more fundamental objection is that the usefulness of kinds and formulae as values
is negligible, because terms may not be used in place of kinds or formulae. Henson seems
to miss this point. We note that the higher level abstraction facilities are quite limited:
one can abstract over kinds, but not over functions on kinds. Finally, we remark that
the intuitive basis for this hierarchy of kinds is rather weak.

10.3 Inductive universe formation

Predicative universes of types or sets, such as our Type;, are described by listing the
rules for constructing their elements. Then one might add a principle that the universe
is actually the least (or initial) one that is closed under these rules, by giving a universe
elimination (or recursion) principle. This would make the universe an initial algebra in
a category of families of types and extensions between them. N.P. Mendler discusses the
categorical semantics of such recursion rules in [61].

One might strengthen type theory by adding a rule for introducing new inductive
universes inside the system by listing their introduction rules. The difference between

10.3. INDUCTIVE UNIVERSE FORMATION 111

universes and ordinary inductive types is that introduction rules for universes, like II-
formation (B.9), when they have a premise that A be a type in the universe, may in
subsequent premises quantify over the type (associated with) A itself.

For this purpose it is best to treat universes a la Tarski, namely as a pair (U;T)
where U is a type and T assigns to each “code” A:U a type T'A. So a universe is a
family of types.

For any type S, we define a category FAM S. Its object are families in Fam .S, and
its morphisms are given by:

(D;s) — (D';8')in FAMS = {f:D — D' |:Vd:D :: sd = §'(f.d)} . (10.2)

A universe formation principle might read: For any endofunctor F' on FAM Type
that satisfies some constraints, there is an initial F-algebra. The constraints that are
required here are much more difficult to express than for ordinary inductive types, and
we will not try to do so.

Example 10.2 The type constructor II gives rise to an endofunctor P on FAM Type,
such that there is a morphism p: P.(U;T) — (U;T) just when the universe is closed
under TII, i.e. when for a:U and b: UT® there is some c: U with T'c = I(z: Ta :: T(bx)).
This P is given by:

P(U;T) = (X(a:U = UT?),
((a;0) = (x:Ta :: T(bx))))

and for f:(U;T) — (U';T') in FAM Type the definition of P.f is obtained from (10.2):

P.fe P(U;T)— P(U;T)
& Ya:U; b:UT%; (a/;V) := P.f.(a;b) =
M(x:Ta::T(bx)) =U(z:T'a’ :: T'(b'x)) {(10.2) for P.f}
< Va:U; b:UT% (a5V) := P.f.(a;b) =
fa=d AN Vax:Ta:: for="Vbz {Va:U :: Ta=T'(f.a)}
& Va:U; b:UTe :: P.f.(a;b) = (f.a; f12.b)

We can do the same for other type constructors, and define an endofunctor F' such
that the carrier of an initial F-algebra may serve as the definition of the universe Type,.
The object part of F'is as follows:

F.(U;T):FAM Type := ({N | Fin(n:IN) | Prop | Holds(P: Prop)
| Pi(a:U; b: UT) | Sigma(a:U; b:UT) };

(N :: IN

| Fin(n) = n

| Prop :: Prop

| Holds(P) :: P

| Pi(a;b) :: (z:Ta :: T'(bx))
| Sigma(a;b) :: X(x:Ta :: T'(bx))

))

112 CHAPTER 10. RELATED SUBJECTS

10.4 Bar recursion

Though the scheme of bar recursion introduced by Spector [80] has little to do with
inductive types, we include it here because it is so remarkably different from our other
recursion schemes. It defines a function f: A* — B on finite sequences by recursive
application to longer sequences, until a special termination condition holds.

Well-definedness of such a function depends on a property that a computable function
c: AY — IN is continuous in the sense that its value on an infinite sequence t depends
only on a finite prefix ¢|,, of ¢:

Vi AY i 3ncIN Vur A o (t, = ulp = et = cu) . (10.3)

Let a type A with some default value a: A be given. We define an embedding of finite into
infinite sequences. (Alternatively, we may restrict the definition to nonempty sequences
and replace ‘a’ by sg.)

st A" o [s]: AY = (i:if i < #s then s; else a)
The termination condition of f mentioned above is c.[s] < #s. The point is that, as s

grows in length, c.[s] must become constant and the condition will be satisfied when s
is long enough.

Theorem 10.1 (Bar recursion) Classically, one can derive:

c:AY — IN

c is continuous

b: A* — B

e(.B4):A* - B

Jf: A* — B

Vs: A* o f.s = if c.[s] < #s then b.s else e(x :: f.(s H (x))).s
Proof. The equation for f obviously has a least solution f: A* — 1B in the domain of
partial functions. Then for any s: A* such that f.s = L one has
cls]>#s AN A f(sH(z)=1).

Let g:TI(s: A*; f.s =L = {ax: A|: f.(s+# (x)) = L}) be a corresponding choice operator.
To prove totality of f, suppose f.s = L for some s: A*. Define t: A“ using total
induction by

t; = if i < #ts then s; else g(ti—1)

and see that, for i: > #s, one has f.(t|;) = L, hence c.[t|;] > #t|; = i.
Let n be according to (10.3) for ¢, then for i: > n we have c.t = c.[t|;] as t|, = [t|i]|n-
Taking i := max(#s,n,c.t + 1), it follows that c.t = c.[t|;] > i > c.t + 1, contradiction.
Thus f.s = L cannot be, and f is total. |
Function ¢ actually defines a well-founded relation by

|<| == {s: A% c.[s] > #s; x: A (s H (x),s) } .
In a constructive calculus, the continuity condition for ¢ is automatically satisfied and
may be omitted from the premises. In that case, the principle of bar recursion is es-

sentially stronger than algebraic recursion in typed polymorphic lambda calculus, as
Barendsen and Bezem prove [10].

