Emissions from cochlear modelling
van Hengel, Pieter Willem Jan
Part IV

For the interested reader
References


models of the outer hair cell,” in: Biophysics of Hair Cell Sensory Systems,
edited by H. Duijffuis, J. W. Horst, P. van Dijk and S. M. van Netten (World
pp. 443–478.
Acustica 58. 207–214.
Hear. Res. 38. 35–46.
method for detecting spontaneous otoacoustic emissions in human subjects,”
Hear. Res. 71. 170–182.
lateral line canal fluid,” in preparation.
on properties of isolated outer hair cells from the guinea-pig cochlea,” British
Journal of Audiology 27. 332–333.
tween the tectorial membrane and the reticular lamina in the isolated temporal
bone preparation.” Paper presented at the 13th Midwinter Research Meeting of
the Association for Research in Otalaryngology, St. Petersburg Beach, Florida,
February 5-9.
Pol oscillator model,” in: The Mechanics and Biophysics of Hearing, edited by
P. Dallos, C. D. Geisler, J. W. Matthews, M. A. Ruggero and C. R. Steele
tions in a one-dimensional time domain cochlea model,” in: Biophysics of Hair
Cell Sensory Systems, edited by H. Duijffuis, J. W. Horst, P. van Dijk and S. M.
van Netten (World Scientific, Singapore) pp. 103.
click evoked and spontaneous OAE’s; theory meets experiment,” in: Biophysics
of Hair Cell Sensory Systems, edited by H. Duijffuis, J. W. Horst, P. van Dijk
ments on the dynamic behaviour of the cupula in the fish lateral line,” Hearing Res. 29, 55–61.


Publications


Master’s theses of students under my supervision:
