Is the Y chromosome of Drosophila an evolved supernumerary chromosome?

Hackstein, Johannes H.P.; Hochstenbach, Ron; Hauschteck-Jungen, Elisabeth; Beukeboom, Leo W.

Published in: BioEssays

DOI: 10.1002/bies.950180410

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date: 1996

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Is the Y chromosome of *Drosophila* an evolved supernumerary chromosome?

Johannes H. P. Hackstein, Ron Hochstenbach, Elisabeth Hauschteck-Jungen and Leo W. Beukeboom

Summary
The Y chromosomes of most *Drosophila* species are necessary for male fertility but they are not involved in sex determination. They have many puzzling properties that resemble the effects caused by B chromosomes. Classical genetic and molecular studies reveal substantial affinities between Y and B chromosomes and suggest that the Y chromosomes of *Drosophila* are not degenerated homologues of the X chromosomes, but rather that their Y chromosomes evolved as specialized supernumeraries similar to classical B chromosomes.

Introduction
Sex chromosomes are morphologically distinct chromosomes that seem to be correlated to the sex of the carrier\(^1\). Classical examples are the X and Y chromosomes found in mammals, Drosophilids and certain plants, and the W and Z chromosomes that are characteristic for many butterflies, reptiles and birds\(^2\). The presence of an exceptional chromosome, i.e. the Y or W, in only one of the two sexes suggests that the heteromorphic sex chromosomes control sexual differentiation. However, this is generally not the case in invertebrates. In those invertebrates that have been studied genetically, the assumption that the number of homomorphic (i.e. X and Z) or heteromorphic (i.e. Y and W) sex chromosomes is crucial for sexual differentiation could not be substantiated\(^3\). In addition, heteromorphic sex chromosomes are completely absent in many invertebrates that have haplodiploid sex determination\(^4\). Sex determination of *Drosophila* involves a multi-locus system that measures the X:autosome balance; it is not based on a simple chromosomal mechanism\(^5\). Thus, at least the evolution of sex chromosomes in *Drosophila* seems to be an accidental consequence, rather than the cause of the establishment of a genetic sex determination.

Multiple origins of sex chromosomes, non-conservation of sex determination mechanisms
Sex determination appears to have evolved along a large variety of pathways. Among vertebrates and invertebrates a rainbow of sex chromosomes and sex-determining mechanisms are known\(^2,4,9\). The genes involved in sex determination are not conserved at the DNA sequence level, and detailed analysis of the gene hierarchies in *Drosophila* and *Caenorhabditis* revealed that the formal mechanisms are not conserved either\(^5\). In some instances, such as the house fly *Musca domestica*\(^6\) and poecilid fish\(^10-12\), different variants of sex determination systems are realized within one species.

Classical theories about the evolution of sex chromosomes assume that the heteromorphic chromosomes arose from their homologous chromosomes after recombinational isolation and a progressive inactivation by Muller's ratchet\(^13\). In some cases it is obvious that the X and Y or the W and Z chromosomes are derived from a homologous autosome pair\(^2,4\). In higher vertebrates, the homology of the pseudoautosomal region between X and Y and its autosomal origin is beyond doubt. In other species, however, the descent of the sex chromosomes is obscure and based on the genomic localization of genes, pseudogenes, and repetitive DNA sequences that share DNA sequence homologies with the genes and pseudogenes that are present on the sex chromosomes. In *Drosophila miranda* a neo-Y chromosome evolved and molecular and cytogenetic analyses\(^15,16\) have provided us with a snapshot of the inactivation and degeneration of the autosomal part of this chromosome. Among the Drosophilids, however, the formation of neo-Y chromosomes seems to be a rare event.

For neither *D. melanogaster* nor *D. hydei* could an evolution of the Y from the X chromosome be substantiated\(^17-19\). Although the Y chromosome of *Drosophila* segregates regularly from the X during meiosis, it does not undergo crossing-over with the X chromosome. As in all the other X-Y pairs of different organisms, regular segregation of the sex chromosomes has been used as the main argument for an
ancestral homology of these chromosomes. In order to explain the morphological and functional differences it has been assumed that the Y chromosome subsequently underwent gradual genetic inactivation, deletions and heterochromatization due to recombinational isolation\(^\text{(3,4,13,20)}\). Here we will present an alternative hypothesis for the origin of sex chromosomes that takes into account recent molecular and cytological information obtained in *Drosophila*.

The Y chromosome of *Drosophila* is not a degenerated X chromosome

In *Drosophila*, all available evidence argues against a common ancestry of the X and the Y chromosome.

1. **Whereas the X chromosomes of the Drosophilids are highly homologous (the variations being restricted to the heterochromatic parts), the Y chromosomes are extremely variable in size and shape. At least in the *repleta* group, the primitive situation seems to be represented by small, dot-like Y chromosomes and not, as one might assume, by large, X-sized chromosomes\(^\text{(21)}\).**

2. **Genetic studies could not reveal the presence of functional, unique genes on the Y chromosomes of *D. melanogaster* and *D. hydei* that possess alleles on the X chromosome\(^\text{(19)}\).**

3. **Although X and Y chromosomes of many Drosophilids share ribosomal genes, intensive molecular studies failed to provide evidence for substantial DNA sequence homologies between X and Y: all genetic, cytological and molecular evidence gathered so far argues for the presence of a few fertility factors on the Y chromosome that are conventional, protein-encoding genes in a sea of heterochromatin (Table 1; ref. 19). Furthermore, the Y-chromosomal fertility genes do not possess truncated or non-functional alleles on the X chromosome. The few Y-chromosomal open-reading frames appeared to be defective pseudogenes or constituents of transposable elements\(^\text{(19,22)}\).**

4. **Neither the repetitive DNA sequences on the Y chromosomes nor their genomic distribution have been conserved in evolution\(^\text{(19,23)}\). Also, the genomic distribution of transposable elements does not provide arguments in favour of a homology between X and Y chromosomes in *D. melanogaster*\(^\text{(24,25)}\).**

5. **There are no indications for an evolutionary conservation of the number and localization of the Y-chromosomal fertility genes that form giant lampbrush loops in both *D. melanogaster* and *D. hydei*\(^\text{(19)}\). Extended studies failed to reveal an evolutionary conservation of the transcribed repetitive DNA sequences. Moreover, the proteins that bind to the transcripts of these loops are not conserved in evolution. With respect to the dynein-encoding parts of the fertility gene kl-5 of *D. melanogaster*, it has been shown that the member of the β-heavy chain dynein family with the highest homology to the Y-chromosomal member occupies an autosomal location\(^\text{(26)}\).**

6. **The presence of fertility genes on the Y chromosome is not an absolute necessity: the males of a number of *Drosophila* species lack Y chromosomes, but are fertile (Table 2). In *D. affinis* even one or two Y chromosomes can be present that are not required for male fertility\(^\text{(27)}\).**

7. **The highly repetitive rDNA genes differ between X and Y chromosomes of *D. melanogaster* and *D. hydei* by the presence of ribosomal cistrons with intervening sequences (IVS) only on the X chromosome. Moreover, the Y chromosome of *D. simulans* is devoid of ribosomal genes, which in this species are restricted to the X chromosome\(^\text{(17)}\).**

In conclusion, the classical arguments for the evolution of a sex-restricted chromosome are not valid for the Y chromosomes of *Drosophila*. All available evidence shows that at least the Y chromosomes of *D. melanogaster* and *D. hydei* are virtually new constructs (c.f. ref. 18).

Heterochromatic effects of the Y chromosome of *Drosophila*

As already mentioned, the Y chromosome of *Drosophila* is not involved in sex determination or realization; in most but not all cases it controls male fertility\(^\text{(28)}\). Whereas mutations in these fertility genes identify distinct, unique functions in spermatogenesis, mutations of the non-coding repetitive DNA sequences can cause a number of puzzling, normally dose-dependent effects. For example, Y-chromosomal heterochromatin suppresses position-effect variegation\(^\text{(29)}\), and extra Y chromosomes in *D. melanogaster* cause mottling of the eyes\(^\text{(30)}\). Certain combinations of Y chromosomes can be lethal\(^\text{(28)}\), and extra Y-chromosomal material can modulate crossing over frequencies\(^\text{(31)}\). Additional Y-chromosomal heterochromatin retards spermatogenesis in *D. hydei*\(^\text{(28)}\).

It is obvious that the Y chromosome is not genetically isolated from the rest of the genome\(^\text{(32)}\). The Y-chromosomal ABO sequences of *D. melanogaster* interact with the aro gene on chromosome 2\(^\text{(17)}\), and in both *D. melanogaster* and *D. hydei* autosomal and X chromosomal genes have been identified that interact with the Y-chromosomal lampbrush loops\(^\text{(19,33)}\). Such interactions are characteristic for meiotic drive chromosomes\(^\text{(34,35)}\).

Y chromosomes are similar to B chromosomes

All these Y-chromosomal effects are most probably caused by different families of repetitive DNA sequences that account for the bulk of the Y-chromosomal DNA. Very similar phenomena can be caused by B chromosomes. In more than 1000 plant and several hundred animal species, such chromosomes have been identified as supernumerary, non-essential chromosomes, and it has been postulated that about 10% of all living species carry such chromosomes\(^\text{(36,37)}\). Their incredible diversity makes a more generalized description impossible, but B chromosomes are frequently heterochromatic and polymorphic, and their numbers vary among the members of a population. In gen-
Table 1. The Y chromosome of Drosophila at a glance

<table>
<thead>
<tr>
<th>Characteristic feature</th>
<th>Drosophila species</th>
<th>Techniques used</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D. melanogaster</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. hydei</td>
<td></td>
</tr>
<tr>
<td>Phenotypic effects of the loss of the whole Y chromosome</td>
<td>XO viable, normal but immotile spermatozoa</td>
<td>Light microscopy; crosses, induced non-disjunction</td>
</tr>
<tr>
<td></td>
<td>ms(Y) has no obvious phenotypical effects, besides immotility of spermatozoa</td>
<td>Induction of ms(Y)s by EMS, X-rays, γ-rays, P-elements; screen for male sterility= no progeny; light microscopy</td>
</tr>
<tr>
<td>Conditional mutations</td>
<td>Temperature-sensitive (ts) mutations</td>
<td>At 18°C fertile; D.h. sterile at 25°C, D.m. at 25-29°C</td>
</tr>
<tr>
<td>Number of Y chromosomal fertility genes</td>
<td>6 complementation groups: kl-5; kl-4; kl-2; kl-1; ks-1; ks-2</td>
<td>Complementation tests (test for male fertility) in males of the constitutions: X/Y/Y, T(X)Y/Y; T(X)Y/A Y (segmental aneuploidy)</td>
</tr>
<tr>
<td>Genes that do not form lampbrush loops</td>
<td>3 genes do not form loops: kl-2; kl-1; ks-2</td>
<td>Complementation tests; cytology and cyto genetics</td>
</tr>
<tr>
<td>Genes that form lampbrush loops</td>
<td>3 complementation groups correlate with 3 lampbrush loops (one gene-one loop): kl-5 (A); kl-3 (B); ks-1 (C)</td>
<td>Cytogenetics, N-banding, Hoechst 33258-staining; the different alleles of one locus may delete, modify, or leave the loop intact; no intragenic complementation to male fertility; ts alleles never affect loop morphology(^1)</td>
</tr>
<tr>
<td>Size of the loop-forming fertility genes/not loop-forming genes</td>
<td>±4 Mb/1.6-3 Mb</td>
<td>Cyto genetics; banding techniques; Miller-spreading of RNA transcripts; pulse-field gel electrophoresis; fluorescence in situ hybridization (FISH)</td>
</tr>
<tr>
<td>Major transcribed satellite/repetitive DNA sequences</td>
<td>kl-6: (AAGAC)(_n) and (AAGAG)(_n), kl-3: (AATAT)(_n), ks-1: (AAGAC)(_n) and (AAGAG)(_n)</td>
<td>Molecular cloning, DNA sequencing; Southern/northern blotting; in situ hybridization on metaphase chromosomes; for D.h. only: fluorescence in situ hybridization (FISH) on loop transcripts</td>
</tr>
<tr>
<td>Gene products/protein-coding</td>
<td>Dynein-coding (β-heavy chain) by kl-5</td>
<td>Polycracyamide gel electrophoresis (PAGE), electron microscopy; molecular genetics</td>
</tr>
</tbody>
</table>

Information is taken from refs 17, 19 and 23.

\(^1\)In the case of ms(Y)Q4\(^6\) of D. hydei it could be shown that neither the morphology of the lampbrush loop noose nor the transcription of the major repetitive loop constituents is affected.

\(^2\)Reviewed in ref. 28. There is only one report on Miller-spreading of lampbrush loops of D.m., c.f. ref. 19.

D.m., D. melanogaster; D.h., D. hydei.

genal, they do not undergo crossing-over with the A chromosomes that constitute the indispensable part of the genome and, as a consequence of this genetic isolation, they become a playground of evolution.

Only rarely, B chromosomes carry protein-encoding genes with clearly defined functions. Exceptions are the pisatin detoxification genes on B chromosomes of the fungus *Nectria haematococca* that provide biocide resistance\(^{38}\). Notwithstanding, they can have manifold and rather diverse effects. In plants, for example, they can reduce or increase cell-cycle duration, germination, growth, flowering time, seed set, vigour and fertility\(^{38}\). In animals they can influence developmental time, size, fertility and other parameters\(^{38}\). More specifically, the B chromosome in *Scilla autumnalis* affects the expression of an esterase locus on one of the autosomes\(^{39}\). B chromosomes may have beneficial or detrimen-
Table 3. Molecular composition of B chromosomes\(^a\) (ribosomal DNA sequences excluded)\(^b\)

<table>
<thead>
<tr>
<th>Species</th>
<th>B-chromosomal DNA sequences</th>
<th>B-specific/ B-associated(^c)</th>
<th>Also present on A chromosome set of related species?</th>
<th>Methods(^d)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secale cereale (rye)</td>
<td>1.1 kb tandem repeat on long arm</td>
<td>B-specific</td>
<td>S. vavilovii</td>
<td>GSH, ISH</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>3.9 kb tandem repeat on long arm</td>
<td>B-specific</td>
<td>No</td>
<td>GSH, ISH</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>120 bp tandem repeat at both telomeric ends</td>
<td>Telomeres and interstitial sites of all A chromosomes</td>
<td>Triticum aestivum</td>
<td>FISH</td>
<td>71, 72</td>
</tr>
<tr>
<td></td>
<td>480 bp tandem repeat at one end</td>
<td>Telomeres of all A chromosomes</td>
<td>S. vavilovii, S. iranicum, S. montanum, S. cereale</td>
<td>GSH, FISH</td>
<td>72, 73</td>
</tr>
<tr>
<td>Zea mays (maize)</td>
<td>1.1 kb tandem repeat in centromeric region</td>
<td>B-specific(^c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachycome dichromosomatica (Compositae)</td>
<td>176 bp tandem repeat in centromeric region</td>
<td>B-specific</td>
<td>B. ciliaris var. languinosa, B. ericogona, B. segmentosa B. multifida</td>
<td>DSGL, GSH, ISH DNA seq</td>
<td>74</td>
</tr>
<tr>
<td>Crepis capillaris (Compositae)</td>
<td>No B-specific DNA sequences found</td>
<td>–</td>
<td>95 bp tandem repeat at centromere and telomeres</td>
<td>F-PERT</td>
<td>37, 75</td>
</tr>
<tr>
<td>Animals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glossina austeni (tse-tse fly)</td>
<td>95 bp tandem repeat at centromere and telomeres</td>
<td>Centromeres of X, Y, L1 (but not L2)</td>
<td>G. moritans moritans G. pallidipes</td>
<td>CsCl, GSH, ISH</td>
<td>37</td>
</tr>
<tr>
<td>Glossina moritans moritans</td>
<td>65±5 bp tandem repeat at centromere and telomere</td>
<td>X centromere, telomeres, Y</td>
<td>Unknown</td>
<td>CsCl</td>
<td>37</td>
</tr>
<tr>
<td>Nasonia vitripennis (wasp)</td>
<td>171 bp tandem repeat</td>
<td>B-specific</td>
<td>N. longicornia, N. girulti No</td>
<td>GSH, DNA seq</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>154-214 bp tandem repeat</td>
<td>B-specific</td>
<td>No</td>
<td>GSH</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>(together >30% of B)</td>
<td>B-specific</td>
<td>No</td>
<td>DNA seq</td>
<td></td>
</tr>
<tr>
<td></td>
<td>183 bp tandem repeat</td>
<td>B-association</td>
<td>N. longicornia, N. girulti, Trichomalopis dubius</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>94 bp tandem repeat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eyprepocnemis plorars (grasshopper)</td>
<td>180 bp tandem repeat</td>
<td>All centromeres</td>
<td>Unknown</td>
<td>FISH</td>
<td>37</td>
</tr>
<tr>
<td>Drosophila subsilvestris</td>
<td>216 bp tandem repeat</td>
<td>Dot chromosome, all centromeres</td>
<td>D. ambigua</td>
<td>GE, ISH</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DNA seq</td>
<td></td>
</tr>
<tr>
<td>Petaurodes volans (great glider; marsupial)</td>
<td>200-600 bp repetitive DNA sequences</td>
<td>All centromeres, but not on Y</td>
<td>Unknown</td>
<td>MC+PCR, GSH, FISH</td>
<td>76</td>
</tr>
</tbody>
</table>

\(^a\)This table is based on Table 1 of ref. 37.

\(^b\)See ref. 53 for a list of species carrying B chromosomes with ribosomal DNA sequences.

\(^c\)B-associated DNA sequences also occur on A chromosomes.

\(^d\)Abbreviations: GSH, genomic Southern hybridization; ISH, in situ hybridization; FISH, fluorescence ISH; DSCL, differential screening of genomic libraries; DNA seq, DNA sequencing; F-PERT, phenol-emulsion reassociation technique in formamide; GE, agarose or polyacrylamide gel electrophoresis of restriction enzyme-digested genomic DNA; CsCl, preparative CsCl density centrifugation; MC+PCR, microcloning followed by amplification by the polymerase chain reaction.

\(^e\)In cloned B-chromosomal DNA fragments, the 1.1 kb B-specific tandem repeat occurs interspersed with B-associated DNA sequences.

The origin and evolution of B chromosomes

The genesis of B chromosomes has been largely a subject of...
speculation\(^{36,37}\). There is some suggestive evidence that they can arise de novo\(^{43,46,47}\), but it is sensible to assume that many B chromosomes have arisen from A chromosomes by at least three different mechanisms. Hybridizations between species\(^{48}\) or Robertsonian fusions\(^{49,50}\) are believed to have contributed to the generation of most of the B chromosomes, but it is also likely that the non-disjunction of A chromosomes might have promoted the formation of supernumeraries\(^{56}\). Molecular approaches that might help to clarify the descent of the B chromosomes are now becoming feasible in a few species (Table 3). However, the results of these studies generally do not allow the identification of the parental A chromosome. The genomic distribution of B-associated repetitive DNA families might suggest a descent from certain A chromosomes\(^{51,52}\), but this observation is not conclusive: the comparative analysis of Y-associated families of repetitive DNA sequences in the different Drosophilids has revealed that the genomic distribution of such families of repetitive DNA sequences is not indicative of the evolutionary relationships between the chromosomes\(^{18,19,29}\).

Once a proto-B chromosome has been created by one or the other of these initial events, it is assumed that loss or inactivation of the original gene content starts. After reducing or abolishing crossing-over with the A chromosomes, Muller’s ratchet can start operating\(^{13,14,53}\) and, simultaneously, repetitive DNA sequences and transposable elements will become fixed on the evolving B chromosome. To a large extent, it is a matter of chance which kinds of repeats become integrated into the B chromosome, and because these sequences evolve rapidly, it is not surprising that B chromosomes can acquire very divergent properties.

A new hypothesis for the origin and evolution of Y chromosomes

We suggest three steps in the evolution of the Y chromosomes of Drosophila. The initial step is the generation of a supernumerary chromosome, comparable with the evolution of B chromosomes, as outlined above; the second the stable integration of such a supernumerary chromosome into the genome; and the third the acquisition of a sex determination function or a male fertility gene. These steps are discussed below.

(1) We propose that supernumerary chromosomes arise from the small dot-like autosomes by non-disjunction\(^{52,54}\). Among the Drosophilids, the generation of supernumeraries by species hybridizations are unlikely, just as the generation by Robertsonian fusions. The Y chromosomes of the ‘primitive’ Drosophila species of the repleta group (where no Robertsonian fusions have taken place) are small\(^{21}\). These Y chromosomes are comparable in size with the dot chromosomes. In D. melanogaster, and most likely in D. hydei as well, the dot chromosomes do not undergo crossing-over, neither in males nor in females\(^{55}\). In addition, in metaphase preparations, about one half of the dot chromosome of both species is heterochromatic\(^{17}\). In D. melanogaster, two families of satellite DNA sequences, i.e. (AATAT)\(_n\) and (AAGAG)\(_n\), which are found in adjacent megabase-sized regions on the dot chromosome, are present on both arms of the Y chromosome in a similar configuration\(^{18}\). This is the first molecular evidence for a relationship between the Y and the dot chromosome of D. melanogaster.

Non-disjunctions of dot chromosomes can be as frequent as 1 in 3000, and supernumerary dots are easily tolerated\(^{54}\). These are favourable conditions for the evolution of both B and Y chromosomes, since Muller’s ratchet can operate on the supernumeraries that are already recombination isolated\(^{13,14,53}\). Such a supernumerary dot has the potential to evolve as a B or a Y chromosome, depending on the genes and families of repetitive DNA sequences that become fixed in this chromosome.

(2) The second step in the evolution of Y chromosomes is the acquisition of regular segregation. There are a number of arguments for a ‘drive’ origin of the Y chromosome of Drosophila. The heterochromatic character of the Y chromosome in many species is considered a relic of past suppression of Y drive\(^{35,56}\). A driver ancestry has also been postulated for the Ste/Su(Ste) pair of D. melanogaster\(^{57}\), where X- and Y-chromosomal Ste copies interact. Driving sex chromosomes are known from many animals and many Drosophilids\(^{58}\). Most concern X chromosomes; and driving Y chromosomes appear to be rare: in 1977 Lyttle\(^{60}\) even experimentally confirmed the predicted dynamics\(^{56}\) of artificial driving Y chromosomes using population cages with D. melanogaster cultures. Therefore, it is not surprising that suppressors of sex chromosome drive have been discovered in many natural populations, since driving Y chromosomes will rapidly disappear, either through extinction of carrier populations or because of strong selection for inactivation of drive\(^{35,56}\). Many studies have found drive suppressors of sex chromosomes in Drosophila populations\(^{35}\). Moreover, theoretical studies have shown that the conditions for stable sex chromosome polymorphisms other than neutral are very restrictive\(^{60}\). Thus, there is ample scope for the origin of a driving Y chromosome that becomes subsequently controlled by suppressors of drive on the autosomes or X chromosome in Drosophila.

It is very tempting to assume that a potential step in the evolution of regular segregation involved trivalent formation. Tri- or multivalent formation during meiosis favours the loss of one of the potential X chromosomes by non-disjunction, thereby generating gametes with a euploid constitution. Alternatively, the Y chromosome may have gained regular segregation as a suppressor of X drive. Such Y chromosomes are known from D. mediopunctata\(^{32}\). Indeed, the ‘empty’ Y chromosomes of some Drosophila species (e.g. Drosophila affinis) may only have evolved as supernumeraries to stabilize X chromosome segregation (see also refs 61,62). In addition, several B chromosomes have been described that associate with the non-homologous X chromosome followed by regular
transposition of sex determination genes have been postulated with B-like effects on the fitness of their carriers(27). The vast formalistic levels, suggests that completely different mechanisms were operating during their evolution. While there is no doubt that the absence of exchange between homologous chromosomes can cause genetic degeneration(13,14) and a diverging evolution of an ancestral sex chromosome pair, the lack of homology between X and Y of the Drosophilids requires another explanation. The obvious parallels between Y chromosomes and B chromosomes suggest that supernumerary chromosome formation was important for Y chromosome evolution. Heterochromatin effects caused by the repetitive DNA sequences are known from many Y and B chromosomes, and Y chromosomes exist that do not carry any gene required for sex determination or male fertility. Sex-determining genes are likely to be transposable in several systems, and one can imagine that the transposition of a major sex-determining gene to a preexisting supernumerary chromosome can easily occur. Molecular analyses of the Drosophila Y chromosomes have identified several characters that can be considered as relics of a former driving nature. We expect to find more supportive evidence for the supernumerary origin of heterologous sex chromosomes when molecular data from other systems become available.

Acknowledgements

We thank L. Hurst, J. Epplen, E. Schmidt, R. Nöthiger, D. Bopp and an anonymous reviewer for valuable suggestions and stimulating discussions.

References

Johannes H. P. Hackstein and Ron Hochstenbach are at the Department of Microbiology and Evolutionary Biology, Faculty of Science, Catholic University of Nijmegen, Toernooiveld, NL-6525 ED Nijmegen, The Netherlands; Elisabeth Hauschteck-Jungen is at the Department of Zoology, University of Zürich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland and Leo W. Beukeboom is at the Arbeitsgruppe Michiels, Max-Planck-Institut für Verhaltensphysiologie, D-82319 Seewiesen, Germany.