The genes for secretion and maturation of lactococcins are located on the chromosome of Lactococcus lactis IL1403

Venema, Koen; Dost, Michiel H.R.; Beun, Philip A.H.; Haandrikman, Alfred J.; Venema, Gerard; Kok, Jan

Published in:
Applied and environmental microbiology

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1996

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
The Genes for Secretion and Maturation of Lactococccins Are Located on the Chromosome of Lactococcus lactis IL1403

KOEN VENEMA,† MICHEIL H. R. DOST, PHILIP A. H. BEUN, ALFRED J. HAANDRIKMAN,‡
GERARD VENEMA,* AND JAN KOK

Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands

Received 27 July 1995/Accepted 11 February 1996

Southern hybridization and PCR analysis were used to show that Lactococcus lactis IL1403, a plasmid-free strain that does not produce bacteriocin, contains genes on its chromosome that are highly homologous to lcnC and lcnD and encode the lactococcin secretion and maturation system. The lcnC and lcnD homologs on the chromosome of IL1403 were interrupted independently by Campbell-type integrations. Both insertion mutants were unable to secrete active lactococcin. Part of the chromosomal lcnC gene was cloned and sequenced. Only a few nucleotide substitutions occurred, compared with the plasmid-encoded lcnC gene, and these did not lead to changes in the deduced amino acid sequence. No genes homologous to those for lactococcin A, B, or M could be detected in IL1403, and the strain does not produce bacteriocin activity.

Lactococccins are bacteriocins produced by Lactococcus lactis. van Belkum et al. (29, 30) determined the nucleotide sequences of three bacteriocin determinants from the lactococcal plasmid p9B4-6. In detailed mutational analyses, the lactococcin structural and immunity genes were identified (29, 30). Conclusive evidence that lcnA is indeed the structural gene of lactococcin A came from Hol et al. (10). By comparing the amino acid sequence determined from the purified bacteriocin with that deduced from the structural gene, it was evident that lactococcin A was synthesized as a 75-amino-acid precursor with an N-terminal extension of 21 amino acids. Processing of this precursor takes place behind a glycine doublet. Recently, LcnB has also been purified and its N-terminal amino acid sequence has been determined (31). This bacteriocin is also processed after a double glycine. The glycine processing site is present in many class II peptide bacteriocins of lactic acid bacteria (13), even in some lantibiotics, and in colicin V, an E. coli peptide bacteriocin (5, 7, 8, 11, 17, 19, 27). lcnA is also present on pNP2 of L. lactis subsp. lactis bv. diacetylactis WM4 (25), and by Tn5 transposon mutagenesis, it was shown that two additional genes are required for bacteriocin activity. These genes, designated lcnC and lcnD, are located in an operon immediately upstream of the lactococcin A structural and immunity genes (25). Comparisons of LcnC and LcnD with protein database sequences revealed that these proteins have significant similarities to gram-negative proteins implicated in signal sequence-independent secretion pathways (2, 9, 24). It is now generally accepted that LcnC and LcnD are required for the secretion of lactococccins via a system dedicated to bacteriocin export (14, 25). Similarly dedicated secretion systems have now been proposed for other lactic acid bacterium bacteriocins (15, 17).

In retrospect, it is surprising that lactococcin production and secretion were found with plasmids which carry only the lactococcin structural and immunity genes but do not encode the postulated secretion function. Hol et al. (10) were able to detect only reduced production of lactococcin A in L. lactis IL1403. This strain was also used throughout the works of van Belkum et al. (28–30). In all other strains, no lactococcin production was detectable. In this study, we investigated why strain IL1403 is capable of producing and externalizing active lactococccins in the absence of the plasmid-encoded lcnC and lcnD genes.

MATERIALS AND METHODS

Bacterial strains, plasmids, and growth conditions. The bacterial strains and plasmids used in this study are listed in Table 1. L. lactis was cultivated in M17 broth (26) supplemented with 0.5% glucose. Agar (1.5%) was added to plates. E. coli was cultured on TY medium (21). Erythromycin and chloramphenicol were used at final concentrations of 5 μg/ml each for L. lactis and of 100 and 10 μg/ml, respectively, for E. coli.

Molecular cloning and DNA sequencing. Transformations of L. lactis and E. coli were done as described earlier (32). General DNA cloning and manipulation techniques and Southern hybridizations were carried out essentially as described by Sambrook et al. (22). Probes for Southern hybridizations were labelled with an ECL labelling kit (Amersham, Little Chalfont, Buckinghamshire, United Kingdom). DNA sequencing was done on double-stranded DNA by the dideoxy chain termination method (23), using a T7 sequencing kit and the manufacturer's (Pharmacia, Uppsala, Sweden) protocol.

Bacteriocin assay. The bacteriocin spot test was used to determine bacteriocin activity, as described before (31). One arbitrary unit was defined as the reciprocal of the highest dilution forming a visible halo. Overlayer assays on colonies were done as described before (31). L. lactis IL1403 was used as the lactococcin indicator strain throughout this study.

Construction of plasmids. Internal fragments from the plasmid-derived lcnC and lcnD genes (HindIII–HindIII fragments for lcnC and lcnD, respectively) were cloned in pORI28 (16) to give plNT4C and plNT4D, respectively. These plasmids were maintained in the E. coli helper strain EC1000, which contains on its chromosome a copy of repE, encoding the pWV01 replication protein RepA. The plasmids from this strain were isolated and used to transform L. lactis IL1403. Campbell-type integrants were selected on plates containing erythromycin, as described by Leenhouts and Venema (16).

pHVB was constructed to test bacteriocin production in integrants. This plasmid is a theta-replicating plasmid derived from pWV01 and does not interfere with the integrated state of the pINT plasmids. To obtain pHVB, pMB80 was cut with EcoRI and XbaI. The fragment carrying lcnB was isolated and cloned into pHV1432 cut with the same restriction endonucleases.

PCR. PCR was performed according to standard protocols (22) with Taq polymerase (Boehringer Mannheim GmbH, Mannheim, Germany). The primers used for PCR were synthesized with model 381A DNA synthesizer (Applied Biosystems, Foster City, Calif.).

Plasmid rescue. Chromosomal DNA of L. lactis IL1403:pINT4C was isolated and cut with various restriction endonucleases. After self-ligation, the DNA was used to transform E. coli EC1000, with selection for erythromycin resistance.

* Corresponding author.
† Present address: Dept. of Food Science, North Carolina State University, Box 7624, Raleigh, NC 27695.
‡ Present address: Hercules European Research Centre, 3771 ME Barneveld, The Netherlands.

0099-2240/96/$04.00 + 0
Copyright © 1996, American Society for Microbiology

1689
RESULTS AND DISCUSSION

The fact that lcnC and lcnD are essential for extracellular lactococcin activity (25), combined with the observation that in L. lactis IL1403 these genes need not be present on a plasmid together with the lcnA structural gene (10, 28, 30), prompted us to investigate whether IL1403, a plasmid-free strain, carries genes homologous to lcnC and lcnD on its chromosome. A DNA fragment encompassing most of plasmid-derived lcnC and lcnD was used as the probe in Southern hybridizations. A signal was indeed obtained with the chromosome of IL1403 (Fig. 1B, lanes 6 to 9). Subfragments of lcnC and lcnD also reacted in Southern hybridizations (data not shown). In PCRs on IL1403 chromosomal DNA with primers derived from and spanning almost the entire plasmid-encoded lcnC and lcnD region (3, 4), fragments with sizes similar to those expected from plasmid-borne lcnC and lcnD were obtained (Fig. 2A). No PCR products were obtained with primers specific for the 3' end of lcnD. By using DNA probes encompassing this part of the gene in a Southern hybridization, a signal was found, however, suggesting that a homologous region is preserved on the chromosome of IL1403. Apparently, the nucleotide sequence of the part of lcnD against which the primers were directed differs significantly from that of the plasmid-encoded gene, preventing primer annealing. Taken together, these results indicate that the chromosome of strain IL1403 contains

TABLE 1. Bacterial strains and plasmids used in this study

<table>
<thead>
<tr>
<th>Bacterial strain or plasmid</th>
<th>Relevant properties</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. lactis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL1403</td>
<td>Plasmid-free strain; indicator strain for lactococcin B</td>
<td>1</td>
</tr>
<tr>
<td>MG1363</td>
<td>Plasmid-free strain</td>
<td>6</td>
</tr>
<tr>
<td>E. coli EC1000</td>
<td>Helper strain; MC1000 containing pWV01 repA on chromosome</td>
<td>Laboratory collection</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pMB580</td>
<td>Em' containing the lactococcin B operon</td>
<td>30</td>
</tr>
<tr>
<td>pMB551</td>
<td>Em'; containing most of lcnC and lcnD; used as probe in Southern hybridization</td>
<td>30</td>
</tr>
<tr>
<td>pHV1432</td>
<td>Cm'; cloning vector; pAMB1 derivative</td>
<td>21</td>
</tr>
<tr>
<td>pORI28</td>
<td>Em'; cloning vector lacking repA</td>
<td>16</td>
</tr>
<tr>
<td>pINT4C</td>
<td>Em'; integration vector; pORI28 with an internal fragment of lcnC</td>
<td>This work</td>
</tr>
<tr>
<td>pINT1D</td>
<td>Em'; integration vector; pORI28 with an internal fragment of lcnD</td>
<td>This work</td>
</tr>
<tr>
<td>pHVB</td>
<td>Cm'; pHV1432 derivative containing lactococcin B operon</td>
<td>This work</td>
</tr>
<tr>
<td>pKV4</td>
<td>Em'; pIB253 derivative containing lcnCDA and lciA</td>
<td>30a</td>
</tr>
</tbody>
</table>

* Em', erythromycin resistance; Cm', chloramphenicol resistance.

FIG. 1. (A) Agarose (0.8%) gel; (B) corresponding Southern hybridization film. Lanes 1, plasmid pMB551 (positive control); lanes 2 to 5, chromosomal DNA of L. lactis MG1363 cut with EcoRV, HindIII, HpaII, and PvuII, respectively; lanes 6 to 9, chromosomal DNA of L. lactis IL1403 cut with EcoRV, HindIII, HpaII, and PvuII, respectively; lanes 10, SPP1 marker DNA cut with EcoRI. Plasmid pMB551 was used as the probe.

FIG. 2. (A) Schematic representation of the PCR products obtained from the chromosome of IL1403. Schematic outlines for the Campbell-type integration of pINT4C into the chromosome of IL1403 to produce an insertion mutant of lcnC (B) and plasmid rescue (C). ORI', origin of replication; Em', erythromycin resistance marker; X and Y, restriction endonuclease sites; P, promoter; open box, internal fragment of lcnC; hatched box, chromosomally located gene.
genes that are highly homologous to plasmid-encoded lcnC and lcnD.

By using probes encompassing the structural genes for lactococci A, B, and M and their corresponding immunity genes, no signal was obtained by Southern hybridization (data not shown). In addition, no bacteriocin activity was detectable when overlay assays were performed on IL1403 with several other lactococcal and nonlactococcal strains as indicators (data not shown), indicating that IL1403 itself does not produce bacteriocin activity.

Two small fragments containing internal parts of lcnC (a HindIII-NsiI fragment) and lcnD (a HindII-HaeIII fragment) were cloned in pOR128, and the resulting integration vectors were used to disrupt both genes in the IL1403 chromosome in a Campbell-type integration (Fig. 2B), exemplified for pINT4C only. Disruption of lcnC had no polar effects on the expression of lcnD because of the presence of a promoter on the integration plasmid (Fig. 2B). Strain IL1403 and both insertion mutants were transformed with pHVB, a plasmid containing the lactococbin B structural and immunity genes. IL1403(pHVB) produced bacteriocin, as judged by the appearance of halos around the colonies in an overlay assay. However, extracellular production of lactococin B was abolished in both insertion mutants, indicating that both chromosomally encoded genes are functional and necessary for the secretion of active lactococin B.

The reduced production of lactococins in IL1403 carrying a plasmid with only the bacteriocin structural and immunity genes, compared with that of the wild-type strain carrying all of the essential genes on a plasmid (10, 28), can be explained by assuming that the lower copy number of the chromosomally located genes (most probably one) results in lower secretion efficiency. This conclusion was corroborated by introducing lcnC and lcnD, originating from p9B4-6, on plasmid pHK4 into IL1403. This led to lactococin production that was increased at least 10-fold (data not shown).

The integrated plasmid pINT4C was rescued from the chromosomal DNA of L. lactis IL1403::pINT4C with various restriction endonucleases (Fig. 2C). After self-ligation, the DNA was used to transform pINT1D, and the resulting integration vectors were used to disrupt both genes in the IL1403 chromosome in a Campbell-type integration (Fig. 2B). Strain IL1403 and both insertion mutants were transformed with pHVB, a plasmid containing the lactococbin B structural and immunity genes. IL1403(pHVB) produced bacteriocin, as judged by the appearance of halos around the colonies in an overlay assay. However, extracellular production of lactococin B was abolished in both insertion mutants, indicating that both chromosomally encoded genes are functional and necessary for the secretion of active lactococin B.

The reduced production of lactococins in IL1403 carrying a plasmid with only the bacteriocin structural and immunity genes, compared with that of the wild-type strain carrying all of the essential genes on a plasmid (10, 28), can be explained by assuming that the lower copy number of the chromosomally located genes (most probably one) results in lower secretion efficiency. This conclusion was corroborated by introducing lcnC and lcnD, originating from p9B4-6, on plasmid pHK4 into IL1403. This led to lactococin production that was increased at least 10-fold (data not shown).

The integrated plasmid pINT4C was rescued from the chromosomal DNA of L. lactis IL1403::pINT4C with various restriction endonucleases (Fig. 2C). After self-ligation, the DNA was used to transform E. coli EC1000 (RepA+). Ligated fragments carrying a functional origin of replication of pWV01 can replicate in this E. coli strain because of the fact that it produces the plasmid replication protein RepA. Only from the HindIII ligation mixture was obtained a plasmid that was larger than pINT4C. The construct rescued from the other ligation mixtures were either smaller than (because of deletion formation) or of the same size (because of homologous recombination) as pINT4C. All constructs rescued from IL1403::pINT1D carried deletions, since all were smaller than pINT1D. The insert in the plasmid rescued from the HindIII ligation mixture of IL1403::pINT4C was sequenced. It contained the nucleotide sequence corresponding to nucleotides 1260 to 1786 of lcnC, as published by Stoddard et al. (25). Several nucleotide substitutions were found compared with the sequence of plasmid-encoded lcnC, but none of these led to amino acid changes in the translation product (Fig. 3). It was impossible to clone the complete secretion mechanism from the chromosome of L. lactis IL1403 in E. coli or L. lactis. Apparently, the products encoded by these genes or by the DNA flanking these genes are deleterious when provided to the cell in more than one copy, as is the case on the plasmids used here. In this respect, it is noteworthy that we have also been unable to subclone plasmid-encoded lcnC (30a), indicating that it is this gene, encoding an integral membrane protein, that causes the problems.

Apart from the lactococci, the secretion mechanism on the chromosome of IL1403 is also capable of secreting lacticin 481, a lantibiotic produced by L. lactis (18, 20). This lantibiotic contains a leader sequence of the double-glycine type. We have previously established that the N-terminal domain of the ABC transporter involved in the secretion of bacteriocins with this type of leader is responsible for cleavage of the leader (33). Apparently, chromosomally encoded lcnC is able to recognize the leader of lacticin 481 and the apparatus is able to secrete this lantibiotic.

It appears that strains of L. lactis can carry a bacteriocin secretion and maturation mechanism without producing bacteriocin. The reason for this phenomenon is unknown, but one explanation might be that a bacteriocin plasmid has integrated into the chromosome of IL1403 with subsequent or consequent loss of the bacteriocin structural and immunity genes. Alternatively, we may speculate that bacteriocins are not the only substrates for the secretion apparatus and that other proteins, peptides, or even nonproteinaceous substances are also secreted via this mechanism.

ACKNOWLEDGMENTS

We thank H. Mulder for preparing the figures.

K. Venema was supported by the EC BRIDGE T-project on lactic acid bacteria. J. Kok was the recipient of a fellowship of the Royal Netherlands Academy of Arts and Sciences (KNAW).

REFERENCES