A protein having similarity with methylmalonyl-CoA mutase is required for the assimilation of methanol and ethanol by Methylobacterium extorquens AM1

Lorraine M. Smith,1,2 Wim G. Meijer,2 Lubbert Dijkhuizen2 and Pat M. Goodwin1†

Introduction

Methylobacterium extorquens AM1 is a pink-pigmented facultative methylotroph which assimilates C1 compounds by the serine pathway (Fig. 1) (Anthony, 1982). The first step in this pathway involves the condensation of a C1-tetrahydrofolate derivative with glycine to form serine, catalysed by serine hydroxymethyltransferase. The serine is then converted to C3 and C4 carboxylic acids which can be assimilated into cell material. This involves four key enzymes—serine glyoxylate aminotransferase, hydroxypyruvate reductase, glycerate kinase and an acetyl-CoA-independent phosphoenolpyruvate carboxylase. There must also be a means of regenerating the C5 acceptor, glycine. Its immediate precursor is glyoxylate and acetate is an intermediate in the recycling pathway. In the so-called Icl+ serine pathway organisms, malate thio kinase, malyl-CoA lyase, isocitrate lyase and some of the tricarboxylic acid cycle enzymes are required for the conversion of acetate to glyoxylate (Bellion & Hersh, 1972).

In M. extorquens AM1 there is evidence that malyl-CoA lyase and malate thio kinase are essential for the assimilation of C1 compounds (Salem et al., 1973a, 1974; Chistoserdova & Lidstrom, 1994b). However, isocitrate lyase has never been detected in this organism, nor in a number of other serine pathway methylotrophs (Dunstan et al., 1972a; Kortstee, 1981); such organisms are known as Icl− serine pathway methylotrophs. Although several different routes for the conversion of acetate to glyoxylate in these organisms have been proposed (Dunstan et al., 1972b; Kortstee, 1981; Shimizu et al., 1984), none of them have been confirmed. Several mutants have been described which are unable to grow on C1 compounds unless the medium is supplemented with glyoxylate, but the biochemical basis of this phenotype has not been elucidated (Dunstan et al., 1972b; Salem et al., 1973b;...
Fig. 1. Icl\(^{-}\) variant of the serine pathway showing the key enzymes and the route (broken line) for the regeneration of tetrahydrofolate. Immunochemical data (not shown) demonstrated that the deduced amino acid sequence of the deduced Icl\(^{-}\) protein does not exhibit similarity with any known proteins (Chistoserdova & Lidstrom, 1994b).

Three other regions of the *M. extorquens* AM1 chromosome encode serine pathway genes; one complements mutants defective in glycerate kinase and the other two complement mutants which are specifically blocked in the conversion of acetyl-CoA to glyoxylate (Stone & Goodwin, 1989). In this paper, we describe the isolation and characterization of another mutant of the latter type and demonstrate that it, and two of the previously described mutants, are defective in a protein with similarity with methylmalonyl-CoA mutase.

METHODS

Bacterial strains. The bacterial strains and plasmids used in this study are listed in Table 1.

Growth of organisms. *M. extorquens* AM1 was grown at 30 \(^\circ\)C on MacLennan’s minimal salts medium (MacLennan et al., 1971). Carbon substrates were added to give the following final concentrations: 0.4% (v/v) for methanol; 0.5% (v/v) for 1,2-propanediol; 5 mM for glyoxylate; 0.2% (v/v) for ethanol; 0.2% (v/v) for other substrates. *Escherichia coli* strains were grown in Luria–Bertani broth at 37 \(^\circ\)C (Sambrook et al., 1989). Where appropriate, supplements were added to the medium at the following concentrations: oxytetracycline hydrochloride, 20 \(\mu\)g ml\(^{-1}\) for *E. coli* and 12.5 \(\mu\)g ml\(^{-1}\) for *M. extorquens* AM1; kanamycin sulphate, 50 \(\mu\)g ml\(^{-1}\) for *E. coli*; ampicillin, 50 \(\mu\)g ml\(^{-1}\); X-Gal, 20 \(\mu\)g ml\(^{-1}\); isopropyl \(\beta\)-D-thiogalactoside, 0.1 mM.

Isolation of mutants. A culture of wild-type *M. extorquens* AM1 growing on methanol medium was harvested at the mid-exponential phase of growth and resuspended at a density of approximately 10\(^8\) cells ml\(^{-1}\) in 0.2 M sodium acetate buffer (pH 6.4) containing 1 mg sodium nitrite ml\(^{-1}\) and 2 \(\mu\)g chloramphenicol ml\(^{-1}\), which has been reported to enhance mutagenesis (Mishra & Tiwari, 1985). After incubation with shaking for 1 h at 30 \(^\circ\)C, the cells were harvested and washed in succinate medium. Expression and penicillin enrichment were done as described by Tatra & Goodwin (1985). Mutants able to grow on succinate but not on methanol or ethanol were isolated by replica plating.

Preparation of cell extracts and enzyme assays. Cell extracts were prepared as described by Tatra & Goodwin (1985). Methanol dehydrogenase (EC 1.1.1.99.8), methylamine dehydrogenase (EC 1.4.99.3) and formaldehyde dehydrogenase (EC 1.2.99.3) were assayed polarographically (Tatra & Goodwin, 1985; Dawson et al., 1990; Ford et al., 1985). The following enzymes were assayed spectrophotometrically (Shimadzu UV 260 dual beam spectrophotometer) using published methods: formate dehydrogenase (EC 1.2.1.2; Johnson & Quayle, 1964); hydroxypyruvate reductase (EC 1.1.1.81; Goodwin, 1990); glyceraldehyde kinase (EC 2.7.1.31; Goodwin, 1990); serine:glyoxylate aminotransferase (EC 2.6.1.45; Goodwin, 1990); acetyl-CoA independent phosphoenolpyruvate carboxylase (Goodwin, 1990). Maly-CoA lyase (EC 4.1.3.24) could not be assayed directly because the substrate, maly-CoA, is not commercially available. The presence of this enzyme was deduced by measuring the apparent malate synthase activity, which is due to the concerted action of maly-CoA lyase and a cluster of seven other serine pathway genes also has two functions during growth on C\(_4\) compounds, one being that it is necessary for the conversion of acetyl-CoA to glyoxylate. The deduced amino acid sequence of this protein does not exhibit similarity with any known proteins (Chistoserdova & Lidstrom, 1994b).

Recently, Chistoserdova & Lidstrom (1994a) have isolated a mutant defective in serine hydroxymethyltransferase. Surprisingly, it was able to grow on succinate, but not on methanol or ethanol. Furthermore, when the medium was supplemented with glyoxylate it grew on ethanol, but not on methanol. This indicates that serine hydroxymethyltransferase is required for the conversion of acetyl-CoA to glyoxylate, as well as for the fixation of formaldehyde during growth on C\(_4\) compounds. The protein encoded by an ORF (*orf4*) which is found within

![Diagram of the serine pathway](https://via.placeholder.com/150)
Methanol assimilation in *Methyllobacterium*

Table 1. Bacterial strains and plasmids

<table>
<thead>
<tr>
<th>Strain/plasmid</th>
<th>Relevant properties</th>
<th>Source/reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. extorquens AM1</td>
<td>Mutants defective in the conversion of acetyl-CoA to glyoxylate</td>
<td>Peel & Quayle (1961)</td>
</tr>
<tr>
<td>Wild-type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCT48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT1005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSM1607</td>
<td>F<sup>+</sup> pro A2 rec A1 3 psiL20 (Str<sup>R</sup>) hsdS20 (hsdR hsdM)</td>
<td>NCIMB 11865</td>
</tr>
<tr>
<td>S17-1</td>
<td>thi pro hsdR rec A1; contains the tra region of RP4 integrated in the chromosome</td>
<td>Simon et al. (1983)</td>
</tr>
<tr>
<td>CSR603</td>
<td>F<sup>-</sup> pro A2 rec A1</td>
<td>NCIMB 11867</td>
</tr>
<tr>
<td>XL1-Blue</td>
<td>endA1 hsdR17 (F<sup>E</sup>) supE44 thi-1 rec A1 (lac) F<sup>+</sup> pro AB lacZ<sup>AM15</sup> Tn10 (Te<sup>C</sup>)</td>
<td>Bullock et al. (1987)</td>
</tr>
<tr>
<td>P678-54</td>
<td>F thr1 ara 13 leu-6 azi 8 ton A2 lac Y1 min A1 gln U44 gal6 min B2 psiL135 mal A1 xyl 7 met II thi 1</td>
<td>Adler et al. (1967)</td>
</tr>
<tr>
<td>DH5<sup>z</sup></td>
<td>supE44 lacU169 (Q80lacZ<sup>AM15</sup>) hsdR17 rec A1 end A1 gnr A96 thi 1 rel A1</td>
<td>Bethesda Research Laboratories</td>
</tr>
<tr>
<td>Plasmid/cosmid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVK100</td>
<td>IncP1, Tc<sup>+</sup>, Km<sup>+</sup>, col; broad-host-range cloning vector</td>
<td>Knauf & Nester (1982)</td>
</tr>
<tr>
<td>pLA2917</td>
<td>IncP1, Tc<sup>+</sup>, Km<sup>+</sup>, col; broad-host-range cloning vector</td>
<td>Allen & Hanson (1985)</td>
</tr>
<tr>
<td>pRK415</td>
<td>IncP1, Tc<sup>+</sup>, lacZ<sup>-</sup>; broad-host-range cloning vector</td>
<td>Keen et al. (1988)</td>
</tr>
<tr>
<td>pRK2013</td>
<td>Km<sup>+</sup> mobilizing plasmid; ColE1 replicon</td>
<td>Figurski & Helinski (1979)</td>
</tr>
<tr>
<td>pBluescript II KS(+)</td>
<td>Amp<sup>R</sup> plasmid with ColE1 replicon and plasmid origins of replication</td>
<td>Stratagene Cloning Systems</td>
</tr>
<tr>
<td>pTZ18U</td>
<td>Amp<sup>R</sup> lac Z<sup>-</sup> cloning vector</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>pSS48-1, pSS48-2</td>
<td>Cosmids isolated from a Hind III clone bank of M. extorquens AM1 DNA in pVK100</td>
<td>Stone & Goodwin (1989)</td>
</tr>
<tr>
<td>pLS27C</td>
<td>4.0 kb EcoRI fragment of pSS48-1 in pRK415</td>
<td></td>
</tr>
<tr>
<td>pLS271C</td>
<td>1.0 kb PstI fragment of pLS27C in pLA2917</td>
<td></td>
</tr>
<tr>
<td>pLS273C</td>
<td>2.2 kb PstI-EcoRI fragment of pLS27C in pRK415</td>
<td></td>
</tr>
<tr>
<td>pLS274C</td>
<td>1.0 kb EcoRI-PstI fragment of pLS27C in pRK415</td>
<td></td>
</tr>
<tr>
<td>pLS27</td>
<td>4.0 kb EcoRI fragment of pSS48-1 in pBluescript KS(+)</td>
<td></td>
</tr>
<tr>
<td>pLS271</td>
<td>1.0 kb PstI fragment of pLS27 in pBluescript KS(+)</td>
<td></td>
</tr>
<tr>
<td>pLS272</td>
<td>1.2 kb EcoRI-BglII fragment of pLS27 in pBluescript KS(+)</td>
<td></td>
</tr>
<tr>
<td>pLS273</td>
<td>2.2 kb PstI-EcoRI fragment of pLS27 in pTZ18U</td>
<td></td>
</tr>
<tr>
<td>pLS27C</td>
<td>4.0 kb EcoRI fragment of pSS48-1 in pRK415</td>
<td></td>
</tr>
<tr>
<td>pLS271C</td>
<td>1.0 kb PstI fragment of pLS27 in pBluescript KS(+)</td>
<td></td>
</tr>
<tr>
<td>pLS273</td>
<td>2.2 kb PstI-EcoRI fragment of pLS27 in pTZ18U</td>
<td></td>
</tr>
</tbody>
</table>

Malonyl-CoA hydroxylase (Stone & Goodwin, 1989). Methylmalonyl-CoA mutase (EC 5.4.99.2) was measured by the method of Zagalak et al. (1974). Enzyme assays were repeated using at least two independent cultures. Protein concentrations were determined by the method of Lowry using BSA fraction V as the standard.

Complementation analysis. Recombinant cosmids were introduced into *M. extorquens* AM1 mutants using either biparental mating (where *E. coli* S17-1 carrying a recombinant cosmid was the donor) or triparental mating (where other *E. coli* hosts carrying a recombinant cosmid were the donors and the mobilizing plasmid pRK2013 was supplied by *E. coli* DSM1607). Matings were done using a modification of the method of Fulton et al. (1984). Culture of the recipient (0.1 ml; 10⁸ cells) was spread onto a nutrient agar plate. The plate was dried and then 20 µl culture containing the donor (2 x 10⁷ cells), mixed with an equal number of mobilizer cells if appropriate, was dropped onto the lawn of recipient. After incubation overnight at 30°C, the plates were replicated onto medium containing (i) succinate plus tetracycline plus carbenicillin (to select for cosmid transfer) and (ii) methanol plus tetracycline (to select for complementation). Carbenicillin (100 µg ml⁻¹) was added to the succinate medium to inhibit the growth of *E. coli* which occurred due to carry-over of nutrients from the mating plates. To check that complementation, rather than recombinational rescue, was occurring, single colonies which had been selected for transfer of the cosmid were removed and tested for growth on methanol plus tetracycline. Demonstration that all of these colonies grew on methanol indicated that there was complementation in trans.

Plasmid isolation. A modification of the alkaline lysis method of Birnboim & Doly (1979) was used for small-scale preparation of plasmid and cosmid DNA (Sambrook et al., 1989). Large-scale isolation of plasmid DNA for sequencing was done as described in the Promega Protocols and Applications Guide.

Subcloning. Subcloning and agarose gel electrophoresis were done as described by Sambrook et al. (1989). Enzymes for restriction digestion and DNA manipulations were obtained from Sigma or Northumbria Biologicals and used according to the manufacturers' instructions. A Prep-A-Gene DNA purification kit (Bio-Rad) was used to purify DNA fragments isolated from agarose gels. Recombinant plasmids were introduced into competent *E. coli* cells by transformation as described by Sambrook et al. (1989).
DNA-DNA hybridization. Chromosomal DNA was isolated from *M. extorquens* AM1 using the method of Fulton et al. (1984). The DNA was digested with an appropriate restriction enzyme and the resulting fragments were separated by agarose gel electrophoresis and then blotted onto a Hybond-N nylon membrane (Amersham), using the Hybaid Vacu-aid according to the manufacturer’s instructions.

DNA probes were prepared by random incorporation of digoxigenin-labelled deoxyuridine triphosphate (Boehringer), according to the manufacturer’s instructions. Hybridization was done at 68 °C in a Hybaid incubator as described by Sambrook et al. (1989), using stringent washing conditions, and the hybridized probe was detected using the DIG nucleic acid detection kit (Boehringer).

Nucleotide sequencing. Plasmid pLS27 was digested with *Pvu*I and the resulting 1·0 kb fragment was cloned into pBluescript KS(+), generating plasmid pLS271. The 1·1 kb *EcoRI*-Bg/II fragment of pLS27 was ligated into pBluescript KS(+) which had been digested with *EcoRI* and *BamHI*, giving plasmid pLS272. The 2·2 kb *Pvu*I–*EcoRI* fragment of pLS27 was subcloned into pTZ18U which had been digested with the same enzymes and a nested set of unidirectional deletions of the resulting plasmid, pLS273, was made. This was done as described by Henikoff (1984), except that mung bean nuclease was used instead of S1 nuclease. DNA fragments were sequenced by the dideoxy chain-termination method (Sanger et al., 1977). Primers were either obtained commercially or were custom synthesized.

Sequencing was either done with T7 DNA polymerase and [35S]dATPαS using the Sequenase kit (US Biochemical) or by using a Pharmacia Automated Laser Fluorescence DNA sequencing system.

Sequence data were compiled and analysed using the GCG programs (Devereux et al., 1984) and the programs supplied in the PC/GENE software packages (Intelligenetics).

Preparation and labelling of *E. coli* minicells and analysis of labelled peptides. The *E. coli* minicell-producing strain P687–54 was transformed with pLS27 and with pBluescript KS(+). Minicells were isolated using a modified version of the method of Clark-Curtiss & Curtiss (1983) as described by Eggink et al. (1988). The protein products were labelled with [35S]methionine, analysed by SDS-PAGE and visualized by fluorography (Eggink et al., 1988).

RESULTS AND DISCUSSION

Isolation and characterization of mutants

Following nitrous acid mutagenesis, four mutants were isolated which had growth properties typical of mutants unable to convert acetyl-CoA to glyoxylate, i.e. were unable to grow on methanol or ethanol unless the medium was supplemented with glyoxylate. We have designated this phenotype Mea (methanol and ethanol assimilation deficient). Revertants were obtained at a frequency of approximately 10−8. As expected, the mutants were also unable to utilize methyamine, formate, malonate or β-hydroxybutyrate as sole carbon source, but could grow on oxalate, which is assimilated by metabolism to glyoxylate and formate and then converted to phosphoglycerate by the appropriate enzymes of the serine pathway (Blackmore & Quayle, 1970). Surprisingly, pyruvate, lactate and 1,2-propanediol, which are also thought to be assimilated by a route involving metabolism to acetyl-CoA and its subsequent conversion to glyoxylate (Salem et al., 1973b; Bolbot & Anthony, 1980a, b), supported growth of the new isolates and also of two previously described mutants, PCT48 and PT1005. However, all of the mutants grew much more slowly than the wild-type on 1,2-propanediol and this may account for the failure of Bolbot & Anthony (1980b) to observe growth of PCT48 on this substrate. These results suggest that, if acetate is an intermediate in the assimilation of pyruvate, lactate and 1,2-propanediol, it must be metabolized by a route which does not involve conversion to glyoxylate.

Biochemical and complementation analysis indicated that the four new mutants were identical so the results for only one – LS1 – are given. It was grown on medium containing succinate plus methanol plus methyamine, harvested, and incubated overnight in medium containing methanol plus methyamine to induce the C2-metabolizing enzymes. Crude extracts were then assayed for the known key enzymes of the serine pathway. Serine:glyoxylate aminotransferase, hydroxypyruvate reductase, glycerate kinase and the acetyl-CoA-independent phosphoenolpyruvate carboxylase were all detected, as were the C2-oxidizing enzymes methanol dehydrogenase, methylamine dehydrogenase, formaldehyde dehydrogenase and formate dehydrogenase. The presence of malyl-CoA lyase was deduced by demonstrating an apparent malate synthase activity, which is due to the concerted action of malyl-CoA lyase and malyl-CoA hydrolase. We did not assay for serine hydroxymethyltransferase, but this enzyme must be present since LS1 grew on oxalate and on methanol in the presence of glyoxylate.

Complementation analysis

Stone & Goodwin (1989) isolated two overlapping cosmids (pSS48-1 and pSS48-2) from a HindIII genomic library of *M. extorquens* AM1 DNA constructed in the broad-host-range mobilizable cosmid pVK100, and demonstrated that they complemented two mutants, PCT48 and PT1005, which were unable to convert acetyl-CoA to glyoxylate; a third mutant with the same phenotype (Cou-4) was not complemented. pSS48-1 and pSS48-2 also complemented mutant LS1.

pLS27C, a subclone of pSS48-1 which contained a 4·0 kb *EcoRI* fragment of pSS48-1, also complemented all of the mutants but subclones containing smaller DNA fragments derived from pLS27C did not (Fig. 2). However, when one of these (pLS274C) was introduced into PT1005, approximately 1% of the transconjugants which had received the cosmid grew on methanol, indicating that recombinational rescue had occurred. Recombinational rescue also occurred when pLS273C was introduced into LS1.

Mutant PCT48 contains a chromosomal deletion

In common with Dunstan et al. (1972b), we were unable to isolate revertants of this mutant and we therefore investigated their suggestion that PCT48 is a deletion
Methanol assimilation in *Methylobacterium*

(a) Restriction map of the 26 kb *HindIII* insert of cosmid pSS48-1. The hatched box indicates the position of the deletion in PCT48. (b) Complementation analysis of the Mea mutants using subclones of pSS48-1. C, Complementation; R, recombination; -, no complementation or recombination. The positions and directions of transcription of *meaA*, *orfB* and *orfC* are indicated by arrows.

Fig. 2. (a) DNA–DNA hybridization of genomic DNA from wild-type *M. extorquens* AM1 and mutant PCT48. (a) Probed with the 4.0 kb *EcoRI* fragment from pLS27. Lanes: 1, *EcoRI* digest of genomic DNA from PCT48; 2, *EcoRI* digest of genomic DNA from wild-type; 3, *PstI* digest of lambda DNA; 4, *EcoRI–HindIII* digest of lambda DNA. (b) Probed with the 1.0 kb *PstI* fragment from pLS271C. Lanes: 1, *PstI* digest of genomic DNA from PCT48; 2, *PstI* digest of genomic DNA from wild-type; 3, *PstI* digest of pLS271C; 4, *PstI* digest of lambda DNA; 5, *EcoRI–HindIII* digest of lambda DNA. The *PstI* fragment bound to pLA2917 (data not shown) and this accounts for the bands of 21 kb (vector DNA) and 6.0 kb (degraded vector DNA).
L. M. Smith and Others

501

Fig. 4. Nucleotide sequence of the M. extorquens AM1 chromosomal region containing meaA, orfB and the 3'-terminus of orfC. Amino acids are represented by the single letter code. The conceptual translation of orfB and orfC is from the reverse complement (lower-case letters). Putative ribosome-binding sites are underlined, putative transcriptional terminator sequences are double underlined and asterisks indicate stop codons. The underlined amino acid sequence represents the short-chain alcohol dehydrogenase family signature.

680

and probed with the 40 kb EcoRI fragment which complemented all of the mutants. It hybridized to a 40 kb fragment of wild-type DNA, as expected; in contrast, it hybridized to a DNA fragment of about 6 kb from PCT48 (Fig. 3a). Thus, there must be a deletion in the chromosome of PCT48 involving one of the EcoRI sites of the DNA fragment cloned in pLS27C.

The genomic DNA from the two strains was also digested with PstI and probed with the 10 kb PstI fragment derived from pLS27C. As expected, it hybridized to a 10 kb DNA fragment from the wild-type; however, it hybridized to a 2.8 kb fragment from the mutant DNA (Fig. 3b). In view of the positions of the PstI and EcoRI restriction sites on pSS48-1, the chromosome of PCT48 must contain a deletion of 2.7 kb, which covers the 2.2 kb EcoRI-PstI fragment (Fig. 2). The complementation analysis indicated that the 2.2 kb EcoRI-PstI fragment of pLS27C was essential for growth on methanol and ethanol.

The mea locus contains a gene encoding a protein which has similarity with methylmalonyl-CoA mutase

The nucleotide sequence of the 4.0 kb EcoRI fragment cloned in pLS27 is shown in Fig. 4. It contained one large ORF with two possible initiation codons and translation from these putative start codons would give rise to proteins of 78 and 75 kDa. Only the second ORF has a typical ribosome-binding site upstream. Complementation analysis showed that this gene was defective in the Mea mutants PT1005 and LS1, indicating that it is essential for the conversion of acetyl-CoA to glyoxylate; we have therefore called it meaA. A smaller ORF of 687 bp (orfB) was present 118 bp downstream from meaA and was transcribed in the opposite direction. The 3'-end of a third ORF (orfC) was identified 297 bp from orfB. Both the intergenic regions contained inverted repeats which resembled rho-independent termination sequences (Platt, 1986). The deletion in PCT48 extends into orfC and, since this mutant was complemented by the 4.0 kb EcoRI fragment which does not contain the complete orfC gene, this gene cannot be considered essential for growth on methanol.

The predicted amino acid sequences of the ORFs were compared with entries in the protein database at the National Center for Biotechnology Information (NCBI) using the program BLAST (Altschul et al., 1990). The meaA gene product had a high degree of similarity with the methylmalonyl-CoA mutases, which are adenosylcobalamin-dependent enzymes catalysing the interconversion of methylmalonyl-CoA and succinyl-CoA (Fig. 5). The enzymes from Propionibacterium shermanii, Streptomyces cinamomenis and Porphyromonas gingivalis are heterodimers consisting of a large subunit (approximately 79 kDa) and a small subunit (approximately 65 kDa) (Marsh et al., 1989; Birch et al., 1993). In contrast, the mouse and human enzymes comprise two identical subunits of 82 kDa (Ledley et al., 1988; Jansen et al., 1989; Wilkemeyer et al., 1990). The sbm gene of E. coli encodes mutant. Chromosomal DNA isolated from the wild-type strain and from PCT48 was digested with EcoRI. The resulting fragments were separated by gel electrophoresis and probed with the 40 kb EcoRI fragment which complemented all of the mutants. It hybridized to a 40 kb fragment of wild-type DNA, as expected; in contrast, it hybridized to a DNA fragment of about 6 kb from PCT48 (Fig. 3a). Thus, there must be a deletion in the chromosome of PCT48 involving one of the EcoRI sites of the DNA fragment cloned in pLS27C.
a polypeptide of 78 kDa which also belongs to this family of proteins (Roy & Leadlay, 1992). Individual sequence alignments indicated that MeaA has 56–57% similarity with the large subunits of the bacterial enzymes, the mouse and human enzymes and the sbm gene product. The identities were 37–37.5% in the case of the S. cinnamonensis and Pop. gingivalis large subunits. In contrast, there was only about 46% similarity and 24% identity, with the small subunits of the bacterial enzymes.

Three short, highly conserved regions are present in a gene product, and 34% similarity and 24% identity with the mouse, human and Prop. shermanii large subunits. In contrast, there was only about 46% similarity and 24% identity with the small subunits of the bacterial enzymes.

Three short, highly conserved regions are present in a gene product, and 34% similarity and 24% identity, with the mouse, human and Prop. shermanii large subunits. In contrast, there was only about 46% similarity and 24% identity with the small subunits of the bacterial enzymes.

The deduced amino acid sequence of the polypeptide encoded by orfB did not have significant sequence similarity with any known protein. The predicted amino acid sequence encoded by the partial ORF of orfC had homology with the 3-oxoacyl-[acyl-carrier-protein] reductases of Brassica napus (63% similarity, 41.5% identity), Arabidopsis thaliana (64% similarity, 39% identity) (Slabas et al., 1992) and E. coli (62% similarity, 37% identity) (Cronan & Rawlings, 1992). This enzyme, which is a member of the short-chain alcohol dehydrogenase family, catalyses the first reduction step in fatty acid biosynthesis.

Translation products of meaA

The 40 kb fragment cloned in pLS27 was expressed in E. coli minicells and the resulting products were analysed using denaturing 8% and 12.5% (w/v) SDS-polyacrylamide gels, which together would have resolved both the polypeptides predicted to be expressed from this fragment. Three polypeptides, with apparent molecular

Fig. 5. Alignment of the deduced amino acid sequence of MeaA with sequences of members of the methylmalonyl-CoA mutase family from other sources. P. sh, Prop. shermanii large subunit; S. ci, S. cinnamonensis large subunit; P. gi, Prop. gingivalis large subunit; E. co; E. coli sbm gene product. Identical residues are indicated by an asterisk, and conserved substitutions, according to the scheme PAGST, QNED, ILVM, HKR, YFW, C, are indicated by a dot. Numbers refer to nucleotide residues. The amino acid residues shown in bold and underlined represent the proposed vitamin-B12-binding site and those in italics and underlined represent the conserved sequence in all methylmalonyl-CoA mutases.
masses of 87, 80 and 64 kDa, were present in minicells expressing this fragment, but not in controls (Fig. 6). The first is somewhat larger than the size of the predicted gene product of meaA, but estimates of polypeptide size from SDS-PAGE are often inaccurate. Degradation of large proteins often occurs in minicell expression systems (Eggink et al., 1988) and this presumably accounts for the presence of the 80 and 64 kDa polypeptides. We did not observe any small polypeptides of the size expected of the orfB gene product, which is predicted to be 25.5 kDa.

Mutant PCT48 has methylmalonyl-CoA mutase activity

Methylmalonyl-CoA mutase was assayed in cell extracts of the wild-type and mutant PCT48 grown and induced as described in Methods. The specific activity of this enzyme was similar in the wild-type and in mutant PCT48 which contains a deletion in meaA, the value being 280 nmol min⁻¹ (mg protein)⁻¹ ± 15%. This does not preclude the possibility that meaA encodes an isoenzyme of methylmalonyl-CoA mutase which is required specifically for growth on methanol, although if this is the case it is surprising that the specific activities in the mutant and wild-type are similar. The role of the highly conserved sequence present in all of the methylmalonyl-CoA mutases but not in MeaA is unknown, but it presumably has functional significance. Thus the possibility that meaA codes for a novel cobalamin-binding protein needs to be explored.

Our results support the suggestion made by Shimizu et al. (1984) that vitamin-B12-dependent enzymes are involved in the assimilation of methanol and ethanol. These authors proposed that two adenosylcobalamin-dependent enzymes, methylmalonyl-CoA mutase and glutamate mutase, were required for the conversion of acetyl-CoA to glyoxylate and that β-methylaspartate, mesaconyl-CoA, β-methylmalonyl-CoA, propionyl-CoA and methylmalonyl-CoA were intermediates (Fig. 1). It is unlikely that this pathway is correct since serine hydroxymethyltransferase and an ORF encoding a polypeptide of unknown function are essential for the conversion of acetyl-CoA to glyoxylate (Chistoserdova & Lidstrom, 1994a, b), although the possibility that these proteins are required to generate an inducer of the genes involved in this part of the serine pathway cannot be excluded. We have now shown that the MeaA protein is also needed, and further work is underway to determine whether it is a mutase with an unusual substrate specificity or whether it has some other function.

ACKNOWLEDGEMENTS

We thank the SERC for a PhD studentship to L.S. and NESCOT for providing facilities and assistance for this work. We are also very grateful to Dr Peter Leadlay, Cambridge, for advice on the methylmalonyl-CoA mutase assay and for the gift of coupling enzymes for the assay; and to Dr Chris Thurston, King's College London, for providing advice and facilities for some of the sequencing work.

REFERENCES

Received 15 August 1995; revised 24 October 1995; accepted 7 November 1995.