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CHAPTER 1
INTRODUCTION

I T IS A CHALLENGE for any physicist to understand the phenomena of nature in
the simplest possible manner. In particular, the materials scientist works his way
through the golden triangle of processing, structure and properties of the solid
state of matter. It is an exciting journey across many length and time scales ran-
ging from the atomic scale to that of the macro-world. In one of the last Ph.D.-
theses of this millennium presented to this university, it seems appropriate to re-
alise that some fundamental ideas only stem from the present century1.

For instance, the idea of a crystalline state of matter in which the constituent a-
toms are arranged in regions (grains) of ordered lattices only could be demonstra-
ted experimentally in 1912 with the use of X-rays2. By that time dislocations had
been observed already, the theory of linear elasticity was developed to a great ex-
tent and there were already speculations about their mobility. In the following
decades the idea materialised that the plastic deformation of such systems might
be caused by defects in the lattice. However, what confused the researchers for a
longer period of time was the co-existence of the yield drop and of the work-
hardening in steel. How could the same defect be responsible for easy glide and in
later stages lead to hardening of the crystal? It was not until 1934 that the first ar-
rangement of atoms was proposed by Orowan, Taylor and Polanyi of what we
now call an edge dislocation3,4,5, followed somewhat later by the introduction of
the so-called screw dislocation by Burgers6. It is interesting to quote Sir Geoffrey
Taylor’s view at that time (according to Sir Nevil Mott7): “my paper is a model,
not a theory!” The dislocation was rather a theoretical concept, the use of which
had to be validated by experiments much later after World War II.
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Now that the basic unit of plastic flow was described, others set out to describe its
mobility, at least theoretically. Using discrete models8,9,10, but also by linear elas-
ticity11,12, it was established that the resistance to dislocation motion (and hence to
plastic deformation) was small at low dislocation velocities, but increased at
higher velocities up to the speed of sound. The latter then acts as an upper limit
for dislocation velocities. During the late forties and early fifties, the first esti-
mates of the resistance (or drag force) were made from the interaction of the
moving dislocation with the collective vibrations (phonons) of the crystal lat-
tice13,14,15. Later, near the end of the sixties, other contributions to the dislocation
drag were identified and treated extensively16,17.

Meanwhile, it was also recognised that not only the interaction with the lattice it-
self affects the dislocation motion, but also the interaction with impurities such as
solute atoms and precipitates. Theories were developed by Mott, Labusch, Nabar-
ro and Friedel18� 21, and they could explain why the addition of certain types of
impurities in a crystal increases its resistance to plastic deformation. Granato22

later extended these treatments by taking into account the thermally assisted
passing of those obstacles.

A prominent contribution to the field of dislocation dynamics is the so-called
Orowan equation, relating the macroscopic strain rate to the mean dislocation
velocity. The proportionality is the product of the mobile dislocation density and
the mean dislocation velocity. In the old days, however, the emphasis was on the
determination of the relation between strain rate and dislocation velocity alone.
One of the oldest experimental techniques was based on etch pits. Actually, it
dates back to 1855 but was further developed in 1959 by Johnston and Gilman to
measure dislocation velocity as a function of externally applied stress23 . Another
milestone in the development of this discipline was the introduction of the trans-
mission electron microscope. This enabled the first direct observations of disloca-
tions and their motion in the middle fifties24,25. It also permitted many quantitative
studies on the subject, and in fact, continue to do so very successfully today (for a
review see ref. 26). The body of experimental data that followed the invention of
these experimental techniques enabled the development of many of the theories
that were mentioned in the previous paragraphs and put them on a quantitative
footing.

However, transmission electron microscopy provides information about the total
dislocation density rather than about the mobile fraction. For that reason a com-
plimentary method based on pulsed nuclear magnetic resonance was developed by
De Hosson, Kanert and Sleeswijk27,28 for the study of moving dislocations in me-
tallic and ionic systems up to strain rates of the order of 1 s� 1. It turned out that
from these experiments, three sets of microscopic information about dislocation
motion can in principle be deduced: (i) the mean jump distance of moving dislo-
cations, (ii ) the mean time of stay between two consecutive jumps of a mobile
dislocation and (iii ) the mobile dislocation density.
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Another important contribution was made by the introduction of the computer as
an aid to clarify many phenomena that were not always experimentally accessible,
such as the structure of dislocation cores and the motion of the dislocations29,30.
For instance, in 1966 Foreman and Makin31 confirmed the theory of Friedel for
the interaction of dislocations with point-like obstacles. Rosenfield and Hahn32

considered pile-ups of dislocations. These are arrays of dislocations, where the
leading dislocations attain much higher velocities than would be possible under
the externally applied stress. It turned out that near the tip of the pile-up the
stresses were concentrated to much higher values than for a single dislocation (all
within the framework of linear elasticity, i.e. excluding core effects).

In more recent years, numerical algorithms have become increasingly sophisti-
cated and, due to the enormous increase in computing power, more accessible to
many people. For instance, computational techniques such as the ab-initio calcu-
lations, Monte-Carlo method, molecular dynamics, finite elements and so on have
found widespread use in many branches of science and engineering. However,
even at the current rate of increase in number-crunching power, it is recognised
that it will not be possible in the foreseeable future to simulate the deformation of
a macroscopic work-piece directly from the motion of atoms. It is therefore neces-
sary to split up the important processes according to the time and length scales at
which they play a significant role33. The processes taking place at the smaller
scale then give rise to a certain effective behaviour at a larger scale. For instance,
the atomic configuration around a dislocation core directly affects its scattering of
lattice waves, thereby contributing to the drag force. On the other hand, when cal-
culating the dislocation velocity due to the resolved shear stress, only this drag
force is important, and not so much the precise atomic arrangement.

The connection between different length scales is not always easily made. For in-
stance, in many engineering calculations of plastic deformation, the material is
considered to be a continuum. In those cases, the relation between macroscopic
stress and macroscopic strain (the constitutive relation) is specified, always with-
out taking into account the discrete nature of the carriers of plastic flow, the dislo-
cations. This approach is successful for some applications, but it has the disadvan-
tage that the material behaviour for each type of deformation has to be known in
advance. Even for three-dimensional constitutive models, this is hardly ever the
case.

On the other hand, some approaches exist nowadays that do take into account un-
derlying microstructural processes. This method, called Discrete Dislocation Plas-
ticity (DDP), calculates the deformation of a two-dimensional computational cell
by considering the long-range stresses and displacements of edge dislocations mo-
ving under influence of an externally applied deformation rate. Furthermore, the
interaction between dislocations themselves and with obstacles can explicitly be
put into the simulations. One such method was introduced by Van der Giessen and
Needleman in 199534. Their method of DDP is not the first to consider moving
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dislocations in this manner. However, previous methods only treated dislocations
in an infinite medium, whereas in their modified DDP it is possible to explicitly
take into account the boundary conditions in a finite medium. The method was
compared with a conventional continuum calculation and it was shown that al-
though the overall deformation could be matched, locally there were many stress
peaks (that could induce microcracking, for instance), that were not predicted by
the continuum approach35.

One area where this approach is particularly interesting is in the regime of very
fast deformation. Measurements at high deformation rates are particularly difficult
to perform. The deformation is often localised in very small volumes in which the
temperature rises considerably during the process. Sometimes even melting of the
material occurs. Recrystallisation due to the temperature rise destroys most of the
information of the processes preceding it. For these reasons, the constitutive
equations necessary in engineering calculations are often unreliable. Processes
where the deformation is fast are quite common in industry. For instance, when a
metal plate is perforated, the local rate of strain may exceed 103 s� 1, even though
the overall rate is much lower. Other, more violent examples include the perfora-
tion of armour plates by a bullet or the explosive forming of workpieces.

This thesis approaches fast deformation from the small regime of small length
scales. Specifically, it focuses on the processes taking place on a single slip sys-
tem in a single grain of close-packed metal, where the emphasis lies on the fact
that the deformation takes place in a very short time span and at very high rates.
The method of Discrete Dislocation Plasticity is extended to apply to high defor-
mation rates. One extension is to take into account the limiting velocity to dislo-
cation motion, which is the velocity of sound. This implies taking into account the
velocity-dependence of the displacement and stress fields of a moving dislocation.
Since the transition of a obstacle-controlled regime to drag-controlled depends on
the strength of the obstacles, a physical criterion is introduced to project the obsta-
cle properties from a three-dimensional crystal into the two-dimensional compu-
tational cell. Both aspects are treated in Chapter 2.

In Chapter 3 we consider the different regimes of dislocation motion with the fo-
cus on the drag-controlled regime. The theories so far hold for low dislocation ve-
locities only, but here we extend this to high velocities, at least for the harmonic
contribution of the phonon drag. In Chapter 4 the theories of the previous chapters
are actually implemented in a computer code and some examples are shown to
demonstrate the method. Chapter 5 deals with the thermal effects of dislocation
motion. The methodology is extended to explicitly calculate localisation of heat
and its effects on the strengths of obstacles and drag forces. In the past, some esti-
mates of the maximum temperature rise due to plastic flow have been made in the
literature, but it has never been calculated exactly. Finally, Chapter 6 looks ahead
to an explanation of the temperature rise due to a moving crack and proposes
some directions of future research.
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CHAPTER 2
FAST-MOVING DISLOCATIONS

§2.1 INTRODUCTION

THE AIM OF THIS chapter is to set the stage for simulations of dislocation mo-
tion and the interactions of the moving dislocation with microstructural features
within a single grain. The stage itself is a two-dimensional periodic computational
cell representing a suitably oriented slip system within the grain. The natural
length scale of the simulations lies in the micrometer range. We will be concerned
with specific microstructural features such as the distribution of dislocations, the
distribution and strength of obstacles to dislocation motion, and the properties of
sites where dislocations are nucleated. The theory will be applied to study the de-
formation of the cell in simple shear at very high strain rates.

To this end, the stress and displacement fields surrounding a straight dislocation
moving at high velocities in an elastic isotropic infinite medium are introduced,
following the treatment of Hirth and Lothe1 and Weertman2, who built on earlier
work by Eshelby3 and Frank4. Next, the two-dimensional computational cell is
introduced, using the method of Discrete Dislocation Plasticity (DDP), a modifi-
cation of which was introduced by Van der Giessen and Needleman in 19955,6 to
account for the boundary conditions. The chapter ends with the constitutive rules
governing dislocation generation, trapping and annihilation, as well as the manner
in which their three-dimensional properties are projected into the two-dimensional
computational cell.
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§2.2 THE BALANCE OF MOMENTUM

Consider an infinitely straight edge dislocation i moving at a constant velocity vi

in the x1-direction of a (x1, x2, x3) Cartesian laboratory reference frame. As de-
picted in figure 2.2� 1, the dislocation line lies parallel to the x3-axis and its Bur-
gers vector of magnitude b(i) along the positive or negative x1-direction. According
to the balance of momentum, the components of stress � jk

(i) and displacement uj
(i)

are related through

� � � �

� �3,2,1,,2

2

�
�

�
	

�

�
kj

t

u

x

i
j

k

i
jk 


�
, (2.2� 1)

where 
  denotes the material density, and t the time. In this relation, repeated in-
dices are implicitly summed according to the Einstein convention. This dynamic
equation reduces to the static case when the inertial term on the right-hand side of
equation (2.2� 1) vanishes.

For small displacement gradients, the components of stress and displacement in an
elastic material are related through Hooke’s law, which reads

� �
� �

m

i
l

jklm
i
jk x

u
c

�
�

	� . (2.2� 2)

Here the cjklm are the elastic constants. In the special case of a linear isotropic me-
dium, with which we will be concerned throughout this thesis, the elastic moduli
cjklm contain only two independent elastic constants through

� � lmjkkljmkmjljklmc �� ����� ��	 , (2.2� 3)

in which   is the shear modulus, �  the Lamé constant and � jk the Kronecker delta:

FIGURE 2.2� 1 Laboratory reference frame L and moving frame L�.
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Substitution of equation (2.2� 3) into (2.2� 2) yields
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The equation of momentum (2.2� 1) now becomes
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For an edge dislocation i aligned with the x3-axis, u1
i and u2

i are non-zero, while
� u1

i/� x3 = 0, � u2
i/� x3 = 0  and u3

i = 0 (the brackets around the i have been dropped
for clarity). Introducing the longitudinal wave velocity a1 and the shear wave ve-
locity a2, according to
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respectively, equation (2.2� 6) delivers
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A natural coordinate system (i.e. a coordinate system in which the equations ap-
pear in their most simple form) for the solution of equation (2.2� 6) is the system
moving with the dislocation. For a constant dislocation velocity, the inertial term
vanishes. In linear elasticity, the signal velocity is limited by the shear wave ve-
locity a2. The Lorentz transformation takes this explicitly into account. It reads

2
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The high-velocity displacement fields u1
i and u2

i of dislocation i, seen at a distance
(� x1

i, � x2
i, � x3

i) �  (x1 �� x1
i(t), x2 �� x2

i(t), x3 �� x3
i(t)), are solutions of equations

(2.2� 8) and (2.2� 9). After back-transformation to the laboratory frame of refer-
ence and introducing
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they become2
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with corresponding stresses
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where $ = ½� /(�  + ) denotes Poisson’s ratio. Both the stress fields and displace-
ment fields contain the longitudinal wave velocity as well as the shear wave ve-
locity through � 1

i
 and � 2

i, respectively.

The displacement fields of (2.2� 12) and (2.2� 13) are the sums of two “dislocation
type”  fields. These were introduced by Weertman2 so as to ensure that no exter-
nally applied force in the x2-direction is required at the core of the dislocation in
order to avoid infinite stresses in the limit � x1

i = � x2
i = 0.
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§2.3 DISCRETE DISLOCATION PLASTICITY

The stress fields discussed in section 2.2 are valid for dislocations in an infinite
elastic body. In the case of a finite body or sample, these fields will not comply
with the boundary conditions (in terms of prescribed displacements or tractions as
function of time). Therefore, a correction is necessary that traditionally is interpre-
ted in terms of image dislocations. In 1995, Van der Giessen and Needleman pro-
posed to handle this correction by a finite element procedure instead5. This leads
to a decomposition of the problem in two fields, as illustrated in figure 2.3� 1.

The computations to be presented in this thesis are carried out in a rectangular
two-dimensional cell of width % height = 2w % 2h, as depicted in figure 2.3� 2. Pe-
riodic boundary conditions apply in the x1-direction. The positive or negative edge
dislocations i move on horizontal slip planes. Referring to Van der Giessen et al.5

and Cleveringa et al.6 for details, the final fields of stress and displacement are the
sum of the fields of strings of dislocations (~) and the correction fields (^):

� �2,1,with~~,ˆ~

~~,ˆ~

�
	�	

	�	

&
&

kj
uuuuu

i

i
jkjkjkjkjk

i

i
jjjjj

�����
. (2.3� 1)

A string i of dislocations is formed by the stress fields of dislocations i and all its
replicas n in the periodic boxes. Analytical summation5 over all replicas n (each at
a distance 2w apart, as in figure 2.3� 2) in the x1-direction yields the displacement
field of the string of dislocations consisting of the current dislocation i and all its
replicas on the slip plane. For instance, defining

� � wnxnx ii 211 ���� (2.3� 2)

       (a)                                                  (b)                                                 (c)

FIGURE 2.3� 1 (After Van der Giessen&Needleman5) Separation of (a) the total field into (b) the
field (~) due to all dislocations in an infinite medium and (c) the complementary field (^) to correct
for the boundaries. The mixed boundary conditions are the tractions T0 on the surface Sf and dis-
placements u0 on the surface Su.
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In this thesis, we are interested in the velocity dependence, and consequently us-
ing equation (2.2� 14) for the shear stress of a single dislocation in an infinite me-
dium, the shear stress �~12

i becomes
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The infinite sum can be evaluated using the Residue Theorem of function theory

� � � �� �&&
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poles

cot)(res zzfjf
j

"" , (2.3� 4)

(z �  C) with the summation on the right-hand side carried out over the poles of
f(z) only (i.e. not over the poles of cot(" z)). The residue at a single pole z0 of a
function f(z) that can be represented by the quotient of two analytical functions
g(z) and h(z)  (as is the case here) is found from8
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( 00
limres . (2.3� 5)

For the displacements, the summation runs over dipoles. The reason is that the
displacement component u2 of a single edge dislocation increases without bound
with the distance to the dislocation. With increasing n, this would lead to diver-
ging terms. The summation has been carried out using the Residue Theorem and

) &&
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jj

jf
jf , (2.3� 6)

FIGURE 2.3� 2 The computational cell (n = 0) of width % height = 2w % 2h containing dislocation i
at (x1

i, x2
i). Replicas of dislocation i are shown in the periodic neighbouring cells n = � 1 and n = 1.
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where f(j) has to fulfil certain conditions involving the interchange of the summa-
tion and the integral. Following the procedure as outlined above we find:
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FIGURE 2.3� 3 Velocity dependence of the shear stress field �~i
12 (equation (2.3� 11)) of a positive

edge dislocation i with all its replicas in a periodic cell of 2h = 2w = 2  m. The stress field is plot-
ted for �  /2000 <�~i

12 <  /2000 in a region of 1.0 % 1.0  m. The dislocation core is located at the
origin. The number of contour lines is 11 over the entire range. The shading indicates a positive
stress. The dislocation is moving in the positive x1-direction with velocity (a) vi/a2 = 0.01 (b)
vi/a2 = 0.80 (c) vi/a2 = 0.90 (= vR/a2 for $ = 1/3), (d) vi/a2 = 0.99. The material properties have the
values corresponding to Al (see table 4.1� 1 on page 60).
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with

� � � �2,1, ��	� jwxx i
jj

i
j+ (2.3� 9)

and
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The term containing �� i arises from the discontinuity in u1 when a dislocation
leaves the computational cell at one side and enters at the opposite site. This dis-
continuity arises from the fact that the arctan-function is multi-valued. The corres-
ponding stress fields are found to be the following equations (2.3� 11) to (2.3� 13):

FIGURE 2.3� 4 As in figure 2.3� 3, but now with stress component 2000~2000 11 � 22� i

(equation (2.3� 12)).
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which reduce to the static form of Van der Giessen et al.5 when vi/a2 (  0. The
components of the stress fields �~jk

i of a dislocation i with all its replicas at diffe-
rent velocities are displayed in figures 2.3� 3 through 2.3� 5.

FIGURE 2.3� 5 As in figure 2.3� 3, but now with stress component 2000~2000 22 � 22� i

(equation (2.3� 13)).
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As the velocity of the dislocation increases towards the shear wave speed a2, the
stress field changes drastically. In fact, at the Rayleigh velocity vR, i.e. the velocity
for which1,2

0
4

21 	� iii ��� , (2.3� 14)

the value of the shear stress �~12
i at the slip plane changes sign with respect to its

value below vR. The Rayleigh velocity depends on the ratio of longitudinal to
shear wave velocity a1/a2, and using

$
$

21
22

2

1

�
�

	
a
a

, (2.3� 15)

vR can be expressed as a function of the Poisson ratio $. The dependence of the
Rayleigh velocity on Poisson’s ratio is plotted in figure 2.3� 6. For most metals,
$ ~ 1/3, resulting in a Rayleigh velocity vR = 0.93a2.

§2.4 CONSTITUTIVE RULES

Several forces act on the dislocation to drive it to its velocity. Chapter 3 will treat
the relevant contributions to this force. The resulting equation of motion of the
dislocations can be integrated in time as long as obstacles do not hinder the mo-
tion. In “ real-world”  (i.e. non-simulated) crystals, these conditions are rarely, if
ever, met. Obstacles trap dislocations, new dislocations are generated during de-
formation and dislocations of opposite sign annihilate upon meeting each other.

FIGURE 2.3� 6 Dependence of the Rayleigh velocity vR/a2 on the Poisson ratio $.
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The method of discrete dislocation plasticity takes these events into account in an
easy manner5,6. For instance, if at a certain instant the distance between two dislo-
cations of opposite sign on the same slip plane is less than a pre-set value Lannihilate,
their mutual attraction becomes so high that they will collide and annihilate each
other (i.e. they will be removed from the slip plane). The value of Lannihilate is typi-
cally of the order of a few lengths bi of the Burgers vector. In the next two sec-
tions, discrete obstacles and generation of dislocation will be considered.

2.4.1 OBSTACLES TO DISLOCATION MOTION

In the words of Kocks9, “discrete obstacles (…) describe obstacles to slip whose
dimensions are limited in both directions in the slip plane (although not necessa-
rily perpendicular to it). (…) The limits of the obstacles do not have to be sharp,
they merely must be sharp enough for it to be treated as an individual (…)” . Some
characteristic quantities pertaining to discrete obstacles in the slip plane are de-
picted in figure 2.4� 1. Here Li

obs denotes the size or range of interaction of obsta-
cle i in the slip plane in the direction of slip (the x1-direction of the computational
cell), zi

obs the size of obstacle i in the slip plane perpendicular to the direction of
slip (the x3-direction in the computational cell) and 3  the mean obstacle spacing.

The flow stress at a given strain is defined as the stress needed to maintain plastic
flow at that strain. It arises from several physical mechanisms limiting dislocation
motion. For instance, the dislocation may find solute atoms, precipitates or forest
dislocations in its slip plane. While crossing unit distance, the dislocation spends a
time tWAIT waiting to pass these obstacles and a time tMOVE moving from one obsta-
cle to the next (see Chapter 3 for a more elaborate discussion).

In the regime where tWAIT >> tMOVE the dislocation is said to undergo jerky glide.
The dislocation spends almost all of its time waiting to pass some obstacle. The
dislocation may pass an obstacle by cutting through, or bowing around it. The
process offering the lowest resisting force Fmax determines the strength of the ob-
stacle. The energy spent in the process can be supplied by an increase of the ap-

FIGURE 2.4� 1 Top view of the slip plane with some obstacle parameters. Here Li
obs denotes the

size or range of interaction of obstacle i in the direction of slip, zi
obs the size of obstacle i in the slip

plane perpendicular to the direction of slip and 3  the mean obstacle spacing. Note also the differ-
ent types of obstacles present, each with a different value for 3 .
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plied stress, or by thermal fluctuations. Above a certain threshold of the applied
stress or temperature, the obstacles no longer impede dislocation motion. In this
drag-controlled regime (or viscous flow), for which tMOVE >> tWAIT, the dislocations
loose energy mainly by interaction with phonons and electrons (see Chapter 3).

The following sections focus on the regime of jerky glide. This implies that in
these sections we interpret the flow stress as the stress required to overcome the
obstacles only. The effects of thermal activation are excluded for the moment, but
we will return to these in Chapter 5. The first section discusses the mapping of ob-
stacle properties of the three-dimensional crystal in the two-dimensional computa-
tional cell. In the same section, the processes by which a dislocation can pass ob-
stacles are treated. The next section deals with how a boundary might be put into
the computational cell. Finally, section 2.4.4 treats the generation of dislocations.

2.4.2 MAPPING OF OBSTACLE PROPERTIES IN THE COMPUTATIONAL CELL

The properties of obstacles have to be mapped from the three-dimensional crystal
in the two-dimensional computational cell (figure 2.4� 2). The initial configuration
may contain several types of obstacles distributed randomly across the slip planes.
The parameters available in the two-dimensional cell are the effective average ob-
stacle strength 4eff, the effective obstacle spacing leff, the effective size Leff of the
cross-section of obstacles in the slip plane and the effective waiting time teff. The
latter only comes into play at finite temperatures. It is also possible to include ob-
stacles having long-range stress fields. The parameters in the two-dimensional cell
have to represent parameters from the three-dimensional crystal: the obstacle
spacing 3 , the line tension of the dislocation line, the number of obstacles inter-
acting with the dislocation line, the average obstacle size Lobs and the obstacle
strength 4obs.

FIGURE 2.4� 2 Mapping of a three-dimensional crystal into a two-dimensional computational cell.
Here � 1 denotes the linear spacing, � 2 the planar spacing and � 3 the volume spacing.




























































































































































































































































