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CHAPTER 4
FAST DISLOCATION PLASTICITY

§4.1 INTRODUCTION

THE PREVIOUS CHAPTERS extended the method of Discrete Dislocation Plas-
ticity1,2 to capture the specific processes taking place at high strain rates and pro-
vided a physical basis for the projection of obstacle properties into the computa-
tional cell. This chapter tests the validity of some approximations and provides
some sample runs to show the applicability of the method to high strain-rate de-
formation. In assessing the results of this chapter, one has to keep in mind two
underpinning aspects: (1) the model is two-dimensional and (2) the results hold
only in the regime where linear isotropic elasticity is valid.

The micromechanical model has many parameters. Most of these parameters boil
down to a proper selection of the initial configuration. Some parameters are easily
available in the literature, such as elastic constants, material densities, magnitude
of the Burgers vector. Other parameters may be provided directly by microstructu-
ral observations, with the aid of Scanning Electron Microscopy (SEM) or Trans-
mission Electron Microscopy (TEM). Parameters of this sort are total obstacle
densities, initial dislocation densities and the spacing of active slip planes. Mean
jump distances and obstacle statistics may be inferred from T1� -spin-lattice pulse
NMR- and TEM-measurements3.

This chapter models the fast shear deformation of a strip of single crystalline Al
with the primary slip planes parallel to the shear direction. Some bulk properties
of Al and Cu are listed in table 4.1� 1. The microscopic parameters, such as the
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concentration of solutes, size of precipitates etc. are taken from TEM-observa-
tions4 of an Al-Li alloy. These numbers indicate the order of magnitude for use in
the simulations. In Al 2.2 wt.% Li (i.e. Al 8.0 at.% Li), aged at 215 ºC for 1 hour
and at 5% deformation, the coherent Al3Li ordered precipitates (�� ) had a volume
fraction of 2.9%, a mean diameter of 14.4 nm and a strength of 31 MPa. The solu-
te solubility of Li in Al is of the order of 0.1 at.% at room temperature. An indica-
tion of the obstacle strength fc posed by forest dislocations is given in De Hosson
et al.3. For forest dislocations in an Al 2 at.% Zn alloy: fc = 0.13, with the forest
dislocations acting as Friedel obstacles. The solute atoms, acting in the Mott-
Nabarro regime, bend the dislocation line over an angle with cos(� c) = fc = 0.043
before breakaway.

The precise manner in which these properties project into the computational cell is
discussed in the next section, for which the foundations are already delineated in
Chapter 2. Section 4.3 looks into the matter of neglecting the inertial terms in the
equation of motion. Then, the numerical stability of the methodology is briefly ad-
dressed in §4.4. Finally, section 4.5 compares the high-velocity stress and strain
fields and the relativistic drag-relation with the static ones and discusses the resul-
ting stress-strain curves.

§4.2 OBSTACLE PROPERTIES

Section 2.4 dealt with the manner in which properties of three-dimensional crys-
tals map onto the two-dimensional computational cell (figure 2.4� 2), and the regi-
mes dictating obstacle strengths and interaction lengths (see sections 2.4.2.1 to
2.4.2.3). In this section the theory is applied to actual obstacles present in the
model crystal: solute atoms, forest dislocations and precipitates. The resulting ex-
pressions are then summarised in table 4.2� 1 on page 63.

4.2.1 SOLUTES

Substitutional or interstitial solid solutions pose obstacles to dislocation motion of
size Lobs of the order of b. Experimental studies by NMR- and TEM- techniques
show that solutes interact with the dislocation line according to Mott-Labusch sta-

Property Unit Al Cu

Young’s Modulus E GPa 70 110

Poisson’s ratio � � 0.33 0.35

Material density � Mg m� 3 2.70 8.92

Burgers vector b nm 0.286 0.256

Drag coefficient BTOT (see Chapter 3) � Pa s 40 20

TABLE 4.1� 1 Bulk mechanical properties of Al and Cu.
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tistics3. In most analyses, only the solutes directly above and below the slip plane
are taken into account. In that case, �  equals the in-plane spacing (see figure
2.4� 2) 	 2 = b/(2c)1/2 (the factor 2 in the denominator takes into account the two
planes, one of the atom layer directly above and one directly below the slip plane).
Substituting into equations (2.4� 8) and (2.4� 11) yields
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The obstacle strength (equation (2.4� 9)) becomes
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4.2.2 FOREST DISLOCATIONS

Forest dislocations form the next type of obstacle of interest. The number of forest
dislocations varies when the deformation activates secondary slip systems (i.e. the
transition from stage I to stage II deformation). The dislocation lines of the secon-
dary slip systems intersect the primary plane. There, they hinder the dislocation
motion. The obstacle size is of the order of the size of the dislocation core, i.e.
Lobs ~ b. The complicated interactions between the forest dislocations and the dis-
locations in the primary slip plane (the “primaries”) due to their relative orienta-
tions are often modelled by a static collection of fixed and randomly distributed
point obstacles5. In fact, the interaction between dislocation line and forest dislo-
cations is shown experimentally to follow the Friedel statistics of localised obsta-
cles3.

The number of forest dislocations changes during the deformation due to disloca-
tion generation and annihilation in the secondary slip systems. In the two-
dimensional computational cell this is captured by changing the number of obsta-
cles on the slip planes. The density of forest dislocations � F is assumed to be a
fixed fraction fF of the overall mobile dislocation density � M. During stage II, the
density of forest dislocations is of the same order of the density of the primaries,
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so fF ~ 1. Here the assumption is made that the forest dislocations are distributed
randomly throughout the crystal. Their planar spacing may then be taken as
���� � F

� 1/2. Substitution into equation (2.4� 5) leads to a Friedel length of
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Using equation (2.4� 7), the effective spacing lF
eff becomes
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forest dislocations on each slip plane. Whenever the integer value of (2w/lF
eff)

times the total number of slip planes increases by one, a new obstacle is placed at
a random position at a randomly chosen slip plane. The value of the break-away
angle � c = arccos(fc) has to be provided by experiments. The effective obstacle
strength (equation (2.4� 6)) is

3
cMF

ndislocatioforest
obstacle ffb ��� 
 . (4.2� 8)

4.2.3 PRECIPITATES

Precipitates, both coherent and incoherent, form the final group of obstacles that
we will take into account. When a precipitate starts to grow from a solid solution,
it may provide a long-range stress in the surrounding matrix due to elastic misfit.
When coherency is lost, misfit dislocations capture the misfit at the interfaces, ef-
fectively eliminating the long-range stress field. A dislocation may pass a pre-
cipitate by either cutting through or bowing around it, depending on which pro-
cess offers the least resistance. In the course of the fast deformation, the initial
number of precipitates will not change, since the process time is far too small for
that. The same holds for the ratio of coherent to incoherent precipitates.

The precipitates are considered to be spherical with a mean radius of Rp and occu-
pying a volume fraction cV in the crystal. When the precipitates have no long-
range stress field, only the intersections of the precipitates with the slip plane pose
as obstacles to dislocation motion. The mean spacing �  then equals the planar
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spacing 	 2 = (2� /3cV)½Rp, and the mean obstacle size Lobs in the glide plane is
½� Rp. On the other hand, when the long-range elastic interactions are taken into
account, the mean spacing �  becomes the volume spacing 	 3 = (4� /3cV)1/3Rp (see
figure 2.4� 2) and the mean obstacle size Lobs = 2Rp.

In the case of incoherent precipitates, the equivalent obstacle spacing in the com-
putational cell becomes, according to equation (2.4� 7):
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The effective obstacle strength (equation (2.4� 6)) is
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TABLE 4.2� 1 Summary of the parameters characterizing effective strengths and effective lengths in
the computational cell. The meaning of all symbols is explained in the text.
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FIGURE 4.2� 1 Example of the initial configuration in the computational cell (rotated 90º and
stretched in the x1-direction). The computational cell of 2w �  2h = 2 �  2 � m contains 10 horizontal
slip planes (grey). The cell contains dislocations (positive: red and negative: green), nucleation
sites (blue), precipitates (magenta) and solutes and forest dislocations (orange). The parameters
that were used to generate this particular configuration are given in the text.
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In the case of the long-range stress fields (coherent precipitates), Mott-Labusch
statistics apply, and the equivalent obstacle spacing (equation (2.4� 11)) becomes
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with (equation (2.4� 8))
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interacting precipitates along the Mott length of dislocation line. The obstacle
strength (equation (2.4� 9)) becomes
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The dislocation line passes the incoherent precipitates by cutting through (which
is a short-range interaction), or by bowing around in an Orowan-process. The
sizes and concentration are specified during the generation of the initial configura-
tion, so then the appropriate spacing along the slip plane can be selected. The se-
lection criterion is the process yielding the lowest flow stress according to equa-
tions (2.4� 6) and (2.4� 14).

Table 4.2� 1 summarises the quantities of interest in the computational cell. It
contains the effective lengths and effective obstacle strength that were derived
above, and also the values for nucleation sites and a boundary (see section 2.4).
Using the expressions of table 4.2�� , the microstructural properties can be pro-
jected onto the computational cell.

Figure 4.2� 1 displays a typical example of the initial configuration of the compu-
tational cell, including the slip planes, obstacles, nucleation sites and a random
distribution of dislocations. The microscopic properties were chosen to give a
clear figure rather than to reflect an actual simulation. In this case, the computa-
tional cell measured 2w × 2h = 2 × 2 
 m, the dislocations (red: positive, green:
negative) with an initial density of 5 × 1013 m� 2 are distributed randomly over 10
slip planes. The cell contains solutes (orange) with an atomic fraction c = 5×10� 5,
forest dislocations (also orange) with a strength fc = 4.3×10� 2 and a fixed fraction
of the mobile dislocation density of fF = 10� 3, and coherent precipitates (magenta)
of mean radius Rp = 7.2 nm and a volume concentration cV = 10� 4. Finally, the nu-
cleation sites (blue) have a proportionality factor to the initial dislocation density
of fN = 0.25. Note that the initial random configuration of dislocations is not in
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mechanical equilibrium with respect to the dislocation-dislocation interactions.
Before the computational cell is deformed, it has to be left without applied defor-
mation to evolve towards mechanical equilibrium, driven by the dislocation-
dislocation interactions only.

§4.3 DISLOCATION VELOCITIES AND ACCELERATIONS

In studies on dislocation dynamics at low to intermediate strain rates1,2,6, the iner-
tial forces (i.e. accelerations) were neglected. In those cases, the dislocation at-
tains its steady-state velocity in a time that is small compared to the typical length
of a time increment. In the case of fast-moving dislocations, this may no longer be
the case. In this section, both points of view will be developed and compared.

The Peach-Köhler force (equation (3.1� 9)) felt by dislocation i is a result of the
combined stress-fields of all other dislocations j, the “image” stresses ^ij, and pos-
sibly of the long-range stresses of certain types of obstacles. For now, we neglect
the latter. The contribution to the Peach-Köhler force on dislocation i exerted by
dislocation j is

� �jijijiij xxbF 2112KöhlerPeach , ����
�  , (4.3� 1)

where (� x1
ji, � x2

ji) = (x1
i(t)� x1

j(t), x2
i(t)� x2

j(t)). The accumulated effect of all dislo-
cations on the Peach-Köhler force at dislocation i is obtained by summation of the
previous equation over all i. Thus, the total Peach-Köhler force on dislocation i is
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���
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jii bF 1212KöhlerPeach
~ˆ  , (4.3� 2)

where all stress components are evaluated at (x1
i, x2

i). It is of interest to note7 that,
due to the velocity dependence of the resolved shear stress, the magnitude of the
force Fi� j is not necessarily equal to Fj� i (only when vi = ±vj)!

In the method of discrete dislocation plasticity, the equation of motion for all dis-
locations is integrated in discrete time increments k of duration � tk �  tk+1 – tk.
Starting from a random initial distribution (k = 0) of dislocations in the computa-
tional cell (figures 2.3� 2 and 4.2� 1), the velocities during time increment k are
calculated due to the combined forces on the dislocations at the start of the time
increment. Note that a random configuration of dislocations is not necessarily an
equilibrium configuration in terms of mechanical equilibrium.

First, we treat the case in which the accelerations are neglected (i.e. assumed to ta-
ke place instantaneously). The velocities vk

i are constant during the time incre-
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ment. From vk
i and the positions (x1

i, x2
i) at the start of the time increment k, the

positions of all dislocations at time increment k + 1 can be calculated. Putting all
the pieces together into equation (4.3� 2) allows for writing an expression for the
dislocation velocities vk

i at time increment k due to all applied forces. Initially,
v0

i = 0 for all i. For k > 0 and for all i, the velocities are given by the implicit rela-
tion

� � 0~ˆ TOT1212 �����
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k
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ji vvBb  , (4.3� 3)

which is similar to equation (3.3� 57), again leading to a cubic equation as in
equation (3.3� 58), but with  PK written out according to equation (4.3� 2).

In the case of including inertial forces, the accelerations v�k
i are assumed to be

constants during the time increment. Again using v0
i = 0 for all i, the accelerations

are given by the solution of
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(of which equation (4.3� 3) is a special case). The velocities at the end of the time
increment are found from

k
i
k
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i
k tvvv ���� �1 (4.3� 5)

and the horizontal positions become
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When the velocity-dependence of B(vi
k) is known, an estimate can be made of the

typical time needed for a dislocation to reach the velocity it would be given in the
approach without acceleration.

Figures 4.3� 1 and 4.3� 2 compare three cases: the case of instantaneous velocity
change (the solution of the cubic equation (3.3� 58) or (4.3� 3)), the case of con-
stant acceleration, equation (4.3� 4), and the case where the approximation of con-
stant acceleration has been numerically integrated over extremely small time in-
crements (~10� 14 s). These particular cases are calculated for a single dislocation
in an infinite medium under an effective stress  applied (so that the Peach-Köhler
term in equation (4.3� 4) becomes bi applied). Figure 4.3� 1 displays the results for
Al and figure 4.3� 2 for Cu. In both materials, an extreme velocity change, driven
by an extreme constant stress of the order of the theoretical strength of the materi-
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als (~
 /30), has been plotted alongside a more moderate one. The values of the
drag coefficients that were used to plot these graphs are the ones given in Chapter
3 for room temperature. It can be seen that the order of magnitude of the time in-
terval needed to reach, say, 90% of its final velocity, is of the order of a few ps for
the extreme velocity change, but in Cu, the moderate velocity change takes a few
tens of ps. In fact, the acceleration approaches zero after 0.5 ns.

From these plots it cannot be concluded a priori that in the simulations of Al and
Cu the accelerations may be neglected, since at this point we do not know the or-
der of magnitude of the average time increment in the actual simulations. An up-

FIGURE 4.3� 1 Dislocation velocity vDIS/a2 (left) and acceleration dvDIS/dt (right) of an edge dislo-
cation in Al for two different cases of applied shear stress  applied and initial dislocation velocity. In
the velocity plots, the dashed line denotes the approximation of constant acceleration (equation
(4.3� 4)), while the horizontal lines denote the velocity when velocity changes take place instanta-
neously (equation (4.3� 3)). (a) and (b):  applied = 
 /30 and initial vDIS = � a2/2. (c) and (d):
 applied = � 
 /1000 and initial vDIS = � a2/20.
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per limit for the magnitude of the average time increment is obtained by noting
from the Orowan equation (3.5� 1) that

b
v

M
DIS �

��� (4.3� 7)

and then the average time increment equals the time that a dislocation needs to
cross the average distance laverage between obstacles on its slip plane. The actual
time increment is smaller, because the dislocations can also meet each other, the
distance between two obstacles varies considerably around the average, and the
same holds for the dislocation velocities. Using the material parameters of section
4.1 leads to an obstacle density of the order 5 �  1015 m� 2 (this very high number is
primarily caused by the solute atoms), so that laverage �  1.5� 10� 8 m, and with a mo-
bile dislocation density of � M = 1014 m� 2 at a strain rate �· = 106 s� 1, the average
time increment � taverage <~ 3� 10� 10 s.

FIGURE 4.3� 2 As in figure 4.4� 1, but now in Cu instead of in Al.
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Another consideration is whether in the actual simulation the stresses can change
at such a high rate as in figures 4.3� 1 and 4.3� 2 (i.e. instantaneously). It is con-
ceivable that this would happen in the late stages of the annihilation process, when
two dislocations of opposite sign come very close together. Neglecting accelera-
tions would let the dislocation change velocity from below the Rayleigh velocity
to above the Rayleigh velocity instantaneously. Then the sign of the shear stress
on the slip plane reverses, and the two dislocations repel each other. In the next
time increment, the velocities will change direction, again instantaneously. The
dislocations will move apart, leading to a lower velocity, possibly below the Ray-
leigh velocity. They will attract again, etc. The point here is that although the
change in sign is possible physically, in the simulations it may also happen be-
cause of a numerical reason (which is neglecting the accelerations for ease and
speed of computation). However, depending on the time increments in the actual
simulation, we do not know whether it actually happens.

In order to answer this question more definitely, we will have to carry out a set of
actual simulations with exactly the same parameters and initial configurations,
except that one set uses the approximation of constant acceleration, and the other
instantaneous velocity changes. Note that from figures 4.3� 1 and 4.3� 2, we as-
sume that the approximation of constant acceleration is a reasonable one as long
as the time increment does not exceed to the time needed to reach the final velo-
city. Otherwise, some cases would be possible with supersonic dislocation veloci-
ties, which is clearly in violation with linear isotropic elasticity. However, before
carrying out the full simulations, we first have to ensure the numerical accuracy of
other aspects of the simulations.

§4.4 NUMERICAL ISSUES

In all simulations, the shear is applied at the top and bottom surfaces of the com-
putational cell (figures 2.3� 2 and 4.2� 1) through the kinematic boundary condi-
tions

� � � � 0, applied
2

applied
1 ��� tuthtu ��    along x2 = h, (4.4� 1)

and

� � � � 0, applied
2

applied
1 ��� tuthtu ��    along x2 = � h. (4.4� 2)

The total shear stress needed to sustain this shear strain rate is computed from in-
tegrating the total shear stress over the top- or bottom surface.

Before we concentrate on the physical properties of the computational cell, some
numerical issues have to be addressed. The displacements and stresses due to the
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dislocations are evaluated using the expressions of section 2.3. At low velocities
vDIS/a2 < 10� 3, they reduce to their static forms (maximum relative difference
< 0.1%), which are then used for better numerical stability. First, we will establish
a rule of thumb for the size of the finite element mesh. Then, the size of the com-
putational cell is varied to establish the minimum dimensions that still give suffi-
cient statistical averaging of the properties of interest.

4.4.1 MESH SIZE

As in any finite-element simulation, the mesh has to be small enough to capture
the relevant variations of the calculated quantities. At high dislocation velocities,
the fields have higher and more localised peaks than the conventional fields (figu-
res 2.3� 3 to 2.3� 5). The finite-element part of the simulations uses quadrilateral
elements8,9. This has the advantage of a simple linear interpolation function, but
for quickly varying fields, the elements may have to become very small to follow
all variations. On the other hand, since the complementary (^) fields correct the
dislocation fields (~) near the boundary, only dislocations on slip planes close to
the top- and bottom boundaries are expected to give a significant effect in the fi-
nite element correction.

In this section, the mesh size is varied through 50 �  50 nm, 25 �  25 nm,
16.7 �  16.7 nm, 12.5 �  12.5 nm and 10 �  10 nm in an overall cell size of 2w �  2h
= 2 �  2 
 m. The elastic properties of the matrix are taken to mimic Al (see section
4.1). The calculations are carried out under two extremes of strain rates: 103 s� 1

and 106 s� 1. Each case has been calculated for 5 realisations of the same micro-

FIGURE 4.4� 1 Effect of mesh refinement in Al. Both (a) and (b) are realisations of the same initial
parameters. The lower sets were deformed at �� = 103 s� 1 and the upper sets with �� = 106 s� 1. Each
set contains 5 runs with exactly the same initial configuration and parameters, but with different
size of the FE-mesh. Further comments are given in the text.
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structural parameters. To avoid the effects of sudden velocity changes (see the
discussion at the end of section 4.3), an artificially high value of the static drag
parameter has been chosen: BTOT(vDIS = 0, 298 K) = 100 
 Pa s.

Two cases are shown in figure 4.2� 1. From these graphs, it can be seen that apart
from small fluctuations, there does not seem to be a large difference between
them. To be more precise, the fluctuations in the stress-strain curves due to the
variation in mesh size is of the same order of magnitude (or less) as the variation
between different realisations of the initial parameters. As a rule of thumb, the
number of elements in the vertical direction is taken at least equal to the number
of slip planes, so that there is at least one element for each plane. This also ensures
that, for horizontal slip planes, the dislocations do not come closer to the boundary
than the active slip plane spacing.

4.4.2 SIZE OF THE COMPUTATIONAL CELL

The size of the periodic cell should be taken large enough to sample a representa-
tive area of an actual grain, but smaller than the actual grain itself. In this section
the computational cell is varied in size through 0.5 �  0.5 
 m, 1.0 �  1.0 
 m,
2.0 �  2.0 
 m and 4.0 �  4.0 
 m. It should be noted that by using the parameters of
section 4.1, the obstacle size is not a significant fraction of the computational cell,
even for the case of 0.5 �  0.5 
 m. Otherwise, size effects should be expected,
since then the distributions of obstacles in the computational cell ceases to be ho-
mogeneous, for instance as in ref. 2. The size of the finite-element cells is kept
constant at 25 �  25 nm. For each simulation, the total dislocation density � TOT is

FIGURE 4.4� 2 Effect of the size of the computational cell in Al at �� = 106 s� 1. Both (a) and (b) are
realisations of the same initial parameters. For each run, the mesh size is 25 �  25 nm. The solid
line represents a cell size of 0.5 �  0.5 
 m, and the cell sizes up to 4.0 �  4.0 
 m are dashed with a
longer dash for the larger cell size.
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1014 m� 2 and the number of slip planes is 20 
 m� 1. Again, the mechanical proper-
ties of Al are used and in each case, several realisations are calculated at two dif-
ferent strain rates 103 and 106 s� 1 with BTOT(vDIS = 0, 298 K) = 100 
 Pa s. The re-
sults of two such realisations are shown in figure 4.4� 2. Within the variation of
different realisations, a cell size of 2.0 �  2.0 
 m provides sufficient accuracy for
all subsequent simulations.

§4.5 RELATIVISTIC VERSUS CONVENTIONAL DISLOCATION FIELDS

In this section, the question will be addressed whether the high dislocation veloci-
ties that significantly change the stress and displacement fields actually occur in
the computational cell. The simulations will be carried out using material pa-
rameters representing Cu, because Cu has a low static drag coefficient: at room
temperature BTOT

Cu(vDIS = 0, 298 K) = 20 
 Pa s (see Chapter 3). In fact, to make it
even easier for the dislocations to reach the high velocities, we will take the drag
coefficient BTOT

Cu(vDIS = 0, 100 K) = 14 
 Pa s. This temperature is at the lower
temperature limit with respect to the Debye temperature (� D

Cu = 343 K) for which
the temperature dependence of Bflutter

0 and Bwind
0 is linear (see Chapter 3).

We will also compare the cases with and without accelerations (section 4.3). In
the case of accelerations, the time increment is kept very small at � t = 2 �  10� 14 s.
It is important to stress that this order of magnitude is for numerical reasons only.
One should not attach any physical significance to this order of magnitude, since
the Debye frequency is of the order of 1013 s� 1. Any events involving collective
motion of atoms (such as dislocation motion) cannot take place at a higher rate.
The calculations without accelerations use an adaptive time step. It is determined
by the next event, where an event is a collision between two dislocations, an anni-
hilation, generation of a dislocation loop, and pinning or release of a dislocation at
an obstacle.

The computational cell has the same microstructural parameters as in the example
of Al of section 4.1, although with a lower volume fraction of precipitates (1 %) to
allow for enough room on the slip plane for the build-up of dislocation pile-ups.
To stimulate this even more, the precipitates are taken a bit stronger: fc = 0.6,
leading to an effective obstacle strength of 50 MPa. The samples are deformed at
a strain rate of 106 s� 1 using a finite-element mesh of 40 �  40 elements in a com-
putational cell of 2 �  2 
 m, containing 40 slip planes.

A typical example of the resulting stress-strain curves is presented in figure 4.5� 1
for 100 K. Each graph contains
(i) a curve for the case without accelerations, conventional stress and dis-

placement fields, and a linear stress-velocity relation (lowest curve),
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(ii) a curve for the case with constant accelerations, conventional stress and
displacement fields, and a linear stress-velocity relation, and

(iii) a curve for the case with constant accelerations, relativistic stress and dis-
placement fields, and a cubic stress-velocity relation.

The calculations for the case without accelerations, relativistic stress and dis-
placement fields and a cubic stress-velocity relation turned out to suffer from the
numerical oscillations described at the end of section 4.3 and as a result none of
the calculations gave any sensible output. The histogram of the velocity distribu-
tions of the three runs is plotted in figure 4.5� 2, where each distribution has been
normalised to its maximum value.

The first thing that stands out in figure 4.5� 1 is the large difference between the
case without, and the cases with acceleration. In the computations with the adap-
tive time increment, the time increments are typically of the order of a picosecond.
This is smaller than the time needed for a dislocation to settle to its steady-state
velocity. In order to really make sure that the difference is not due to the adaptive
time stepping (instead of a fixed time increment of 2 �  10� 14 s), extra simulations
(not displayed) have been carried out. The only difference is that they now also
have a fixed time increment of 2 �  10� 14 s. It turns out that the stress-strain curve
follows the curve with the adaptive time stepping almost exactly. The only diffe-
rence then being the accelerations, it has to be concluded that they cannot be neg-
lected at this high strain rate, both for the conventional and the relativistic case.

FIGURE 4.5� 1 Stress strain-curves in Cu at 100 K and �� = 106 s� 1 (left). The lower curve is the
conventional case without acceleration; the light top curve denotes the relativistic case with accel-
eration and the remaining dark top curve the conventional case with acceleration. The picture to
the right denotes the corresponding total dislocation densities: the solid line represents the conven-
tional/no acceleration case, the dotted line the relativistic/acceleration case and the long-dashed
line the conventional/acceleration case.
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The second point of interest is the small differences between the conventional and
the relativistic case. The velocity distributions of figure 4.5� 2 show that almost no
dislocations move faster than a few tenths of the shear wave velocity. Actually,
figure 4.5� 2 shows no dislocations at all in that regime, but this is an effect of the
scale. In reality, the spectrum is not zero until very close to the shear wave veloci-
ty (and beyond for the conventional case). Nevertheless, the number of disloca-
tions that do reach the high velocities is utterly negligible with respect to the num-
ber of dislocations moving at velocities up to 20% of the shear wave velocity.

The effect of the changing fields on the dislocation shear stress is depicted in figu-
re 4.5� 3. In this figure, taken from a different simulation as figures 4.5� 1 and
4.5� 2, the middle picture (b) represents the dislocation shear stresses in the rela-
tivistic case. Also visible (at the periodic boundaries) are the displacements. In the
top picture (a) the dislocation shear stress is calculated for exactly the same con-
figuration as picture (b), and for exactly the same dislocation velocities, but now
using the conventional fields. Strictly speaking, this solution does not satisfy the
applied boundary conditions, but the point here is to illustrate the difference in the
dislocation fields. Since it is somewhat difficult to discern these differences, the
two pictures have been subtracted from each other to give the difference field in
the lower picture (c). The difference picture shows that locally the difference can

FIGURE 4.5� 2 Histogram of the distributions of absolute dislocation velocities of the runs of figure
4.5� 1 at 100 K. The black filled histogram corresponds to the conventional case without accelera-
tion, the grey filled histogram to the relativistic case with accelerations and the transparent out-
lined histogram (which corresponds very closely to the grey one) corresponds to the conventional
case with accelerations. The histograms are obtained by repeatedly sampling the velocity-
distribution after a certain number of time increments. This plot then represents the velocities
during the whole simulation. The plots are normalised to their maximum value (as a result, the
relative frequencies for velocities higher than about half the shear wave velocity a2 are not visible,
although generally they are not equal to zero). For the static case, the supersonic dislocations have
not been counted.
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In the case of the long-range stress fields (coherent precipitates), Mott-Labusch
statistics apply, and the equivalent obstacle spacing (equation (2.4� 11)) becomes
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interacting precipitates along the Mott length of dislocation line. The obstacle
strength (equation (2.4� 9)) becomes
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The dislocation line passes the incoherent precipitates by cutting through (which
is a short-range interaction), or by bowing around in an Orowan-process. The
sizes and concentration are specified during the generation of the initial configura-
tion, so then the appropriate spacing along the slip plane can be selected. The se-
lection criterion is the process yielding the lowest flow stress according to equa-
tions (2.4� 6) and (2.4� 14).

Table 4.2� 1 summarises the quantities of interest in the computational cell. It
contains the effective lengths and effective obstacle strength that were derived
above, and also the values for nucleation sites and a boundary (see section 2.4).
Using the expressions of table 4.2�� , the microstructural properties can be pro-
jected onto the computational cell.

Figure 4.2� 1 displays a typical example of the initial configuration of the compu-
tational cell, including the slip planes, obstacles, nucleation sites and a random
distribution of dislocations. The microscopic properties were chosen to give a
clear figure rather than to reflect an actual simulation. In this case, the computa-
tional cell measured 2w × 2h = 2 × 2 
 m, the dislocations (red: positive, green:
negative) with an initial density of 5 × 1013 m� 2 are distributed randomly over 10
slip planes. The cell contains solutes (orange) with an atomic fraction c = 5×10� 5,
forest dislocations (also orange) with a strength fc = 4.3×10� 2 and a fixed fraction
of the mobile dislocation density of fF = 10� 3, and coherent precipitates (magenta)
of mean radius Rp = 7.2 nm and a volume concentration cV = 10� 4. Finally, the nu-
cleation sites (blue) have a proportionality factor to the initial dislocation density
of fN = 0.25. Note that the initial random configuration of dislocations is not in
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mechanical equilibrium with respect to the dislocation-dislocation interactions.
Before the computational cell is deformed, it has to be left without applied defor-
mation to evolve towards mechanical equilibrium, driven by the dislocation-
dislocation interactions only.

§4.3 DISLOCATION VELOCITIES AND ACCELERATIONS

In studies on dislocation dynamics at low to intermediate strain rates1,2,6, the iner-
tial forces (i.e. accelerations) were neglected. In those cases, the dislocation at-
tains its steady-state velocity in a time that is small compared to the typical length
of a time increment. In the case of fast-moving dislocations, this may no longer be
the case. In this section, both points of view will be developed and compared.

The Peach-Köhler force (equation (3.1� 9)) felt by dislocation i is a result of the
combined stress-fields of all other dislocations j, the “image” stresses ^ij, and pos-
sibly of the long-range stresses of certain types of obstacles. For now, we neglect
the latter. The contribution to the Peach-Köhler force on dislocation i exerted by
dislocation j is

� �jijijiij xxbF 2112KöhlerPeach , ����
�  , (4.3� 1)

where (� x1
ji, � x2

ji) = (x1
i(t)� x1

j(t), x2
i(t)� x2

j(t)). The accumulated effect of all dislo-
cations on the Peach-Köhler force at dislocation i is obtained by summation of the
previous equation over all i. Thus, the total Peach-Köhler force on dislocation i is
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where all stress components are evaluated at (x1
i, x2

i). It is of interest to note7 that,
due to the velocity dependence of the resolved shear stress, the magnitude of the
force Fi� j is not necessarily equal to Fj� i (only when vi = ±vj)!

In the method of discrete dislocation plasticity, the equation of motion for all dis-
locations is integrated in discrete time increments k of duration � tk �  tk+1 – tk.
Starting from a random initial distribution (k = 0) of dislocations in the computa-
tional cell (figures 2.3� 2 and 4.2� 1), the velocities during time increment k are
calculated due to the combined forces on the dislocations at the start of the time
increment. Note that a random configuration of dislocations is not necessarily an
equilibrium configuration in terms of mechanical equilibrium.

First, we treat the case in which the accelerations are neglected (i.e. assumed to ta-
ke place instantaneously). The velocities vk

i are constant during the time incre-
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ment. From vk
i and the positions (x1

i, x2
i) at the start of the time increment k, the

positions of all dislocations at time increment k + 1 can be calculated. Putting all
the pieces together into equation (4.3� 2) allows for writing an expression for the
dislocation velocities vk

i at time increment k due to all applied forces. Initially,
v0

i = 0 for all i. For k > 0 and for all i, the velocities are given by the implicit rela-
tion
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which is similar to equation (3.3� 57), again leading to a cubic equation as in
equation (3.3� 58), but with  PK written out according to equation (4.3� 2).

In the case of including inertial forces, the accelerations v�k
i are assumed to be

constants during the time increment. Again using v0
i = 0 for all i, the accelerations

are given by the solution of
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(of which equation (4.3� 3) is a special case). The velocities at the end of the time
increment are found from
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and the horizontal positions become
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When the velocity-dependence of B(vi
k) is known, an estimate can be made of the

typical time needed for a dislocation to reach the velocity it would be given in the
approach without acceleration.

Figures 4.3� 1 and 4.3� 2 compare three cases: the case of instantaneous velocity
change (the solution of the cubic equation (3.3� 58) or (4.3� 3)), the case of con-
stant acceleration, equation (4.3� 4), and the case where the approximation of con-
stant acceleration has been numerically integrated over extremely small time in-
crements (~10� 14 s). These particular cases are calculated for a single dislocation
in an infinite medium under an effective stress  applied (so that the Peach-Köhler
term in equation (4.3� 4) becomes bi applied). Figure 4.3� 1 displays the results for
Al and figure 4.3� 2 for Cu. In both materials, an extreme velocity change, driven
by an extreme constant stress of the order of the theoretical strength of the materi-
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als (~
 /30), has been plotted alongside a more moderate one. The values of the
drag coefficients that were used to plot these graphs are the ones given in Chapter
3 for room temperature. It can be seen that the order of magnitude of the time in-
terval needed to reach, say, 90% of its final velocity, is of the order of a few ps for
the extreme velocity change, but in Cu, the moderate velocity change takes a few
tens of ps. In fact, the acceleration approaches zero after 0.5 ns.

From these plots it cannot be concluded a priori that in the simulations of Al and
Cu the accelerations may be neglected, since at this point we do not know the or-
der of magnitude of the average time increment in the actual simulations. An up-

FIGURE 4.3� 1 Dislocation velocity vDIS/a2 (left) and acceleration dvDIS/dt (right) of an edge dislo-
cation in Al for two different cases of applied shear stress  applied and initial dislocation velocity. In
the velocity plots, the dashed line denotes the approximation of constant acceleration (equation
(4.3� 4)), while the horizontal lines denote the velocity when velocity changes take place instanta-
neously (equation (4.3� 3)). (a) and (b):  applied = 
 /30 and initial vDIS = � a2/2. (c) and (d):
 applied = � 
 /1000 and initial vDIS = � a2/20.
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per limit for the magnitude of the average time increment is obtained by noting
from the Orowan equation (3.5� 1) that

b
v

M
DIS �

��� (4.3� 7)

and then the average time increment equals the time that a dislocation needs to
cross the average distance laverage between obstacles on its slip plane. The actual
time increment is smaller, because the dislocations can also meet each other, the
distance between two obstacles varies considerably around the average, and the
same holds for the dislocation velocities. Using the material parameters of section
4.1 leads to an obstacle density of the order 5 �  1015 m� 2 (this very high number is
primarily caused by the solute atoms), so that laverage �  1.5� 10� 8 m, and with a mo-
bile dislocation density of � M = 1014 m� 2 at a strain rate �· = 106 s� 1, the average
time increment � taverage <~ 3� 10� 10 s.

FIGURE 4.3� 2 As in figure 4.4� 1, but now in Cu instead of in Al.
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Another consideration is whether in the actual simulation the stresses can change
at such a high rate as in figures 4.3� 1 and 4.3� 2 (i.e. instantaneously). It is con-
ceivable that this would happen in the late stages of the annihilation process, when
two dislocations of opposite sign come very close together. Neglecting accelera-
tions would let the dislocation change velocity from below the Rayleigh velocity
to above the Rayleigh velocity instantaneously. Then the sign of the shear stress
on the slip plane reverses, and the two dislocations repel each other. In the next
time increment, the velocities will change direction, again instantaneously. The
dislocations will move apart, leading to a lower velocity, possibly below the Ray-
leigh velocity. They will attract again, etc. The point here is that although the
change in sign is possible physically, in the simulations it may also happen be-
cause of a numerical reason (which is neglecting the accelerations for ease and
speed of computation). However, depending on the time increments in the actual
simulation, we do not know whether it actually happens.

In order to answer this question more definitely, we will have to carry out a set of
actual simulations with exactly the same parameters and initial configurations,
except that one set uses the approximation of constant acceleration, and the other
instantaneous velocity changes. Note that from figures 4.3� 1 and 4.3� 2, we as-
sume that the approximation of constant acceleration is a reasonable one as long
as the time increment does not exceed to the time needed to reach the final velo-
city. Otherwise, some cases would be possible with supersonic dislocation veloci-
ties, which is clearly in violation with linear isotropic elasticity. However, before
carrying out the full simulations, we first have to ensure the numerical accuracy of
other aspects of the simulations.

§4.4 NUMERICAL ISSUES

In all simulations, the shear is applied at the top and bottom surfaces of the com-
putational cell (figures 2.3� 2 and 4.2� 1) through the kinematic boundary condi-
tions

� � � � 0, applied
2

applied
1 ��� tuthtu ��    along x2 = h, (4.4� 1)

and

� � � � 0, applied
2

applied
1 ��� tuthtu ��    along x2 = � h. (4.4� 2)

The total shear stress needed to sustain this shear strain rate is computed from in-
tegrating the total shear stress over the top- or bottom surface.

Before we concentrate on the physical properties of the computational cell, some
numerical issues have to be addressed. The displacements and stresses due to the
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dislocations are evaluated using the expressions of section 2.3. At low velocities
vDIS/a2 < 10� 3, they reduce to their static forms (maximum relative difference
< 0.1%), which are then used for better numerical stability. First, we will establish
a rule of thumb for the size of the finite element mesh. Then, the size of the com-
putational cell is varied to establish the minimum dimensions that still give suffi-
cient statistical averaging of the properties of interest.

4.4.1 MESH SIZE

As in any finite-element simulation, the mesh has to be small enough to capture
the relevant variations of the calculated quantities. At high dislocation velocities,
the fields have higher and more localised peaks than the conventional fields (figu-
res 2.3� 3 to 2.3� 5). The finite-element part of the simulations uses quadrilateral
elements8,9. This has the advantage of a simple linear interpolation function, but
for quickly varying fields, the elements may have to become very small to follow
all variations. On the other hand, since the complementary (^) fields correct the
dislocation fields (~) near the boundary, only dislocations on slip planes close to
the top- and bottom boundaries are expected to give a significant effect in the fi-
nite element correction.

In this section, the mesh size is varied through 50 �  50 nm, 25 �  25 nm,
16.7 �  16.7 nm, 12.5 �  12.5 nm and 10 �  10 nm in an overall cell size of 2w �  2h
= 2 �  2 
 m. The elastic properties of the matrix are taken to mimic Al (see section
4.1). The calculations are carried out under two extremes of strain rates: 103 s� 1

and 106 s� 1. Each case has been calculated for 5 realisations of the same micro-

FIGURE 4.4� 1 Effect of mesh refinement in Al. Both (a) and (b) are realisations of the same initial
parameters. The lower sets were deformed at �� = 103 s� 1 and the upper sets with �� = 106 s� 1. Each
set contains 5 runs with exactly the same initial configuration and parameters, but with different
size of the FE-mesh. Further comments are given in the text.
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structural parameters. To avoid the effects of sudden velocity changes (see the
discussion at the end of section 4.3), an artificially high value of the static drag
parameter has been chosen: BTOT(vDIS = 0, 298 K) = 100 
 Pa s.

Two cases are shown in figure 4.2� 1. From these graphs, it can be seen that apart
from small fluctuations, there does not seem to be a large difference between
them. To be more precise, the fluctuations in the stress-strain curves due to the
variation in mesh size is of the same order of magnitude (or less) as the variation
between different realisations of the initial parameters. As a rule of thumb, the
number of elements in the vertical direction is taken at least equal to the number
of slip planes, so that there is at least one element for each plane. This also ensures
that, for horizontal slip planes, the dislocations do not come closer to the boundary
than the active slip plane spacing.

4.4.2 SIZE OF THE COMPUTATIONAL CELL

The size of the periodic cell should be taken large enough to sample a representa-
tive area of an actual grain, but smaller than the actual grain itself. In this section
the computational cell is varied in size through 0.5 �  0.5 
 m, 1.0 �  1.0 
 m,
2.0 �  2.0 
 m and 4.0 �  4.0 
 m. It should be noted that by using the parameters of
section 4.1, the obstacle size is not a significant fraction of the computational cell,
even for the case of 0.5 �  0.5 
 m. Otherwise, size effects should be expected,
since then the distributions of obstacles in the computational cell ceases to be ho-
mogeneous, for instance as in ref. 2. The size of the finite-element cells is kept
constant at 25 �  25 nm. For each simulation, the total dislocation density � TOT is

FIGURE 4.4� 2 Effect of the size of the computational cell in Al at �� = 106 s� 1. Both (a) and (b) are
realisations of the same initial parameters. For each run, the mesh size is 25 �  25 nm. The solid
line represents a cell size of 0.5 �  0.5 
 m, and the cell sizes up to 4.0 �  4.0 
 m are dashed with a
longer dash for the larger cell size.
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1014 m� 2 and the number of slip planes is 20 
 m� 1. Again, the mechanical proper-
ties of Al are used and in each case, several realisations are calculated at two dif-
ferent strain rates 103 and 106 s� 1 with BTOT(vDIS = 0, 298 K) = 100 
 Pa s. The re-
sults of two such realisations are shown in figure 4.4� 2. Within the variation of
different realisations, a cell size of 2.0 �  2.0 
 m provides sufficient accuracy for
all subsequent simulations.

§4.5 RELATIVISTIC VERSUS CONVENTIONAL DISLOCATION FIELDS

In this section, the question will be addressed whether the high dislocation veloci-
ties that significantly change the stress and displacement fields actually occur in
the computational cell. The simulations will be carried out using material pa-
rameters representing Cu, because Cu has a low static drag coefficient: at room
temperature BTOT

Cu(vDIS = 0, 298 K) = 20 
 Pa s (see Chapter 3). In fact, to make it
even easier for the dislocations to reach the high velocities, we will take the drag
coefficient BTOT

Cu(vDIS = 0, 100 K) = 14 
 Pa s. This temperature is at the lower
temperature limit with respect to the Debye temperature (� D

Cu = 343 K) for which
the temperature dependence of Bflutter

0 and Bwind
0 is linear (see Chapter 3).

We will also compare the cases with and without accelerations (section 4.3). In
the case of accelerations, the time increment is kept very small at � t = 2 �  10� 14 s.
It is important to stress that this order of magnitude is for numerical reasons only.
One should not attach any physical significance to this order of magnitude, since
the Debye frequency is of the order of 1013 s� 1. Any events involving collective
motion of atoms (such as dislocation motion) cannot take place at a higher rate.
The calculations without accelerations use an adaptive time step. It is determined
by the next event, where an event is a collision between two dislocations, an anni-
hilation, generation of a dislocation loop, and pinning or release of a dislocation at
an obstacle.

The computational cell has the same microstructural parameters as in the example
of Al of section 4.1, although with a lower volume fraction of precipitates (1 %) to
allow for enough room on the slip plane for the build-up of dislocation pile-ups.
To stimulate this even more, the precipitates are taken a bit stronger: fc = 0.6,
leading to an effective obstacle strength of 50 MPa. The samples are deformed at
a strain rate of 106 s� 1 using a finite-element mesh of 40 �  40 elements in a com-
putational cell of 2 �  2 
 m, containing 40 slip planes.

A typical example of the resulting stress-strain curves is presented in figure 4.5� 1
for 100 K. Each graph contains
(i) a curve for the case without accelerations, conventional stress and dis-

placement fields, and a linear stress-velocity relation (lowest curve),
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(ii) a curve for the case with constant accelerations, conventional stress and
displacement fields, and a linear stress-velocity relation, and

(iii) a curve for the case with constant accelerations, relativistic stress and dis-
placement fields, and a cubic stress-velocity relation.

The calculations for the case without accelerations, relativistic stress and dis-
placement fields and a cubic stress-velocity relation turned out to suffer from the
numerical oscillations described at the end of section 4.3 and as a result none of
the calculations gave any sensible output. The histogram of the velocity distribu-
tions of the three runs is plotted in figure 4.5� 2, where each distribution has been
normalised to its maximum value.

The first thing that stands out in figure 4.5� 1 is the large difference between the
case without, and the cases with acceleration. In the computations with the adap-
tive time increment, the time increments are typically of the order of a picosecond.
This is smaller than the time needed for a dislocation to settle to its steady-state
velocity. In order to really make sure that the difference is not due to the adaptive
time stepping (instead of a fixed time increment of 2 �  10� 14 s), extra simulations
(not displayed) have been carried out. The only difference is that they now also
have a fixed time increment of 2 �  10� 14 s. It turns out that the stress-strain curve
follows the curve with the adaptive time stepping almost exactly. The only diffe-
rence then being the accelerations, it has to be concluded that they cannot be neg-
lected at this high strain rate, both for the conventional and the relativistic case.

FIGURE 4.5� 1 Stress strain-curves in Cu at 100 K and �� = 106 s� 1 (left). The lower curve is the
conventional case without acceleration; the light top curve denotes the relativistic case with accel-
eration and the remaining dark top curve the conventional case with acceleration. The picture to
the right denotes the corresponding total dislocation densities: the solid line represents the conven-
tional/no acceleration case, the dotted line the relativistic/acceleration case and the long-dashed
line the conventional/acceleration case.
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The second point of interest is the small differences between the conventional and
the relativistic case. The velocity distributions of figure 4.5� 2 show that almost no
dislocations move faster than a few tenths of the shear wave velocity. Actually,
figure 4.5� 2 shows no dislocations at all in that regime, but this is an effect of the
scale. In reality, the spectrum is not zero until very close to the shear wave veloci-
ty (and beyond for the conventional case). Nevertheless, the number of disloca-
tions that do reach the high velocities is utterly negligible with respect to the num-
ber of dislocations moving at velocities up to 20% of the shear wave velocity.

The effect of the changing fields on the dislocation shear stress is depicted in figu-
re 4.5� 3. In this figure, taken from a different simulation as figures 4.5� 1 and
4.5� 2, the middle picture (b) represents the dislocation shear stresses in the rela-
tivistic case. Also visible (at the periodic boundaries) are the displacements. In the
top picture (a) the dislocation shear stress is calculated for exactly the same con-
figuration as picture (b), and for exactly the same dislocation velocities, but now
using the conventional fields. Strictly speaking, this solution does not satisfy the
applied boundary conditions, but the point here is to illustrate the difference in the
dislocation fields. Since it is somewhat difficult to discern these differences, the
two pictures have been subtracted from each other to give the difference field in
the lower picture (c). The difference picture shows that locally the difference can

FIGURE 4.5� 2 Histogram of the distributions of absolute dislocation velocities of the runs of figure
4.5� 1 at 100 K. The black filled histogram corresponds to the conventional case without accelera-
tion, the grey filled histogram to the relativistic case with accelerations and the transparent out-
lined histogram (which corresponds very closely to the grey one) corresponds to the conventional
case with accelerations. The histograms are obtained by repeatedly sampling the velocity-
distribution after a certain number of time increments. This plot then represents the velocities
during the whole simulation. The plots are normalised to their maximum value (as a result, the
relative frequencies for velocities higher than about half the shear wave velocity a2 are not visible,
although generally they are not equal to zero). For the static case, the supersonic dislocations have
not been counted.
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be quite large for the few fast-moving dislocations. However, in the calculation of
the overall stress and strain, the differences are smeared out over the top- and
bottom surface do not contribute significantly.

A third feature of the curves of figure 4.5� 1 is the fact that the flow stress attains a
constant value and does not show any hardening effects. The mechanisms that
give rise to hardening in the computational cell are the increase in number of fo-
rest dislocations, Taylor hardening due to the interaction of the dislocations on
different slip planes, and hardening due to the formation of dislocation pile-ups at
obstacles. The first process is controlled by the dislocation density. From figure
4.5� 1 it is seen that the dislocation density never increases. In fact, the density
reached a steady-state value. The interaction between different slip planes is ob-
served in the simulations. In simulations with a very low obstacle density, the
dislocations form vertical “walls” moving collectively. The interaction is usually

FIGURE 4.5� 3 Comparison of the normalised dislocation shear stress 1000�� 12/�  between –10 and
10 of (b) relativistic and (a) conventional shear stress and (c) their difference. More comments in
the text.
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not strong enough to maintain these walls when one dislocation is held up by an
obstacle. The last mechanism, hardening due to pile-up formation, is not observed
with obstacle strengths less than about 1 GPa. This could be attained by a grain
boundary, or impenetrable inclusions that are also too large to be passed by the
Orowan process. Examples of those cases (strain rate 103 s� 1) can be found in Van
der Giessen and Cleveringa et al.1,2. From the present work, we conclude that the
hardening effects found in those cases are entirely due to the pile-ups formed
against the impenetrable inclusions.
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