

 University of Groningen

Combining Object Orientation and Dataflow Modeling in the VISSION Simulation System
Telea, Alexandru; Sminchisescu, Cristian

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1999

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Telea, A., & Sminchisescu, C. (1999). Combining Object Orientation and Dataflow Modeling in the
VISSION Simulation System. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute
for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 07-05-2021

https://research.rug.nl/en/publications/combining-object-orientation-and-dataflow-modeling-in-the-vission-simulation-system(fbfb409e-df24-42b5-99f3-3dd504683460).html

Combining Object Orientation and Dataflow Modeling in the

vission Simulation System

Alexandru Telea1, Cristian Sminchisescu2

1Department of Mathematics and Computer Science
Eindhoven University of Technology, The Netherlands

2Department of Computer Science, Rutgers University, USA

Abstract

Scientific visualization and simulation is mostly ad-
dressed by frameworks using data and event flow mech-
anism to support simulation specification, control, and
interactivity. Even though object orientation power-
fully and elegantly models many application domains,
integration of object-oriented libraries in such systems
remains a difficult task. The elegance and simplic-
ity of OO design gets lost in the integration phase,
as most systems do not support combination of OO
and dataflow concepts. We propose a general-purpose
object-oriented system for visualization and simulation
which approaches simulation design, control and in-
teractivity by merging OO and dataflow modelling in
a single abstraction. This abstraction extends non-
intrusively a C++ class with several dataflow-related
notions to promote it to a higher, more reusable level.
The framework uses a C++ interpreter for executing
glue code that connects the components. Components
can be loaded, instantiated and connected dynamically
without recompiling or relinking the whole system.
We give several examples of simulations/visualizations
where the framework was applied successfully.

1 Introduction

Designing open systems for scientific visualization and
simulation (VisSym) has become crucial for disciplines
such as computational fluid dynamics (CFD), medi-
cal sciences, or numerical analysis. As simulations’
complexity has grown, VisSym software architectures
strive to evolve from problem-specific, monolithic ap-
plications to general-purpose frameworks offering inter-
active application monitoring and control and simple
mechanisms to plug in various domain specific soft-
ware.

Component-based frameworks seem ideal for the

above task as they decouple component manufactur-
ing from component usage. The latter is reduced to a
simple operation of connecting matching components
and having the framework enforce their correct co-
operation via some standard protocol. Most of Vis-
Sym users are not programming experts, so frameworks
should provide simple, interactive ways to load various
components and connect them to produce the desired
application without having to program. The compo-
nents’ parameters should be easily controllable inter-
actively in order to steer the running simulations, and
results should be available in real-time. Finally, the
large amounts of existing scientific software libraries
should be easily integrable in such frameworks as com-
ponents, without having to modify their often unavail-
able source code. The above requirements determine
the apparition of three major user roles with respect
to VisSym frameworks: end-users (EU) who steer the
system via its graphics interfaces (GUIs), application
designers (AD) who build the EU application by as-
sembling predefined domain-specific components often
in a visual assembly tool representing the application
as a dataflow network [8, 1], and component designers
(CD) who develop new (OO) code or adapt existing
one to produce the components needed by the AD.

However, due to several factors, designers have been
so far reluctant to adopt component-based designs.
Firstly, the above constraint combination is hard to
satisfy, so virtually all existing VisSym frameworks
mostly use white-box inheritance techniques, and are
thus notoriously limited and difficult to use by re-
searchers that need to focus on the modelled problem
and not on the often intricate software integration tech-
niques. Secondly, the extra indirections introduced by
loosely coupled designs were considered too expensive
for the interactive behavior of VisSym applications.

We addressed the above issues by designing vission

[13], a component-based VisSym framework based on

1

an object-oriented component model which extends the
C++ class notion non-intrusively, in a black-box man-
ner. Based on this component notion, we provide an
easy way to build components from existing C++ class
libraries, an interactive, programming-free manner to
load, instantiate and connect them to create applica-
tions, and automatically built graphics user interfaces
(GUIs) for for component parameter control and visual
monitoring.

1.1 Limitations of Current Frameworks

Matching the above requirements to the most known
VisSym frameworks, we identified the following limita-
tions:

1.1.1 Extensibility and Reuse Problems

While OO libraries written in e.g. C++ or Java are
easily extensible by subclassing (e.g. vtk [14] and Open
Inventor [9] for C++ or Java3D for Java [6]), most
frameworks require relinking or recompilation to use
new component versions. They also often force compo-
nents to inherit from a common root class (hierarchies
having different roots are not accepted) or use only
single inheritance (SI) in e.g. the C++ case [9, 8, 14].
White-box frameworks based on inheritance or other
compile-time schemes that check the validity of com-
ponents by checking their interface conformance are
thus the most common.

1.1.2 Inflexible I/O Typing

By providing typed inputs and outputs for compo-
nents (also called ports in the dataflow terminology),
VisSym frameworks assist the AD with run-time type
checking to forbid connections between incompatible
types. However, most frameworks’ run-time type sys-
tems have only a few basic types (integer, float, string,
and arrays of these), and are not extensible with user
defined types. By value and by reference data passing
are also rarely both supported in the same framework.
To provide run-time data conversion from one type to
another, explicit conversion modules [1],[14] or compli-
cated run-time schemes to register conversion functions
[9] are used, instead of more elegant schemes present in
some programming languages such as conversion oper-
ators or copy constructors, or of other meta-level object
protocols that could negotiate data conversions more
flexibly.

1.1.3 Intrusive code integration

Frameworks take a limited number of run-time deci-
sions so are often simpler than full-fledged compilers
or interpreters. The development language is often
richer in concepts than the target framework, so CDs
are forced to change their code to match the system’s
standard (e.g. give up multiple inheritance, pass by
value, etc). Some frameworks require the components
to be interfaced in a language different from the devel-
opment one (e.g. tcl used by [14, 8] to interface C++
classes), thus the manual creation of wrapper classes
or ’glue’ code. Sometimes the CD must add system-
specific code to his components to add dataflow and
GUI functionality [1, 4, 12], which is yet another form
of white-box composition. Many researchers reported
that otherwise well-designed OO libraries could not be
integrated in VisSym frameworks due to the need to
intrusively adapt their (sometimes unavailable) source
code or need to build complex wrappers.

1.1.4 Different Run-Time and Compile-Time
Languages

Most VisSym frameworks implement their components
in native executable code for speed reasons, and offer
the EUs interpreted languages to quickly set up exper-
iments or issue various commands. Component devel-
opment languages are often different and usually more
powerful than the run-time ones (e.g. tcl for [8], V
for avs, cli for [1]), making some features of the latter
unavailable in the former, and forcing the CD to learn
two languages.

1.1.5 Manual GUI Construction

Even though GUIs could be automatically created from
the components specification, the CD usually has to
manually program (or interactively build [1]) the GUIs
for the developed components. Moreover, the GUIs
of most frameworks support editing only a few basic
types (integers, strings, floats). There is no support
for editing user-defined types (e.g. a 3D vector) or
user defined GUI widgets (e.g. a 3-dimensional virtual
spaceball).

2 Overview of vission

Most of the presented limitations seem to be caused by
a very limited, ad-hoc notion of components, usually
the result of the evolution of simple code integration
schemes used in early systems. However, requirements

2

as dynamic, transparent integration of independently
developed OO class libraries definitely ask for black-
box integration, supported by mechanisms such as dy-
namic code loading and reflection. The fact that many
VisSym frameworks do not promote a clear identity
for components, separate from and semantically higher
than the computational code they extend, forces white-
box composition with all its known problems.

Our solution employs the C++ language in compiled
form for the development of component libraries, and
in interpreted form for the application developer and
the end user. vission’s kernel is a C++ interpreter
[3] able to call C++ compiled code from dynamically
loadable user-written libraries, execute on-the-fly syn-
thesized C++ code, and offer a reflection API. This
allows us to completely merge the OO and dataflow
modelling concepts in a new abstraction called a meta-
class, which extends a C++ class with dataflow seman-
tics to create our framework’s component. Component
libraries are loaded in vission where the AD interac-
tively builds dataflow networks using a visual program-
ming mouse-based GUI for component instantiation,
cloning, destruction, port connections and disconnec-
tions (Fig. 3) performed on iconic representations of
metaclass instances. The icons for the metaclasses and
their instances, as well as the GUIs used for monitor-
ing and modification of port values, are automatically
constructed by vission from the metaclass specifica-
tion (Fig. 4).

2.1 The Metaclass Concept

A metaclass is a programming construct written in a
simple object-oriented declarative language. It adds
a dataflow interface to a C++ class: a description
of the inputs,outputs, and update method, i.e. the
code to be executed by the dataflow engine when the
inputs have changed. The metaclass inputs, outputs
and update are forwarded to the public interface of the
C++ class it extends: when an input is written into,
a C++ class method is called to perform the write or
a public member is written; when an output is read
from, a method is called and the return value is used
or a public member is read. Inputs and outputs are
typed by the C++ types of their underlying methods
or members. Metaclasses are object-oriented as they
can inherit inputs, outputs and the update methods
from other metaclasses (single, multiple and virtual in-
heritance are supported) similarly to their underlying
C++ classes, so a metaclass hierarchy is isomorphic
to the C++ hierarchy it extends. We added however
some OO features present in C++ to the metaclass lan-

C++ Metaclass Language

type: class metaclass
instance: object meta−object
interface: public part input/output ports
implementation: private part public part of own C++ class

and update method

Figure 1: Comparison of C++ class and metaclass con-
cepts

guage, e.g. the selective hiding or renaming of inherited
features, similar to the approach described by Meyer
in [7]. This proved very useful when managing com-
plex metaclass hierarchies. Metaclasses of non abstract
C++ classes with public constructors can be instan-
tiated to create meta-objects which are connected to
form the dataflow network. A metaclass is ultimately
an object-oriented type for the dataflow mechanism,
implemented in terms of the C++ class type (Fig. 1).
Fig. 2 shows two C++ classes of a larger hierarchy and
their metaclasses: the IVSoLight metaclass has three
inputs for a light’s color, intensity, and on/off value,
modelled by the corresponding C++ class’s methods
with similar names, and of types IVSbColor (a RGB
color triplet), float, and respectively boolean. Meta-
class IVSoDirectionalLight extends IVSoLight with an
input for the light’s direction, of type IVSbVec3f (a
3-space vector). Besides the port to C++ member
mapping, metaclasses specify other non-functional re-
quirements such as the labels to be used in their au-
tomatically constructed GUIs (Fig. 4), optional widget
preferences (for the intensity, a slider is preferred to a
typein in the above example), and documentation data
that can be accessed on-line. Appropriate widgets are
automatically created based on the ports’ C++ types
(3 float typeins for IVSbColor and IVSbVec3f, a toggle
for the boolean, and a slider, as the user option spec-
ified, for the float). The requirements and limitations
listed in Sect. 1.1 are addressed as follows:

2.1.1 Extensibility and Reuse

The CD develops his C++ classes with no restriction
imposed by vission (no common root class required,
multiple and virtual inheritance can be used, etc) and
organizes them in application libraries. Extra infor-
mation is next added by writing the metaclass descrip-
tions for the C++ classes in a straightforward fash-
ion (the metaclass language has only a few keywords
and very simple declarative constructs). Metaclasses
are organized in libraries using the C++ application

3

class IVSoLight
{ public:
 BOOL on;
 void setIntensity(float);
 float getIntensity();
 void setColor(IVSbColor&);
 IVSbColor getColor();
};

class IVSoDirectionalLight: public IVSoLight
{ public:
 void setDirection(IVSbVec3f&);
 IVSbVec3f getDirection();
};

module IVSoLight
{ input:
 WRPort "intensity" (setIntensity,getIntensity)

 editor: Slider
 WRport "color" (setColor,getColor)
 WRport "light on" (on)
}

module IVSoDirectionalLight: IVSoLight
{ input:
 WRPort "direction" (setDirection,getDirection)
}

Metaclasses: C++ classes:

Figure 2: Example of C++ class hierarchy and corresponding metaclass hierarchy

libraries as implementation only via their public inter-
faces, introducing a first level of black-box reuse. Meta-
class libraries can include other metaclass libraries and
metaclasses from one library can inherit from meta-
classes in other libraries, similarly to Java packages.
When vission dynamically loads a metaclass library,
metaclasses from directly and indirectly included li-
braries are transparently loaded, together with their
corresponding C++ classes. This is a second level of
black-box reuse between the framework and the meta-
class libraries.

2.1.2 Flexible I/O Typing

Data flow between ports is based on the full OO typing
of C++: it can be passed by value, by reference, and
can be of any type (fundamental or class). For class
types, constructors and destructors are automatically
called when data flows from an output to an input.
Port connection type checking obey all C++ typing
rules: a port of C++ type A can be connected to a
port of type B if A conforms to B by trivial conversion,
subclass to baseclass conversion, user-defined construc-
tor and conversion operator [10]. This generalizes the
dataflow typing policies of other systems: The Oorange
system [8], based on Objective C, offers by-reference but
no by-value data passing. AVS/Express [1] limits the
run-time data types to the ones provided by its OO
V language which lacks constructors, destructors, and
multiple inheritance. Compiled toolkits as Open In-
ventor [9] and vtk [14] are only statically extendable,
as all types have to be known at compile time.

2.1.3 Non-intrusive code integration

All information needed to promote a C++ class to
a metaclass directly usable by vission resides in the
metaclass. The metaclass-C++ class pair is roughly

network
editor

meta-object
icon

metaclass
library

Figure 3: The dataflow network is build in the visual
editor by instantiating the loaded metaclasses

similar to the handle-body idiom [2] or the Adapter
pattern [5], but is much easier to do than e.g. manual
Adapter coding as the parallel hierarchies are managed
automatically by the system, not the user. Separat-
ing the dataflow information in the metaclass allows
adding dataflow semantics to existing class libraries,
even when they are not available in source form. This
separation between the pure, framework-independent
code and the ’adaptation’ layer including framework
specific elements such as non-functional requirements
is advocated by many [5],[11], as it allows code to be
easily reused in various contexts as its design is not
influenced by the target environment.

4

Moreover, since the metaclass specification code is
simply parsed by vission, it is very easy and fast to
change it to e.g. adapt different C++ classes (e.g. hav-
ing different interfaces) or adapt the same classes dif-
ferently (e.g. define ports or the update to call back
on other C++ methods). In this sense, our adaptation
method is different from other solutions (e.g. com-
piled wrappers). The metaclass code might be seen as
partially white-box (since it has explicit dependencies
on the C++ classes’ interfaces), but it has practically
none of the white-box drawbacks, since it comes in a
very easy to edit/change form and not as binaries.

2.1.4 Single language solution

C++ is vission’s single language: application libraries
are written in C++, the metaclass ports are typed also
in C++, C++ commands can be typed in a console to
be dynamically interpreted (obviating the need for a
scripting language). We implemented also a generic
persistence mechanism which saves all meta-object in-
put port values and connections as C++ source code
commands and restores the state by simply interpret-
ing the saved code. The fact that our metaclass state is
completely intrinsic supports once more the idea that
components should be designed independently on the
context in which they are used.

output port

input ports

 metaclass name
IVSoDirectionalLight

instance name
 obj0

Figure 4: Metaclass icon with ports (left) and its au-
tomatically constructed GUI (right)

2.1.5 Automatic GUI Construction

vission automatically builds GUI interaction panels
(shortly interactors) to examine and modify the values
of any metaclass’s ports. Interactors create the sys-
tem’s third object, isomorphic with the C++ class and
the metaclass hierarchies: an interactor inherits the
widgets from the interactors of its metaclass’ bases.
The interactor widgets reflect directly the C++ types
of the edited ports. For example, a float port can
be edited by a slider, a char* port by a text type-
in (Fig. 4), a three-dimensional VECTOR port by a
3D widget allowing direct manipulation of a 3D vector
icon (Fig. 5 c), a boolean by a toggle button, a com-
plex Material class encoding over 15 attributes by a
Material widget (Fig. 5 c), and so on. vission’s wid-
get set for the fundamental C++ types is extendable
by the AD with widgets for new, application-specific
C++ types. We used this mechanism to provide GUI
widgets for C++ types used by various libraries we in-
cluded in vission, such as 3D vectors, colors, rotation
matrices, and light values. The association of a wid-
get to a port type is done automatically at run-time
by vission, which picks from the available widgets the
one whose C++ type best matches the type of the port
to edit. The best match rules are based on a distance
metric in type space between the type to edit and the
type editable by a widget, roughly similar to C++’s
type conformance rules. The GUI building process can
be however customized by supplying new GUI widgets
or by specifying preferred widgets (a float type-in can
be preferred to a slider for a float port, for example)
in the metaclass specification. The loose coupling be-
tween OO widgets and OO ports via the run-time best
match rule, the user-specifiable hints and the interac-
tive widget switching correspond to the three user lay-
ers (CD,AD,EU). They form a meta-object protocol
between vission and the component to negotiate the
GUI creation.

3 Architecture

vission consists of three main parts: the object man-
ager, the dataflow manager, and the interaction man-
ager (Fig. 2) that use two subsystems: the C++ inter-
preter and the library manager. All subsystems com-
municate by sharing the simulation dataflow graph.
The key element is the C++ interpreter [3]. Opera-
tions throughout vission, such as connection or dis-
connection of ports, data transfer between ports, up-
date methods’ call, GUI editing of ports, are all im-
plemented as small C++ fragments dynamically sent

5

c

a b

c

d e f

Figure 5: Automatically constructed GUIs and visualization examples in the vission framework

Interaction ManagerC++ Interpreter

Editor Widnow

"type"

Center

Name
Value

ROTOR r1

12.45
-123.2
 60.66

Editor Widnow

Editor Widnow

End user

Dataflow Graph

Dataflow Manager

Library Manager

Application libraries

Application developer

Figure 6: Architecture of the vission component
framework

to the interpreter. The automatic GUI construction
and the port connection type checking use the inter-
preter’s reflection API. The interpreter cooperates with
the library manager to dynamically load and unload
metaclass libraries and their underlying compiled C++
classes, with the object manager to parse metaclass
declarations and instantiate metaclasses, and with the

interaction manager to build and control the GUIs.
Almost all code is executed from the compiled C++
classes, leaving only a tiny amount of C++ code to be
interpreted. Performance loss as compared to a 100%
compiled system was estimated to be below 2%, even
for complex networks requiring an intensive commu-
nication with the interpreter, so the extra indirection
level due to the loose coupling was definitely negligible.
Loading and unloading metaclass libraries was however
much slower: this implies, for medium-sized libraries
having hundreds of metaclasses with 10-20 attributes
each, the introduction in vission’s type and function
tables of thousands of new names and other informa-
tion. We noticed however that loading a few large li-
braries is times faster than managing a fine-grained
network of many small libraries referring each other, a
fact similar to the performance issues of compilers vs
header files.

Figure 7 presents the relationship between the port
read and write operations, the interpreted and com-
piled C++ code, and the high-level tasks (data trans-
fer, GUI-based inspection and modification of ports).
A write operation in a GUI widget triggers a write to
a port of the GUI’s metaclass (step W1), which sends
a C++ fragment of the form ”obj1.set()” to the inter-
preter (step W2), the argument of set() being the data
written to the GUI and the target of the set() mes-

6

sage being the metaclass’s C++ object obj1. The in-
terpreter executes the C++ fragment calling the set()
method from the compiled application library (step
W3). A similar process occurs when reading a C++
value to refresh the GUI (steps R1,R2,R3). To transfer
data between two ports (step T1), a port read (steps
R1,R2,R3) followed by a port write (steps W1,W2,W3)
is executed. The dataflow manager uses the above

Node n1

C++ Object obj1

void set(T)

C++ Interpreter

C++ Compiled
 Library

Node n2

C++ Object obj2

 U get()

User Interface ReadUser Interface Write Data Transfer

transfer
data (T1)

port
read
(R1)

 interprete
"obj2.get()"
(R2)

call compiled
get() (R3)

port
write
(W1)

interprete
"obj1.set()"
 (W2)

call compiled
 set() (W3)

Figure 7: User interface read/write operations, data
transfers between ports and the underlying C++ mech-
anism

mechanism to perform automatically a network traver-
sal calling node updates whenever an input changes.

4 Discussion

In terms of application modelling, there are two im-
portant aspects the design of vission introduces, as
presented in the previous sections. We believe these
aspects are important for the design of a larger class of
application frameworks that for VisSym alone.

First, the application execution is modelled as C++
source code fragments sent dynamically to a C++ in-
terpreter. This capability gives our architecture a very
large flexibility, remaining policy-free in the same time:
various frameworks built on such a mechanism could,
for example, synthesize different kinds of C++ frag-
ments at run-time and send them to the interpreter

to be executed, in order to model a very large class
of application domains, not just those that model the
application as a dataflow graph. All these frameworks
could implement the application domain specific poli-
cies in the way they synthesize the C++ code to be
executed, but use in the same time the same underly-
ing engine presented above for vission.

Second, the application structure is modelled as
metaclasses defined as components around C++
classes. Similarly to the previous observation, this
makes our architecture flexible from the data-modelling
point of view, remaining again policy-free from this
point of view: various frameworks built on such a meta-
class mechanism could, for example, use different meta-
class definitions to model different domain-specific data
representations, not just the metaclass model presented
in vission which models dataflow-related entities hav-
ing inputs, outputs, and an update function. All these
possible frameworks would however benefit from the
underlying architecture that allows dynamic loading of
metaclass libraries (and their C++ class implementa-
tions), dynamic metaclass instantiation and deletion.

Overall, we can see vission’s architecture as a frame-
work design pattern that decouples the framework’s
implementation (the C++ interpreter and library man-
ager) from the framework’s policy (the metaclass se-
mantics and the dynamic C++ code synthesis), allow-
ing the designer to change the latter rather easily, with-
out having to recode the whole complex infrastructure.
Moreover, the above framework design pattern can be
seen as language-imdependent, as it is rather irrelevant
which (OO) language is used in the framework’s core
(we could have used Java as well instead of C++, for
example).

5 Conclusion

vission is a general-purpose visualization and simula-
tion component framework built on a black-box com-
ponent foundation. It provides simple ways to speci-
fication, monitoring, steering of simulations, and com-
ponent integration, by merging the powerful, yet so far
independently used OO and dataflow modelling con-
cepts in the metaclass component notion.

Metaclasses extend C++ classes with dataflow se-
mantics, GUI and documentation information in a
black-box fashion, making them easily reusable in other
contexts and also making it easy to plug-in existing
C++ libraries as components. Metaclass libraries (or
their underlying implementation C++ libraries) can be
seen as application frameworks modelling some partic-

7

ular domain, while vission is a component framework,
since it a) coordinates the interaction of independently
designed components according to its domain-specific
(VisSym) rules implemented using the dataflow model,
and b) it communicates with these components only
via the metaclass interface.

We have provided a mechanism for automatic GUI
construction from type-specific, user-defined widgets,
based on a meta-object protocol merging OO typing
with higher level information such as user preferences.
vission’s implementation key issue was the choice for
a single (OO) language solution based on C++. vis-

sion’s C++ interpreter/compiler design shows that
one can combine speed and design freedom of com-
piled C++ (multiple inheritance, pass by value for user
types, etc) with the advantages of interpreted environ-
ments (run-time flexibility, ease of use, reflection APIs)
like Java/JavaBeans also in the context of the C++.
Had we chosen a JavaBeans-based implementation, it
would have been tedious and very difficult for our tar-
get users to integrate several large existing C++ class
libraries which extensively use pass by value and mul-
tiple inheritance.

Application designers and non-programmer end
users could effectively use visison in a matter of min-
utes (Fig. 5 a,b,e,f show snapshots from scalar, vector,
tensor, and medical visualizations).

The strong separation of pure application code (writ-
ten by the component designer) from infrastructure as
dataflow mechanisms, GUIs, persistence schemes (pro-
vided by vission) makes the code to be written by the
former clear and also very concise. This is noteworthy
since most large application toolkits [9, 14] dedicate up
to 50% of their code to implement backbone services as
the ones mentioned before. Library designers may save
50% time if infrastructural services are automatically
provided. Moreover, if a single backbone is applicable,
it is coded just once (in vission) and not replicated
in endless flavors among the open set of application
libraries.

References

[1] C. Upson, T. Faulhaber, D. Kamins,

D. Laidlaw, D. Schlegel, J. Vroom,

R. Gurwitz, and A. van Dam, The Application
Visualization System: A Computational Environ-
ment for Scientific Visualization., IEEE Com-
puter Graphics and Applications, July 1989, 30–
42.

[2] J. O. Coplien, Advanced C++ Programming
Styles and Idioms, Addison-Wesley, 1992

[3] M. Goto, The CINT C/C++ Interpreter and
Dictionary Generator, The ROOT System URL
http://root.cern.ch/root/Cint.html

[4] J. J. van Wijk and R. van Liere, An environ-
ment for computational steering, in G. M. Niel-
son, H. Mueller and H. Hagen, eds, Scientific Vi-
sualization: Overviews, Methodologies and Tech-
niques, Computer Society Press, 1997

[5] E. Gamma, R. Helm, R. Johnson, J. Vlis-

sides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995

[6] The Java 3D Application Programming Interface,
http://java.sun.com/products/java-media/3D/

[7] B. Meyer, Object-oriented software construction,
Prentice Hall, 1997

[8] C. Gunn, A. Ortmann, U. Pinkall,

K. Polthier, U. Schwarz, Oorange: A Vir-
tual Laboratory for Experimental Mathematics,
Sonderforschungsbereich 288, Technical Univer-
sity Berlin. URL http://www-sfb288.math.tu-
berlin.de/oorange/OorangeDoc.html

[9] J. Wernecke, The Inventor Mentor: Program-
ming Object-Oriented 3D Graphics with Open In-
ventor, Addison-Wesley, 1993.

[10] B. Stroustrup, The C++ Programming Man-
ual, Addison-Wesley,1993.

[11] C. Szyperski, Component Software - Beyond
Object-Oriented Programming, Addison-Wesley,
1998.

[12] D. Jablonowski, J. D. Bruner, B. Bliss, and

R. B. Haber, VASE: The visualization and ap-
plication steering environment, in Proceedings of
Supercomputing ’93, pages 560-569, 1993

[13] A. C. Telea, J. J. van Wijk Design of an
Object-Oriented Computational Steering System,
to be presented at the IEEE-Eurographics Work-
shop on Scientific Visualization and Simulation
VisSym’99, Vienna, Austria

[14] W. Schroeder, K. Martin, B. Lorensen,
The Visualization Toolkit: An Object-Oriented
Approach to 3D Graphics, Prentice Hall, 1995

8

