A New Twist on Chirality
Feringa, Bernard

Published in:
Science

DOI:
10.1126/science.1062070

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2001

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
https://doi.org/10.1126/science.1062070

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 16-09-2023
CHEMISTRY:
A New Twist on Chirality

Ben L. Feringa*

One of the great mysteries in science is the homochirality (single handedness) of the essential molecules of life. Natural sugars are almost exclusively right-handed; natural amino acids are almost exclusively left-handed. Current life forms could not exist without the uniform chirality of these monomers, which form the building blocks of polysaccharides and proteins. Uniform chirality is also essential for information storage and processing, as demonstrated by the supramolecular chirality of the DNA helix. But we still do not know the origin of this biomolecular homochirality.

Macroscopic chiral selection--which usually goes unnoticed in daily life, for instance, when one shakes hands or uses a corkscrew to open a bottle of wine--seems to bear no relation to chirality at the molecular level. But on page 2063 of this issue, Ribó et al. (1) report that simple stirring can lead to chiral selection. At first sight, these results seem hard to believe, but the authors provide strong support for their claim.

Pasteur tried, without success, to induce a preference for right- or left-handed molecules by performing reactions in a centrifuge and even by rotating growing plants to change the handedness of their natural products (2). Ever since, scientists have tried to generate excess left- or right-handed chiral molecules from achiral precursors without the intervention of any preexisting molecular chirality.

This problem, termed absolute asymmetric synthesis, has turned out to be a major challenge (3). Recent successful studies have used photochemistry with circularly polarized light (4), chiral selection based on the electroweak interaction (although disputed) (5), and the combination of a magnetic field and nonpolarized light (6). Numerous attempts have also been made to perform asymmetric synthesis by clockwise or counterclockwise rotation during the chemical conversion of an achiral compound. But the resulting indications of chiral selection are usually discarded as irreproducible or as artifacts. These failures are not unexpected if one realizes that the applied external chiral force must directly exert a polarizing effect on the reaction path, a condition not satisfied by bulk rotation (3).

Nevertheless, the vortex motion used by Ribó et al. acts as a true chiral force (7). How can it lead to chiral selection? In Ribó et al.’s system (1), stirring does not act on a chemical reaction but rather on an aggregation process. The assembly of identical achiral molecules into large chiral fiber-type structures under the direct influence of the external force created by stirring is biased to
a particular handedness.

Ribó *et al.* use achiral disklike porphyrins that have a zwitterionic structure, that is, they contain both negatively and positively charged moieties (see the figure). These properties allow the molecules to aggregate through electrostatic interactions and hydrogen-bonding. A dilute solution of the porphyrin is slowly concentrated while being stirred, thereby stimulating the aggregation. The disk-shaped molecules stack side by side to form strands (called J-aggregates), which combine to form fibers and bundles of fibers.

Chiral selection under the influence of vortex motion. In this hierarchical model, aggregation of disk-shaped porphyrins involves two stages. First, zwitterionic porphyrins spontaneously assemble into stacks as a result of electrostatic and hydrogen-bonding interactions. Next, small aggregates assemble into fiberlike structures. The helical orientation in the fiber (anticlockwise shown) in the second stage of the assembly process is controlled by the direction of the vortex motion.

The authors propose a hierarchical organization model (see the figure) to explain their results. In this model, the porphyrins assemble into small aggregates, which are progressively incorporated into growing fibers. Chiral selection takes place at the second stage of this process, where the vortex motion controls the trajectory of the aggregates to be incorporated into the growing helical fiber in a clockwise or counterclockwise manner. The small chiral bias is amplified in the aggregation process.

It is important to realize that the chiral selection thus occurs at the supramolecular level. Exactly how a particular handedness is imposed by the stirring direction remains unclear; nor do we know how general this phenomenon is or what its implications are for chiral selection at the molecular level. Nonetheless, this appears to be the first unequivocal demonstration of chiral selection induced by stirring.
induced by stirring. The present findings will likely stimulate further studies of the effect of vortex motion on other assembly processes, particularly of helices, which play a prominent role in many supramolecular structures, including peptides, oligomeric metal complexes, hydrogen-bonded assemblies, liquid crystals, and gels (8).

It will not be easy to control molecular chirality by this approach. The supramolecular structure may, however, act as a homochiral template for subsequent asymmetric reactions or may function as a chiral catalyst. If such "transfer of chiral information" from the vortex motion via the supramolecular aggregate to individual molecules can be realized, the consequences will be far-reaching.

There are many theories regarding the origin of biomolecular homochirality, from photochemistry to the electroweak force (4-6). It has been suggested that vortex motion during key aggregation processes at some stage of chemical evolution may have led to biomolecular homochirality. Ribó et al. provide some support for this theory. More experimental work is needed to establish whether we must consider simple stirring as a serious candidate for chiral selection in prebiotic stages of evolution. This promises to be an exciting endeavor.

References

Related articles in Science:

Chiral Sign Induction by Vortices During the Formation of Mesophases in Stirred Solutions.
Josep M. Ribó, Joaquim Crusats, Francesc Sagués, Josep Claret, and Raimon Rubires
Science 2001 292: 2063-2066. (in Reports) [Abstract] [Full Text]

Copyright © 2001 by The American Association for the Advancement of Science.