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3D IBFV: Hardware-Accelerated 3D Flow Visualization

Alexandru Telea Jarke J. van Wijk

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, the Netherlands

Abstract

We present a hardware-accelerated method for visualizing 3D flow
fields. The method is based on insertion, advection, and decay of
dye. To this aim, we extend the texture-based IBFV technique pre-
sented in [van Wijk 2001] for 2D flow visualization in two main di-
rections. First, we decompose the 3D flow visualization problem
in a series of 2D instances of the mentioned IBFV technique. This
makes our method benefit from the hardware acceleration the orig-
inal IBFV technique introduced. Secondly, we extend the concept
of advected gray value (or color) noise by introducing opacity (or
matter) noise. This allows us to produce sparse 3D noise pattern ad-
vections, thus address the occlusion problem inherent to 3D flow vi-
sualization. Overall, the presented method delivers interactively an-
imated 3D flow, uses only standard OpenGL 1.1 calls and 2D tex-
tures, and is simple to understand and implement.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms

Keywords: Flow Visualization, Hardware Acceleration, Texture
Advection, OpenGL

1 Introduction

Visualization of two and three dimensional vector data produced
from application areas such as computational fluid dynamics (CFD)
simulations, environmental sciences, and material engineering is a
challenging task. Although not a closed subject, 2D vector field
visualization can now be addressed by a comprehensive array of
methods, such as hedgehog and glyph plots, stream lines and sur-
faces, topological decomposition, and texture-based methods. The
last class of methods produces a “dense”, texture-like image repre-
senting a flow field, such as spot noise and line integral convolution
(LIC). For a comprehensive survey of these methods, see [Hauser
et al. 2002].

Texture-based techniques have a number of attractive features.
First, they produce a continuous representation of a flow quantity
which covers every dataset point. In comparison, discrete methods,
such as streamlines and glyph plots, sample the datset, leaving to
the user the interpolation of the visualization from the drawn sam-
ples. Secondly, most texture methods relieve the user from the te-
dious task of deciding where to place the data to be advected, e.g.
the streamline seed points. Finally, recent texture-based methods
employ graphics hardware, to render animated visualizations of the

flow field at interactive rates, thereby using motion to effectively
convey the impression of flow.

However effective and efficient in 2D, texture-based techniques
are not still extensively used for visualizing 3D flow. Indeed, 3D
flow visualization exhibits a number of problems, some of them re-
lated to the use of texture-based techniques, others inherent to the
extra spatial dimension. The main problem inherent to 3D flow vi-
sualization is the occlusion by the depth dimension. This problem is
even more obvious in case of dense visualizations, such as produced
by texture-based techniques, as compared to discrete methods, such
as streamlines. Another important problem of texture-based 3D flow
visualizations is the difficulty of quickly producing and rendering
changing volumetric images that would convey the motion impres-
sion.

Recently, Image-Based Flow Visualization (IBFV) has been pro-
posed for 2D flow fields [van Wijk 2001]. Based on a combination
of noise injection, advection, and decay, IBFV is able to produce
insightful and accurate animated flow textures at a very high frame
rate, is simple to implement, and runs on consumer-grade graphics
hardware. In this paper, we extend the IBFV technique and make it
suitable to render 3D vector fields. In this extension, we keep IBFV’s
main features: a high frame rate, implementation simplicity, and in-
dependence on specialized hardware. Moreover, we address the is-
sue of depth occlusion in 3D by extending the texture noise model
the original IBFV introduces. Specifically, we add an opacity (or
matter) noise to the gray value (or dye) noise already present in the
IBVF. This gives a simple but powerful framework for tuning the vi-
sualization density without sacrificing the overall contrast.

Section 2 overviews the existing texture-based visualization
methods for 3D flow, with a focus on hardware-accelerated meth-
ods. Section 2.1 presents the 2D IBFV method we dwell upon. In
Section 3, we introduce the main concepts and the implementation
of our method. Section 4 presents several results obtained with our
method and discusses parameter settings. Finally, Section 5 draws
the conclusions.

2 Related Work

As mentioned in Sec. 1, a number of texture-based methods have
been developed for visualizing 3D flow. In this section, we give
a brief overview of these methods. We focus on the hardware-
accelerated ones, as our aim is to produce animated 3D flow imagery
at an interactive rate.

One of the first papers to address the dense visualization of 3D
vector data was published in 1993 by Crawfis et al. [1993]. Here,
splats are used, following the line integral convolution (LIC) tech-
nique, to show the direction of the field.

More recently, in 1999, Clyne and Dennis [1999] and Glau [1999]
presented volume rendering techniques for time-dependent vector
fields which make use of parallel computing, respectively 3D texture
on SGI Onyx machines. In the same year, Rezk-Salama et al. [1999]
present a method based on 3D LIC textures. In this work, the im-
pression of flow is given by animating a precomputed LIC texture
via cycling colors in the hardware color tables. Additionally, clip-
ping surfaces can be interactively adjusted to specify the user’s vol-
ume of interest. The method achieves, on an SGI machine, 20 frames
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per second (fps) without clipping and 3-4 fps when complex clip-
ping surfaces are used. However effective, the method can not in-
teractively address time-dependent fields, as this would involve re-
computing the LIC texture. Moreover, the method uses OpenGL 3D
textures, which are not yet hardware accelerated by consumer-grade
graphics cards.

In contrast to the above, Weiskopf et al. propose a method
for rendering time-varying vector fields as animated flow tex-
tures [Weiskopf et al. 2001]. The principle is the same as for
IBFV, namely the method injects and advects a texture. However,
less attention is dedicated to the noise generation as in the IBFV
method [van Wijk 2001]. Special programmable per-pixel opera-
tions of the nVidia GeForce card family are used to offset, or ad-
vect, a texture image TI , as function of another texture TV that en-
codes the vector field. Specifically, the authors use the offset and dot
product texture shaders of the GeForce cards, as well as multitextur-
ing capabilities to combine several textures in a single pass. How-
ever, as the authors mention, the method would be applicable to 3D
fields only when the needed per-pixel operations are supported for
3D textures by the GeForce cards. For 3D fields, a similar method
is proposed that uses 3D textures, per-pixel texture extensions of
SGI’s VPro graphics cards, and the SGI-specific post-filtering bias
and scale image operations. Given this specialized hardware, the
method achieves 4 fps for an image of 3202 pixels of a 3D flow
dataset of 1283 cells.

The previous method has been extended one year later by Reck et
al. to handle 3D curvilinear grids [Reck et al. 2002]. However, the
dye injection and advection process that drives the visualization re-
mains the same, which means that the method handles 3D fields only
using specialized SGI hardware. Given the extra overhead of han-
dling curvilinear grids, this method achieves only 5 fps for a field of
163 cells, when an accelerating cell clustering technique that trades
accuracy for speed is used. Without clustering, the method needs 7
seconds per frame.

Visualizing 3D flow with dense imagery is difficult, as outlined in
Sec. 1, due to the inherent occlusion problem. This problem is ad-
dressed by Interrante and Grosch [1989]. Essentially, a number of
strategies for computing effective LIC textures is given, such as us-
ing region-of-interest (ROI) functions to limit the rendered volume,
using sparse noise for the LIC to limit the volume fill-in, using 3D
halos to give a shadow effect to the LIC splats, and using oriented
fast LIC [Wegenkittl and Gröller 1997] to convey directional infor-
mation by using assymetric filter kernels. However, these techniques
trade speed for visual quality, and thus cannot generate interactive
flow animations.

2.1 2D IBFV

As described above, an essential limitation of 3D texture-based flow
visualizations is that they cannot be generated interactively, at least
not on consumer-grade graphics cards. In the next section, we intro-
duce our 3D image-based flow visualization method, or 3D IBFV for
short, which addresses this issue. To better understand the method,
we first overview 2D IBFV that serves as a basis for our method.

Consider an unsteady 2D vector field v(x, t) ∈ R
2, defined for

t ≥ 0 and x ∈ Ω, where Ω ⊂ R
2 is typically a rectangular region.

v represents typically a flow field. However, other vector fields can
be considered too.

The trajectory of a massless particle in the field, or a pathline, is
the solution p(t) of the ordinary differential equation:

dp

dt
= v(p(t), t), (1)

given a start position p(0). Integrating the above equation by the Eu-
ler method gives the well known

pn+1 = pn + v(pn, t)∆t (2)

Take now a 2D scalar property A(x, t) advected by the flow, such
as the color of advected bye. A will be, by definition, constant along
pathlines defined by Eqn. 1. Thus, in a first order approximation, we
have

A(pn+1, n + 1) = A(pn, n), if pn ∈ S, else 0 (3)

However, one needs to initialize the dye advection by inserting dye
into the flow. For this, we take a convex combination of the advec-
tion, as defined by Eqn. 3, and the dye injection, defined by a scalar
image G, as follows

A(pn, n) = (1 − α)A(pn−1, n − 1) + αG(pn, n) (4)

Equation 4 is the essence of the IBVF, as it describes the advection,
insertion, and decay of ink as function of time and space. The blend-
ing parameter α specifies the decay to injection ratio. In the original
IBFV method, α was taken constant for all points in S.

initialize textures A and {Gn}
build warped polygon mesh P
while (true)
{
    draw mesh P textured with A
    select noise texture G from {Gn}
    draw polygon S textured with G and blend factor α
}

Figure 1: 2D IBFV algorithm

In terms of implementation, IBFV maps Eqn. 4 to OpenGL oper-
ations, as outlined by the pseudocode in Fig. 1. The domain S, rep-
resenting the flow dataset, is modeled by a polygon mesh P , onto
which the dye image A is textured. The advection of A is mod-
eled by warping the textured polygon’s vertices in the direction of
the vector field with a small distance corresponding to the time step
∆t. The ink image G is modeled by a set of noise textures Gn for
the time instants t = n∆t. Gn’s intensity is periodic in time, in
order to achieve coherent pattern motion along pathlines. The ink
injection, i.e. combination of A and G, is done by alpha blending
the mesh P with a single polygon of the size of S textured with the
noise Gn at the current time n. Finally, Equation 4 is made explicit
in A by copying the warped and noise-injected image in the current
frame buffer into the texture image A for the next frame. Overall,
only OpenGL 1.1 operations are used, which makes the method sim-
ple and extremely fast.

3 3D IBFV

To extend 2D IBFV to 3D, three main problems are to be taken care
of. First, a way must be found to perform ink advection in 3D. Sec-
ondly, 2D IBFV, as described in Sec. 2.1, produces an opaque image.
If we are to extend the method to 3D, we must somehow be able to
see the inside of the flow volume. We do this by varying both the
noise sparsity and the opacity of the rendered volume. Finally, an
efficient way must be found to render the 3D flow volume. These
problems are discussed in the next sections.

3.1 Advection in 3D

The main problem in implementing advection in 3D along the lines
of the original IBFV method is that there is no direct 3D analogue
to the hardware-accelerated textured mesh warping in 2D. Although
3D meshes can be warped and 3D texture is supported by some
graphics hardware, there is no volumetric graphics primitive equiv-
alent to the 2D textured polygon. It is thus not possible to straight-
forwardly extend the 2D IBFV algorithm shown in Fig. 1 to 3D. We
follow here another route, as described next.
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We consider, for simplicity of the exposition, that the flow volume
is aligned with the coordinate axes and that it is discretized as a reg-
ular grid pijk = (i∆x, j∆y, k∆z), i.e. the grid cells have all sizes
∆x, ∆y, and ∆z. We take now a 2D planar slice S parallel to the XY
plane, at distance k∆z measured along the Z axis (Fig. 2 a). Con-
sider now a point p on slice Sk and three consecutive slices in the Z
direction: S− at z = (k−1)∆z; S; and S+ at z = (k+1)∆z. If the
advection time step ∆t used for integrating Eqn. 1 is small enough
compared to the Z sampling distance ∆z and maximal Z velocity
component max(vZ ), i.e. if |vZ |∆t < ∆z, then the advection that
reaches Sk at p can come only from the volume between S+ and S−.
We distinguish two situations: if vZ < 0, the Z advection reaching
S comes from S+. If vZ > 0, the Z advection reaching S comes
from S−. If vZ = 0, there is no advection along the Z axis, so we
subsume this case to any of the two former ones, e.g. consider the
case vZ ≥ 0.

x

y

z

k∆z

SS+
S-

p110

p001Z

vZ∆t
v∆t

vXY∆tq

p000

p010

Y

p100

X

p011

p101

slice S

slice S+

a) b)

p111

Figure 2: a) Slicing the volume. b) Decomposing 3D advection

Consider first the case vZ < 0. With the above assumptions, the
advection at the grid point pijk comes from the point q = pijk −
v(pijk)∆t located between S and S+. To simplify notation, without
loss of generality, assume that i = j = k = 0 and that vx < 0 and
vy < 0. The quantity A is advected by the flow, so A(p000, t +
∆t) = A(q, t). We can evaluate A(q) by trilinear interpolation of
the eight vertices of the cell containing q (see Fig. 2 b)

A(q) = (1 − z)(1 − y)(1 − x)A000 +z(1 − y)(1 − x)A001

+ (1 − z)y(1 − x)A010 +zy(1 − x)A011

+ (1 − z)(1 − y)xA100 +z(1 − y)xA101

+ (1 − z)yxA110 +zyxA111 (5)

where x, y, and z are the local cell coordinates of point q, i.e. x =
−vx∆t, y = −vy∆t, and z = −vz∆t, and Aijk are the values of
A at the cell corner points pijk. Denote by Ak the sum of the terms
in Eqn. 5 that have a factor (1 − z), i.e.

Ak = (1 − y)(1 − x)A000 +y(1 − x)A010

+ (1 − y)xA100 +yxA110 (6)

and similarly by Ak+1 the sum of the terms that have a factor z

Ak+1 = (1 − y)(1 − x)A001 +y(1 − x)A011

+ (1 − y)xA101 +yxA111 (7)

We can thus rewrite Eqn. 5 as

A−(p) = A(q) = (1 − z)Ak + zAk+1 (8)

where A−(p) is the advection at p if vZ(p) < 0. The terms Ak and
Ak+1 allow a special interpretation. Indeed, Ak is the 2D advection

caused by vXY , the projection of v, onto the plane S, in the 2D rect-
angular cell (p000, p100, p110, p010).

Similarly, Ak+1 is the planar 2D advection caused by vXY in the
2D cell (p001, p101, p111, p011). Finally, Eqn. 8 denotes the advec-
tion of A from point p001 to point p000 along the Z axis, i.e. in the
field vZ which is the projection of v onto Z. Recall that the above
held for vZ < 0. If vZ ≥ 0, we deduce a similar relation to Eqn. 8,
i.e.

A+(p) = A(q) = (1 − z)Ak + zAk−1 (9)

where A+(p) is the advection at p if vZ(p) ≥ 0. The only differ-
ence here is that we consider the plane S− instead of S+, i.e. the Z
advection brings information on the plane S from the opposite di-
rection as in the former case vZ < 0. Combining the two equations
Eqn. 8 and Eqn. 9, we obtain the total advection A(p)

A(p) = A−(p) + A+(p) (10)

Summarizing, the advection of the scalar quantity A from q to p in
the field v can be decomposed in a series of 2D advection processes
in the planes S, S+, and S−, followed by a 1D advection along the
Z axis from S− to S for those points p having vZ(p) ≥ 0 and a
1D advection along the Z axis from S+ to S for the points having
vZ(p) < 0.

In the next section, the implementation of Eqn. 10 is presented.

3.2 Advection implementation

As explained in the previous section, we decompose the 3D advec-
tion of a scalar property A in a series of slice planar advections and
a series of Z-axis aligned advections. Following this idea, the global
3D advection procedure for a single time step on a volume consist-
ing of a set Si of slices, i = 0..N − 1, is given by the pseudocode
in Fig. 3:

for i = 0 to N-1
{
   if (i>0)
      do 1D Z-axis advection from Si-1 to Si
   if (i<N-1)
      do 1D Z-axis advection from Si+1 to Si
   do 2D IBFV-based advection in the slice Si
}

(1)

(2)

(3)

Figure 3: Advection procedure

The planar advection terms of the type AXY in Eqns. 8 and 9 can
be directly computed by applying the 2D IBFV method considering
the projection vXY of v to the plane S (step 3 of the algorithm). De-
note now by Ak the value of A over all points of Sk, for a given slice
k. Similarly, denote by vZk the velocity Z component over the points
of Sk. From Eqn. 8, step 1 of the algorithm becomes (for ∆t taken
to be 1):

Ak := (1 − max(vZk−1, 0))Ak + max(vZk−1, 0)Ak−1 (11)

Similarly, step 2 becomes

Ak := (1 − max(−vZk+1, 0))Ak + max(−vZk+1, 0)Ak+1 (12)

In the above, the max function is used to consider the two cases
vZ < 0 and vZ ≥ 0 explained in Sec. 3.1. Note that we evaluate the
component vZ in the slices Sk−1 and Sk+1 to perform the advection.
Alternative schemes can be used, e.g. evaluate vZ as the average, or
linear interpolation, of the velocity vZk in the current plane Sk and
the velocities vZk−1 and vZk+1 in the planes Sk−1 and Sk+1. Sim-
ilarly, the planar and Z-advections (steps 1,2,3 in Fig. 3) can be done
in different orders, leading to different integration schemes. Given
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inflow (A > 0)
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Figure 4: Effect of operation order: a) test configuration. b) correct
advection. c) incorrect advection

that we require |vZ |∆t < ∆z, the chosen scheme in Fig. 3 per-
formed well for all our datasets. Moreover, this scheme minimizes
the number of drawing operations (see also Fig. 9 in Sec. 3.5).

In the above scheme, the order of the planar and Z-advections is,
however, important. Consider, for example, a laminar diagonal flow
(vx, vy, vz) = (1, 0, 1) and a property A (e.g. ink) nonzero in some
area S0 and zero elsewhere (Fig. 4 sketches this as seen along the
Y axis). The advection should carry the ’inflow’ value A from S0

diagonally along the slices Sk, leading to the situation in Fig. 4 b.
This is the result delivered by the algorithm in Fig. 3. If, however,
we did, for each slice, first the 2D IBFV advection and then the Z-
advection, to name one of the other possible orders, we would get
the obviously wrong result in Fig. 3 c after one time step.

Let us look closer at Eqns. 11 and 12 which describe the algo-
rithm steps 1 and 2. In essence, one performs a convex combination
of the property Ak (planar advection) over consecutive slices, using
the value z which represents the velocity Z component at grid points.
As explained above, z is always greater or equal to zero. To general-
ize this for all points over a slice Sk, i.e. for other points than mesh
points, we bilinearly interpolate z over the slice Sk from the z values
at the mesh points.

If we were able to implement the above Z advection using hard-
ware acceleration, then the complete 3D advection algorithm would
be hardware accelerated, since the 2D IBFV method obviously is so.
The next section describes how this can be done.

3.3 Hardware accelerated Z advection

We start by evaluating, for all mesh points i,j of all slices Sk, the
quantities

v+Zijk =max( vZijk, 0)

v−Zijk =max(−vZijk, 0) (13)

where v+Zijk and v−Zijk are the absolute values of the Z veloc-
ity components in the direction, respectively in opposite direction
of the Z axis, on slice Sk. For simplicity of notation, we drop the
indices i and j, i.e. use v+Zk instead of v+Zijk, and similarly for
v−Zk. For every slice k, we encode the above as two OpenGL 2D
luminance textures. All textures we use are named textures, as this
ensures a fast access to texture data. The luminance textures store
one component (luminance) per texel. The texture type (as passed
to the OpenGL call glTexImage2D) is either GL INTENSITY8
or GL INTENSITY16. This gives 8, respectively 16 bits resolu-
tion for the velocity Z component. Since two separate textures are
used for v+Zk and v−Zk, an effective range of 9, respectively 17
bits is used for the velocity Z component. For all our applications,
16 bit textures have delivered good results, whereas the 8 bit reso-
lution caused undersampling artifacts for vector fields with a high Z
value range. Note also that the framebuffer resolution, used to ac-
cumulate the results, is also important for the overall computation
accuracy. The spatial (X,Y) texture resolutions determine a trade-
off between representation accuracy and memory use. As a simple
rule, these textures shouldn’t be larger than the vector dataset’s XY
resolution, since this is the complete Z velocity information to be

encoded. Practically, resolutions of 642 and 1282 have given very
good results.

Now we can simply rewrite the Z advection equations (11)
and (12) as

Ak :=(1 − v+Zk−1)Ak + v+Zk−1Ak−1 (14)

Ak :=(1 − v−Zk+1)Ak + v−Zk+1Ak+1 (15)

where :=, in the above, denotes assignment. Similarly, we imple-
ment the property Ak as a set of 2D RGBA textures, one for every
slice plane Sk. The XY resolution of the property textures is exactly
analogous to the resolution of the single RGB texture used 2D IBFV.
Remark, however, that we need a texture alpha channel, whereas 2D
IBFV did not. The use of this channel is explained in Sec. 3.5.

glDisable(GL_BLEND);
glBindTexture(GL_TEXTURE_2D,A[k-1]); drawQuad();
// A = Ak-1     (draw previous slice)

glEnable(GL_BLEND);
glBlendFunc(GL_ZERO,GL_SRC_COLOR);
glBindTexture(GL_TEXTURE_2D,v+z[k-1]); drawQuad();
//  A = v+Zk-1Ak-1 (modulate by v+Zk-1)
glBindTexture(GL_TEXTURE_2D,temp);
glCopyTexImage2D(GL_TEXTURE_2D,0,GL_RGBA,0,0,N,N,0);
//  temp = v+Zk-1Ak-1 (save advection from previous slice)

glDisable(GL_BLEND);
glBindTexture(GL_TEXTURE_2D,A[k]); drawQuad();
//  A = Ak                       (draw current slice)

glEnable(GL_BLEND);
glBlendFunc(GL_ZERO,GL_ONE_MINUS_SRC_COLOR);
glBindTexture(GL_TEXTURE_2D,v+z[k-1]); drawQuad();
//  A = (1-v+Zk-1) Ak      (modulate by 1- v+Zk-1)
glBlendFunc(GL_ONE,GL_ONE);
glBindTexture(GL_TEXTURE_2D,temp); drawQuad();
//  A = v+Zk-1Ak-1 + (1-v+Zk-1) Ak (add of previous slice)

glBindTexture(GL_TEXTURE_2D,A[k]);
glCopyTexImage2D(GL_TEXTURE_2D,0,GL_RGBA,0,0,N,N,0);
//  Ak = A                                         (save result in texture Ak)

Figure 5: OpenGL code implementing Z advection

The velocity-coding textures allow us to efficiently implement
the above equations using graphics hardware. Equation 14 is
implemented by the OpenGL code in Fig. 5. The OpenGL
GL TEXTURE ENV MODE value passed to the glTexEnv function
is always GL REPLACE, i.e. we do not use mesh vertex colors for
the textures. All effects are obtained by varying the blending modes
via the glBlendFunc function. A similar code is needed to imple-
ment Eqn. 15. Just as in the 2D IBFV case, the textures are created
with GL LINEAR values for the GL TEXTURE MIN FILTER and
the GL TEXTURE MAX FILTER parameters of glTexParame-
ter, to ensure bilinear interpolation. The function drawQuad
draws a single textured quadrilateral that covers the whole im-
age. The variable temp is one RGBA texture used as a temporary
workspace. The viewing parameters are such that there is a one to
one mapping of the slices Sk to the viewport.

Overall, our advection uses five textured quad drawing operations
and two glCopyTexImage2D operations per slice and per advec-
tion direction, done into P-buffers, for speed reasons. This has the
extra advantage of not needing an on-screen window showing the in-
ner working of the advection process.

3.4 Noise injection: Preliminaries

The last section has shown how 3D advection can be implemented
using hardware acceleration. The second important question is now
which scalar property to advect. We follow 2D IBFV, i.e. inject a
spatially random, temporally periodic noise signal (see [van Wijk
2001] for a detailed analysis). In the following, denote by An =
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(AIn, Aαn) a 2D image at moment t = n∆t, consisting of an in-
tensity component AIn and an alpha (opacity) component Aαn. The
original 2D IBFV equation (4) becomes now, for every 3D slice:

An = (1 − α)An−1 + αGn (16)

(we drop the spatial pn parameter for conciseness). Here, Gn is a
2D texture modelling the noise injected at time step n, consisting of
an intensity GIn and an opacity Gαn component. Just as in the 2D
IBFV case, the noise should be periodical in time, as this creates the
impression of color continuity along streamlines. In our 3D case, we
add an extra spatial dimension, i.e. the Z axis, to the noise. Just as
for the temporal dimension, the noise must be a continuous, periodic
signal along the Z axis, to minimize high frequency artifacts. For a
full discussion hereof, see the original paper [van Wijk 2001].

In 2D IBFV, both Aαn and Gαn were identically one (i.e.
opaque) everywhere. More precisely, the actual 2D IBFV imple-
mentation used RGB, and not RGBA, textures. Hence, if we directly
implement Eqn. 16 in the 3D case, we obtain a fully opaque flow vol-
ume consisting of gray value ink. Although ’correct’, this result is
useless for visualizing the flow.

a b

dc

Figure 6: Noise injection: a) and b) 2D IBFV noise mode. c) and d)
3D IBFV improved noise

A first idea to tackle this problem is to use the texture alpha chan-
nel to model transparency, i.e. to use a Gαn which is not identically
1, but a noise signal similar to GIn. Texels with a low alpha would
correspond to ’transparent’ noise, i.e. holes in the texture slices,
through which one could see deeper into the flow volume. Unfortu-
nately, this method produces visualizations which have a poor con-
trast and which, after a while, tend to fill up the volume with texels
having the same (average) transparency. When rendered by alpha
compositing (see Sec. 3.6), little is seen in the depth of the flow. Fig-
ure 6 a (see also Color Plate) shows this for a vortex flow in which red
ink has been injected to trace a streamline. Discarding lower alpha
values by using OpenGL alpha testing improves the results some-
what. However, the red streamline is still not visible (Fig. 6 b).

Parameter tuning can produce only mild improvements, as the fol-
lowing analysis shows. If an α close to zero is used, in order to
diminish the noise injection, then the ’holes’ in the noise have no

chance to show up, and the visualization becomes quickly blurred.
If a high α is used, to make the noise more prominent, then this will
erase the current information (second term). The ’ink decaying’ ef-
fect diminishes, and one sees only the noise variation in time. If one
uses a sparse noise pattern, i.e. a Gαn which has mostly (very) low
values, in conjunction with an average (0.5) to high (0.9..1) α, then
the occlusion effect diminishes indeed. However, the method may
now easily fall into the other extreme, where too little ink is injected,
and the injected ’holes’ quickly erase it.

Overall, we have found that it is very hard to get a parameter
setting which produces a high-contrast visualization, both in terms
of injected noise color and transparency. The visualization quickly
tends to get blurred and produce low-contrast slices in the alpha
channel. Although such visualizations do convey some insight into
the flow, due to their animated nature, we need a better solution for
the contrast problem. This is described in the next section.

3.5 Noise injection in 3D

The key to producing a high-contrast 3D flow visualization is to re-
fine Eqn 16. The main problem of this model is that it is not able to
express what to inject (i.e. ink or ’holes’) and where to inject it in
the volume independently. Instead of the original formulation, we
propose to use

An = (1 − Hn)An−1 + HnGn (17)

Here, we replace the constant α parameter from Eqn. 16 with a noise
function Hn. In other words, we use now two noise signals Gn

and Hn instead of a single one. Both signals are periodic func-
tions of Z position and time, as before, so they are stored as two sets
of 2D textures, two textures per Z slice. The noise signal Hn is a
single-channel alpha-texture. It describes where to inject the noise.
If Hn = 1 at some point, it means we inject the noise signal in Gn

at that point. If Hn = 0, we inject nothing at that point.
The signal Gn may be a luminance-alpha (LA) or RGBA sig-

nal, depending whether we wish to inject gray, respectively colored
noise. It describes what to inject at a given point, both in terms of the
color (L or RGB) and the ’hole’ or ’matter’ injection (the A chan-
nel). Although we have experimented with color noise of random
hue, monochrome noise (whether gray or color) has given the best
results.

Using two noise signals instead of one allows us to specify what
and where we inject independently. To inject fully transparent holes
at a few locations, we use a Gn having texels with a zero alpha and
a Hn sparsely populated with high values. In comparison with the
model given by Eqn. 16, we can now inject a fully transparent hole
close to a fully opaque ink spot or a location where no injection at all
takes place. Figure 6 c and d clearly show that this approach delivers
a more transparent, but still highly contrasting visualization. Now
the red streamline inside the flow is clearly visible.

We next describe the design of the Gn and Hn noise signals. Just
as for the 2D IBFV, we compute the noise Hn at a moment t and spa-
tial position x, y, and slice k, by using a periodic ’transfer function’
h, phase-shifted with t, from a start moment given by a white noise
signal N :

H(x, y, k, t) = h((N(x, y, k) + t) mod T ) (18)

where T = tN∆t is the time period of tN different moments. The
noise components GIn and Gαn are computed analogously, using
two more functions gI and gα. Note also that the phase offset (i.e.
N signal) used to compute H is different than the one used for G. If
it were the same, the two noises G and H would be in phase, which
would create visible artifacts.
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Figure 7: Transfer functions for a) Hn, b) GIn, and c) Gαn

We choose the functions h,gI , and gα as follows (see also Fig. 7).
For h we propose

h(t) =

{
0, t < τh

t, t > τh
(19)

In other words, nothing is injected for t < τh, whereas strong injec-
tion takes place for t > τh.

For gI , we can use a similar function, controlled by a parameter
τI . However, we found the step function

gI(t) =

{
0, t < τI

1, t > τI
(20)

better. This would inject black ink for t < τI and white ink other-
wise. Since the variable opacity already modulates the noise blend-
ing, we found the above ink injection to be sufficient, i.e. we didn’t
make use of gray ink.

Finally, for gα we propose

gα(t) =

{
0, t < τα
t−τα
1−τα

, t > τα
(21)

Hence, holes are injected for t < τα. For t > τα, ink is injected, its
color being given by gI . The above gα produces asymmetric advec-
tion patterns, thinner in the sense of the flow and thicker in the op-
posite direction. This may serve as an indication of the flow sense.
Choosing

gα(t) =

{
0, t < τα
1−t

1−τα
, t > τα

(22)

will reverse the orientation of the flow patterns. For concrete settings
for the τh, τI , and τα parameters, and a summary of all parameters,
see Sec. 4.

The noise injection modelled by Eqn 17 can be efficiently imple-
mented using graphics hardware. For this, we actually precompute
and store the signals Hn and Qn = GnHn as 2D textures. As in
the original 2D IBFV, these textures may be smaller than the prop-
erty textures A, to save memory and rendering time. Texture repeat
and stretch operations are used to map the H and Q textures’ size
PQN to the size AN of the textures A. Moreover, we store only
textures for tN time instants and HQZN values of the Z coordinate
(slice index k) and then repeat them periodically, both in Z direction
and time (see Eqn. 18). Normally, HQZN < ZN , where ZN is the
number of Z slices. Overall, we store thus HQZN tN pairs of H and
Q textures.

The noise injection algorithm for a given Z slice k is shown in
Fig. 8. Here, we denote the noises G and H at time step n in slice k
by Gkn and Hkn respectively. As noise injection is done after the Z
advection and 2D IBFV steps, the drawable contains the signal Ak

when the injection starts. Recall also that, when alpha-textures are
used in the GL REPLACE mode of glTexEnv, they only affect the
destination alpha channel (e.g. step 1 of the code in Fig. 8). Overall,
the noise injection we propose uses just two textured quad draws, as
compared to the original 2D IBFV which used one similar operation.

glEnable(GL_BLEND);
glBlendFunc(GL_ZERO,GL_ONE_MINUS_SRC_ALPHA);
glBindTexture(GL_TEXTURE_2D,P[k][t]); drawQuad();
//  A = (1−Hkn) Ak          (clear areas where we inject
                                                       something)

glBlendFunc(GL_ONE,GL_ONE);
glBindTexture(GL_TEXTURE_2D,Q[k][t]); drawQuad();
//  A =  (1−Hkn) Ak + HknGkn (add ink and/or holes to the
                                                       injection areas)

Figure 8: OpenGL code implementing noise injection

for (k = 0; k<ZN; k++) // initialization
{
    for (n=0; n<tN; n++)
          precompute noise textures Hkn and Qkn = Gkn Hkn
    build warped polygon mesh Pk
    create texture Ak
}
while(true) // execution
{
   for(k = 0; k<ZN; k++)
   {
        clear drawable
        perform the Z advection from slice k−1 to k
        perform the Z advection from slice k+1 to k
        draw mesh Pk textured with current drawable
        inject noise using textures Qkn and Hkn

copy drawable to texture Ak
}

   display results (draw textures Ak back to front)
}

Figure 9: Complete IBFV 3D method

Putting it all together, we obtain the complete 3D IBFV method,
shown in pseudocode in Fig. 9. The method has two phases, just like
in the 2D IBFV case (compare Fig. 9 with Fig. 1). In the initializa-
tion phase, the noise and property textures (Hkn, Qkn, and Ak) as
well as the warped polygon meshes Pk are built for all Z slices k (and
all time instants n, for the noise textures). In the execution phase,
the method is structurally similar to the 2D IBFV case, except for
the new Z advection step.

3.6 Rendering

As the 3D IBFV method is running, we visualize its results by draw-
ing, in back to front order, the RGBA texture slices Ak. Blending
is enabled and the glBlendFunc function’s source and destina-
tion factors are, as usually for this technique, set to GL SRC ALPHA
and GL ONE MINUS SRC ALPHA. An important enhancement is
obtained by enabling the OpenGL alpha test and cutting off all alpha
values below a given αcut. Setting αcut between 0.01 and 0.1 allows
one to quickly ’coarsen’ the flow volume by discarding the almost
transparent texels. Although not visible in separate slices, such tex-
els can accumulate in the back to front blend and increase the overall
opacity. Figure 11 shows a flow volume rendered for three different
αcut values, from three viewpoints. Clearly, the higher αcut values
allow more insight in the flow.

We should remark that the choice of the Z slicing direction is, so
far, arbitrary. For a regular dataset, an efficient choice is to mini-
mize the Z slices count, i.e. choose Z as the axis having the least
cell count from the three axes. Visualizing the back-to-front ren-
dered slices (Sec. 3.6) will definitely produce poor results if the slic-
ing direction is orthogonal to the line of sight, as we then tend to look
through the slices. Still, for the various flow volumes we visualized,
this didn’t seem to be a major hindrance for the users. If desired, as
usually done in many volume rendering applications, the method can
detect this situation and change the slicing direction interactively, as
the viewpoint changes.

A considerably better rendering can be obtained if 3D textures are

238
Proceedings of the 14th IEEE Visualization Conference (VIS’03) 
0-7695-2030-8/03 $ 17.00 © 2003 IEEE 



Figure 11: 3D flow rendered with αcut = 0.01 (top), αcut = 0.02 (middle), and αcut = 0.05 (bottom)

used. In this case, the 2D textures Ak can be slices in a single 3D
texture volume. The whole 3D IBFV method stays the same. How-
ever, a visibly improved rendering can be done by drawing, back to
front, a number of 2D polygons parallel to the viewport, that use
the 3D texture. This is exactly what most volume rendering meth-
ods do. Remark that the use of 3D texture is, in this case, strictly
needed for rendering the 3D IBFV results, not for producing them.
Our main problem here was that (reasonably large) 3D textures are
seldom present with hardware acceleration in the graphics cards we
availed of (GeForce 2 and 3).

a b

d e

c

Figure 10: Parameter settings for 3D IBFV

4 Discussion

We shall discuss now the parameter settings and the method’s per-
formance and memory requirements.

Compared to 2D IBFV, the 3D method introduces several new pa-
rameters. Here follows the complete parameter list of 3D IBVF (see
Sec. 3.5 for details):

• AN : resolution of the (4 bytes, RGBA) property textures Ak

• ZN : number of Z slices

• vN : resolution of the velocity (2 byte, alpha) textures

• HQN : resolution of textures H (1 byte, luminance) and Q (2
bytes, luminance alpha)

• HQZN : Z resolution of the noise textures H and Q

• tN : time resolution of noise textures

• XN ,YN : resolution of meshes (12 bytes per vertex)

• τh: noise injection strength (see Sec. 3.5)

• τα: ink to hole injection ratio

• τI : black to white noise ink ratio

• αcut: alpha test threshold

The visualization is strongly affected by the last four parameters
(explained in Sec. 3.5). τh controls how much noise, consisting of
holes and/or ink, is injected. Good values for τh range from 0.01 to
0.1. Higher values tend to produce too noisy images. τα is the ink
to hole injection ratio. If close to 1, holes are injected, i.e. matter is
’carved out’ of the flow volume. If close to 0, ink is injected. Good
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values for τα are 0.9 or higher, in order to produce a sparse flow vol-
ume. τI controls the ink luminance. If close to 0, more white ink is
used. If close to 1, more black ink is used. Good values range around
0.1, to favor white ink.

As for the 2D IBFV, we can inject ink at chosen locations to trace
streamlines. Figure 10 shows a helix flow in which red ink was in-
jected close to the back plane’s center. Besides color, we set the ink’s
alpha to 1 (opaque). Using a high αcut discards most of the noise but
keeps the opaque ink (Fig. 10 d). Another idea is to set, for the noise
injected close to the inflow’s center, a high alpha. This alpha is ad-
vected into the helix core, which becomes opaque. Next, we set a
high αcut and discard all outside the core (Fig. 10 b). If low alpha
noise is used instead, we ’carve out’ the core (Fig. 10 c). Another ef-
fective option is to inject strong noise for a few steps (Fig. 10 a) and
then turn it off by setting τP to zero. This creates a more pleasant,
smoother visualization (Fig. 10 e). This technique was used also for
the flow in Fig. 11.

As 2D IBFV, we are aware that our 3D method is limited in the
range of velocities it can display. Specifically, both the maximum
values for the XY and Z velocities must be smaller than the XY and
Z cell sizes divided by the time step. In practice, we handle this by
either using a small time step or by clamping the higher velocities.

We consider now the total memory (in bytes) our method needs
to store the textures and polygon meshes:

M = 2ZN (6XNYN + 2A2
N + 2v2

N ) + 3HQZNHQN tN (23)

Given the settings: AN = 512, XN = YN = ZN = 50, vN =
HQN = HQZN = 64, and tN = 32, we obtain M = 59 MBytes.
This just fits into our 64 MB GeForce cards. If M exceeds the graph-
ics card memory, transfer to the normal memory takes place, which
severely degrades the rendering performance.

The rendering time is, as expected, proportional with the texture
sizes, the number of slices ZN , and the mesh resolution XNYN .
For the GeForce 2 and GeForce 3 Ti 400 cards, the mesh resolution
XNYN was by far the dominant factor in the rendering time. This
was much less severe for the standard GeForce 3 cards, where the
dominant factor seems to be the texture resolution AN . A few ren-
dering timings are shown in Fig. 12. We preferred using smaller ZN

than XN and YN values as this delivered higher performance, as ex-
pected. Besides XN , YN , and AN , all configurations use the settings
described for the memory estimation above, and run on a Pentium
III PC at 800 MHz with Windows 2000. Given that the 2D IBFV
produced 60 frames per second on the same hardware and that we
render 50 Z slices, 3D IBFV delivers, so to speak, more throughput
per rendered slice.

Xres=Yres          20       30       40       60       80

GeForce 3 Ti    9.0      4.5      3         1.6      0.9

GeForce 3        3.0      2.9      2.9      2.4      2.2
                         11.0    10.8    10.6    10.4    9.0

                         10.2    6.3      3.9      2.2      1.2

Ares

512

512
256

256

Figure 12: 3D IBFV timings, frames per second

Another discussion point is the usage of the velocity-encoding lu-
minance textures (Sec. 3.3). An alternative approach would be to
encode the Z velocities as 2D mesh vertex colors. In this case, the
Z advection would be done by drawing the textured mesh with the
GL MODULATE mode of the glTexEnv OpenGL function, instead
of blending two textures, as we do now. This approach (which we
tried first) has several disadvantages. First, storing a N2 quad mesh
is much more expensive than storing a N2 luminance texture. Even
if mesh coordinates are somehow shared, we must still store a full
RGBA value per vertex, as OpenGL 1.1 does not allow storing only
vertex luminance values. Using velocity textures, we store just the
luminance values. Secondly, we found out that, on several nVidia

GeForce 2 and 3 cards, drawing a single quad with a N2 texture
is much faster than drawing an N2 quad mesh with vertex colors.
Note, however, that the two approaches are functionally identical.

5 Conclusions

3D IBFV is a method for visualizing 3D fluid flow as moving tex-
ture patterns using consumer graphics hardware. As its 2D counter-
part, 3D IBFV offers a framework to create several flow visualiza-
tions (stream ’tubes’, LIC-like patterns, etc), high frame rates, and a
simple OpenGL 1.1 implementation, without 3D textures. However,
while 2D IBFV easily handles instationary fields, 3D IBFV currently
handles only the time independent case, as instationary fields re-
quire a continuous update of the velocity textures. 3D IBFV pro-
duces higher frame rates on less specialized hardware than other 3D
flow visualization methods. We extend the 2D IBFV noise concept
by adding ’opacity noise’. Combined with alpha testing, we get a
simple and interactive way to examine flow volumes in the depth di-
mension. We present the implementation and parameter settings in
detail, so that one can readily apply it. We see several extensions of
3D IBFV. New noise and/or ink injection designs can produce 3D
flow domain decompositions, stream surfaces, curved arrow plots,
and many other visualizations. Secondly, using 3D texture, as these
become more widely available, may lead to a simpler, more accurate
3D IBFV. Finally, using DirectX floating-point textures may provide
better accuracy. We plan to investigate these options in the near fu-
ture.
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