Transfusion requirements in orthotopic liver transplantation
Hendriks, Herman George Dirk

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Chapter 6

Effects of recombinant activated Factor VII on coagulation measured by thromboelastography in liver transplantation

Herman G.D. Hendriks¹ MD, Karina Meijer² MD, Joost ThM de Wolf³ MD.PhD, Robert J Porte⁴ MD.PhD, IJ Klompmaker⁵ MD. PhD, Harm Lip¹ MD. PhD, Maarten JH Slooff⁴ MD. PhD, Jan van der Meer² MD. PhD

From the Department of¹Anesthesiology, ²Division of Hemostasis, Thrombosis and Rheology, Departments of³Hematology, ⁴Hepatobiliary Surgery and Liver Transplantation and⁵Hepato-Gastroenterology
University Hospital, Groningen, The Netherlands

Blood Coagulation and Fibrinolysis 2002;13:309-313
Abstract
Besides the conventional laboratory tests, thromboelastography (TEG) is used to monitor hemostasis during liver transplantation. A previous pilot study suggested a beneficial effect of recombinant activated factor VII (rFVIIa) on transfusion requirements in liver transplantation. In the present study, we assess the effects of rFVIIa on coagulation variables and TEG. In 6 study patients, the prothrombin time (PT), the activated partial thromboplastin time (APTT), and TEG variables [reaction time (r), kinetic time (k), or clot formation time, α angle (α), and maximum amplitude (MA)] were recorded before and after the administration of a bolus of 80 μg/kg rFVIIa. These patients were compared with six controls who did not receive rFVIIa. In contrast with the control group, a significant shortening of PT (P = 0.028) and APTT (P = 0.028), r (P = 0.046) and k (P = 0.043) values, and a significant incline of the α angle (P = 0.028) were noticed after injection of rFVIIa, whereas MA values increased not significantly (P = 0.075). rFVIIa rapidly improved coagulation variables in liver transplant patients including PT and APTT. Of the TEG variables, r, k and α angle significantly improved, and MA showed a trend to increase. These data suggest that rFVIIa not only influences the speed of clot formation, but also the physical properties of the clot, which cannot be detected by routine coagulation tests.
Introduction

In patients, undergoing orthotopic liver transplantation (OLT), complex perioperative hemostatic disorders occur, including impaired production of coagulation factors, hyperfibrinolysis, thrombocytopenia and thrombocytopenia. To improve these hemostatic disorders and to reduce blood loss and transfusion requirements, hemostatic variables are monitored during liver transplantation. Besides conventional laboratory tests, like the prothrombin time (PT), the activated partial thromboplastin time (APTT), fibrinogen plasma levels and platelet counts, thromboelastography (TEG) is used to assess hemostasis during liver transplantation. TEG enables evaluation of the whole clotting process from its initiation, and the structural characteristics and stability of the formed clot. Routine laboratory tests are, in contrast with TEG, performed on plasma only and hence provide no information about interactions of blood cells, procoagulants and anticoagulants, and pro- and antifibrinolytic factors, essential in the clotting process.

Recombinant activated factor VII (rFVIIa, NovoSeven®, Novo Nordisk, Copenhagen, Denmark) has been demonstrated to correct the prolonged PT in patients with liver cirrhosis. The effects of rFVIIa demonstrated by TEG have been described in hemophilia A patients and in a patient with liver cirrhosis requiring an invasive procedure, but thus far not in patients during liver transplantation. In the present paper, we describe the effects of rFVIIa on coagulation demonstrated by TEG in liver transplant patients.

Materials and methods

Six adult patients who were scheduled for elective OLT were enrolled in the non-randomized study. Transplantation was performed with preservation of the retrohepatic inferior vena cava (piggyback technique). Red blood cells were transfused to maintain hematocrit levels above .25, platelet concentrates if the platelet count fell below 50 x 10⁹/L and hemostasis was insufficient. Fresh frozen plasma (FFP) was administered if hemostasis was clinically insufficient and PT and/or APTT values were 1.5 times the upper limit of their normal ranges or fibrinogen plasma levels were below 1 g/L. Fibrinogen concentrate was administered when fibrinogen levels fell below 0.7 g/L despite the administration of FFP. An intravenous bolus injection of 80 μg rFVIIa/kg was administered within 10 minutes before the start of surgery,
to be repeated if blood loss after the previous dose exceeded the patient’s estimated circulating volume. An interval of at least 2 h was required between doses. rFVIIa was not to be given after the completion of the bile duct anastomosis. This dose regimen was to be adopted if, in two patients, after rFVIIa administration, clinically significant bleeding still occurred or thrombosis was observed. Concomitant hemostatic drugs were not allowed. The PT, APTT, fibrinogen, platelet count, and TEG were recorded 30 to 60 min before and 30 to 60 min after administration of rFVIIa. All blood samples for coagulation studies were drawn from a (not heparinized) arterial line, after discarding the first 5 ml. TEG analysis was performed on a Thromboelastograph D (Haemoscope Corp. & Launch Diagnostics, Niles, Illinois, USA). Whole blood (0.36 ml) was placed in a pre-warmed cup (37°C) and two drops of mineral oil were spread over the blood surface to prevent evaporation. TEG was performed without addition of celite. TEG recording started 4 minutes after blood sampling (chart speed 2 mm/min: the time in minutes is equal to the distance in mm divided by 2). The measured TEG (fig.1) variables were reaction time (r), kinetic time (k), or clot formation time, α angle (α), maximal amplitude (MA), and the extension of fibrinolysis after 60 min (A60). The effects of rFVIIa on coagulation variables and TEG in six study patients were compared with 6 consecutive controls, who underwent OLT in the preceding year with the same transfusion policy and similar sampling procedure, but who did not receive rFVIIa. Study patients and controls were matched for TEG variables. The medical ethical board approved the study. Written informed consent was obtained from all study patients and controls.

Statistical analysis

Statistics to test baseline differences between the study group and controls was performed with the Mann-Whitney U test. To test the effect of rFVIIa on coagulation variables, the Wilcoxon matched-pairs signed ranks test was used. P < 0.05 (two-tailed) were considered statistically significant.
The cup contains whole blood and is oscillated at an angle of 45°. Each rotation cycle lasts 10 sec including an 1 second rest period at the end of each rotation. The suspended piston in the blood monitors the motion. Fibers composed of fibrin and platelets attach to the cup and pin, affecting the rotation of the suspended piston. The rotation movement of the piston is converted by a mechanical-electrical transducer to an electric signal. A computer translates this signal to a tracing. Liquid whole blood does not transmit torque from cup to piston, resulting on a straight line on the tracing. A strong clot moves the piston directly in phase with the cup, producing a huge magnitude in the tracing. Lysis results in a diminished transfer motion of the cup with consequent reduced tracings. The thromboelastograph variables are explained in the text.
34 patiënten was een tweede heroperatie noodzakelijk en 26 patiënten ondergingen drie of meer heroperaties. Meestal werden deze operaties uitgevoerd in verband met infecties (44%) of bloedingen (27%) in de buik. Darnaast werden heroperaties verricht omdat er

Results

All six study patients received a single bolus injection of 80 μg/kg rFVIIa before surgery; none of them required additional doses during the operation. Study patients and control patients did not differ significantly in baseline TEG variables (Table 1), but study patients had more severe liver disease (Child-Pugh B and C in 3 patients each) than controls (Child-Pugh A and B in 3 patients each). The results of coagulation tests and TEG recordings are presented in Table 1.

Table 1 Coagulation variables in six study patients 30-60 min before versus 30-60 min after administration of 80 μg recombinant activated factor VII, as compared with six controls

<table>
<thead>
<tr>
<th>Variable (normal value)</th>
<th>Study group</th>
<th>Control group</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30-60 min before incision</td>
<td>30-60 min after incision</td>
<td></td>
</tr>
<tr>
<td>PT (11 – 16 s)</td>
<td>21.8 (15.2-23.6)*</td>
<td>11.7 (8.6-15.9)</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>14.9 (13.4-18.2)</td>
<td>16.0 (13.5-19.8)</td>
<td>0.115</td>
</tr>
<tr>
<td>aPTT (26 – 36 s)</td>
<td>38.5 (35.8-51.9)</td>
<td>33.7 (28.3-40.0)</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>40.3 (35.7-42.0)</td>
<td>39.1 (36.0-45.5)</td>
<td>0.463</td>
</tr>
<tr>
<td>Fibrinogen (1.7–3.5 g/l)</td>
<td>1.7 (1.4-3.9)</td>
<td>1.8 (1.2-3.5)</td>
<td>0.093</td>
</tr>
<tr>
<td></td>
<td>2.7 (2.1-5.1)</td>
<td>2.6 (1.7-4.5)</td>
<td>0.248</td>
</tr>
<tr>
<td>Platelets (150-350x10⁷/i)</td>
<td>78 (38-134)**</td>
<td>112 (44-139)</td>
<td>0.465</td>
</tr>
<tr>
<td></td>
<td>154 (118-194)</td>
<td>142 (90-210)</td>
<td>0.6</td>
</tr>
<tr>
<td>r (19-28 mm)</td>
<td>28.5 (20.0-57.5)</td>
<td>9.5 (6.0-10.2)</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>32.0 (28.5-117.5)</td>
<td>31.5 (20.0-74.0)</td>
<td>0.176</td>
</tr>
<tr>
<td>k (8-13 mm)</td>
<td>12.5 (10.0-30.5)</td>
<td>4.5 (4.0-8.5)</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>16.8 (11.0-32.5)</td>
<td>20.3 (6.0-25.0)</td>
<td>0.917</td>
</tr>
<tr>
<td>MA (48-60 mm)</td>
<td>50.0 (40.7-73.5)</td>
<td>62.0 (39.5-79.0)</td>
<td>0.075</td>
</tr>
<tr>
<td></td>
<td>58.3 (38.5-72.0)</td>
<td>58.0 (15.5-78.5)</td>
<td>0.674</td>
</tr>
<tr>
<td>a angle (29-43°)</td>
<td>30.5 (17.5-42.5)</td>
<td>62.0 (47.5-68.5)</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>28.0 (14.0-39.5)</td>
<td>26.5 (6.0-55.5)</td>
<td>0.917</td>
</tr>
</tbody>
</table>

Median values (range) are presented. PT, Prothrombin time; APTT, activated partial thromboplastin time; r, reaction time; k, kinetic time or clot formation time; MA, maximal amplitude; a, angle. *P = 0.037 and **P = 0.025, compared with baseline values in controls

Differences in baseline coagulation variables between the two groups were statistically significant for PT values (P = 0.037) and platelet counts (P = 0.025). In contrast with the controls, a significant shortening of PT (P = 0.028), APTT (P = 0.028), r (P = 0.046) and k (P = 0.043) values, and a significant incline of the a angle (P= 0.028) were noticed after the bolus injection of rFVIIa. Although an increase of MA values was observed after the administration of rFVIIa in five out of six patients (Figure 2), the difference with baseline
34 patients was a second hepatic resection and 26 patients underwent three or more hepatic resections. Usually these operations were performed in connection with infections (44%) or bleeding (27%) in the abdomen. Additionally, these operations were performed due to other reasons.

Values did not reach the level of statistical significance ($P = 0.075$). TEG revealed no signs of fibrinolysis: A_{60} was $< 5\%$ in all patients. Platelet counts and plasma fibrinogen levels did not change significantly in both groups.

Fig 2 Thromboelastography tracings at baseline (left panel) and after the administration of recombinant activated factor FVII (right panel) in six study patients.

In all patients reaction time r, kinetic time or clot formation time k, and α angle significantly improved. Maximal amplitude increased in five out of six patients.

Discussion

This is the first report describing the effects of rFVIIa on coagulation and TEG variables in end-stage liver disease patients undergoing OLT. This data demonstrates that a single bolus injection of rFVIIa improved all measured hemostatic variables except the plasma fibrinogen levels, platelet counts and MA. In advanced liver disease, the levels of all coagulation factors are lowered, except factor VIII 7. Administration of rFVIIa corrected prolonged PT values ($P < 0.028$), as reported from previous studies 46. A prolonged APTT, although not dependent
34 patiënten was een tweede heroperatie noodzakelijk en 26 patiënten ondergingen drie of meer heroperaties. Meestal werden deze operaties uitgevoerd in verband met infecties (44%) of bloedingen (27%) in de buik. Darnaast werden heroperaties verricht omdat er on factor VII, also normalized in all cases ($P = 0.028$), probably due to direct activation of factor X by activated factor VII 8. As expected, plasma fibrinogen levels and platelet counts were not influenced, as reported previously 4-6. Of TEG variables, r, k, and α angle values improved. These changes suggest faster initiating of fibrin formation (r), increased clot stability (k) and faster clot formation (α). MA increased as in other studies 5-6, but this change did not reach the level of statistical significance. Considering the small sample size ($n = 6$), this may be due to a type I error (α), as MA improved in 5/6 patients and even exceeded the upper limit of its normal range in four out of six 6 patients. Since MA increased in almost all our patients while plasma fibrinogen levels and platelet counts remained unchanged, rFVIIa apparently not only influenced the speed of clot formation, but also the properties (i.e. the strength and stability of the formed clot).

The precise working mechanism of rFVIIa remains to be established and so the impact of rFVIIa induced changes of TEG variables. Activated factor VII initiates thrombin formation by its interaction with tissue factor 9. This FVIIa/TF complex activates factor X directly or indirectly via factor IX. In high doses (80 - 100 μg/kg), however, activated FVII also activates factor X in the absence of tissue factor, probably by activation of factor X bound at the surface of activated platelets 10,11. Activator factor X activates prothrombin to thrombin. Thrombin is not only responsible for fibrin formation, but stabilizes fibrin due to cross linking by activation of factor XIII and inhibits fibrinolysis by the thrombin activatable fibrinolytic inhibitor (TAFI) 12. Tissue Factor is normally not exposed to the circulating blood and it is not present in the blood sample used for TEG recording. Coagulation in the TEG cup is initiated by contact activation of factor XI. This may be enforced by rFVIIa, activating platelet bound factor X. The changes of TEG variables after rFVIIa administration can be explained as an accelerated thrombin formation by rFVIIa. Similar changes, found after the administration of FFP and/or platelets, support this assumption. Fibrinolysis was not encountered by TEG neither in the study group, nor in controls.

This study was designed to evaluate the effects of rFVIIa on a number of coagulation parameters and TEG variables rather than clinical effects (i.e. blood loss or transfusion requirements in the setting of liver transplantation). Its design, a comparison of rFVIIa-treated patients with controls who were 1:1 matched for TEG variables, does not allow conclusions
34 patiënten was een tweede heroperatie noodzakelijk en 26 patiënten ondergingen drie of
meer heroperaties. Meestal werden deze operaties uitgevoerd in verband met infecties (44%)
of bloedingen (27%) in de buik. Darnaast werden heroperaties verricht omdat er
about the clinical effects of rFVIIa. These effects were evaluated in a previous, separate
analysis, comparing the same study patients with another control group, 1:2 matched for
clinical and laboratory variables, that were identified as determinants of transfusion
requirements13. These results suggested a beneficial effect of rFVIIa14. Study patients required
less transfusion of red blood cells (median, 3 U versus 9 U; \(P = 0.002 \)) and FFP (median 1 U
versus 8 U; \(P = 0.011 \)) than controls. Although it is attractive to correlate these findings with
those here presented, suggesting a reduction of required transfusion as a result of the observed
improvement of hemostatic variables, we emphasize the need for properly designed studies to
establish these data. This is also true for the potential risk of thrombosis, due to rFVIIa
administration. In particular, the changes of TEG variables (i.e. median values of \(r \) and \(k \)
below, and MA and \(\alpha \) above, their normal ranges) might be interpreted as reflecting a
hypercoagulable state. Thus far, there is, however, no convincing evidence of an increased risk
of thrombosis (or disseminated intravascular coagulation) in patients who received rFVIIa15,
but the contrary can neither be excluded. One should remain aware of this potential risk.
In conclusion, rFVIIa rapidly improved coagulation variables in liver transplant patients,
including prolonged PT and APTT values. Of TEG variables, \(r \) (initiation of fibrin formation)
and \(k \) and \(\alpha \) angle (speed of clot formation) significantly improved. The observed trend of MA
to increase suggests a concomitant effect on the physical properties of the clot, which can only
be detected by TEG. It is probable that these changes result from augmented thrombin
generation. The clinical relevance of the observed effects and relation to blood loss should be
established.

Acknowledgements
The authors are grateful to Ans Hagenaars, Department of Anesthesiology for technical
laboratory assistance, and J. Mark K. H. Wierda, M.D., PhD, Department of Anesthesiology,
University Hospital Groningen, for careful critique of the manuscript.
34 patiënten was een tweede heroperatie noodzakelijk en 26 patiënten ondergingen drie of meer heroperaties. Meestal werden deze operaties uitgevoerd in verband met infecties (44%) of bloedingen (27%) in de buik. Darnaast werden heroperaties verricht omdat er

References
5. Yoshioka A, Nishio K, Shima M. Thrombelastogram as a hemostatic monitor during recombinant factor FVIIa treatment in hemophilia A patients with inhibitor to factor VIII. Hemostasis 1996; 26 (suppl 1): 134-142

-87-
34 patiënten was een tweede heroperatie noodzakelijk en 26 patiënten ondergingen drie of meer heroperaties. Meestal werden deze operaties uitgevoerd in verband met infecties (44%) of bloedingen (27%) in de buik. Darnaast werden heroperaties verricht omdat er

Arterioscler Thromb Vase Biol 2000; 20: 2511-2518

15. Roberts HR. Recombinant factor VIIa (novoSeven®) and the safety of treatment. Semin Haematol 2001; 38 (Suppl 12): 48-50
34 patiënten was een tweede heroperatie noodzakelijk en 26 patiënten ondergingen drie of meer heroperaties. Meestal werden deze operaties uitgevoerd in verband met infecties (44%) of bloedingen (27%) in de buik. Darnaast werden heroperaties verricht omdat er

Chapter 7

Summary