Mandibular overdentures supported by two Branemark, IMZ or ITI implants
Meijer, Henny J.A.; Batenburg, Rutger H.K.; Raghoebhar, Gerry M.; Vissink, Arjan

Published in:
Journal of Clinical Periodontology

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Mandibular overdentures supported by two Brånemark, IMZ or ITI implants: a 5-year prospective study

Abstract
Objectives: The aim of this prospective comparative study was to evaluate the survival rate and the condition of the peri-implant tissues of the IMZ implant system (two-stage cylindertype), the Brånemark implant system (two-stage screwtype) and the ITI implant system (one-stage screwtype) supporting a mandibular overdenture during a 5-year follow-up period.

Material and Methods: Three groups of 30 edentulous patients were treated with two endosseous implants in the interforaminal region of the mandible. Clinical and radiographic parameters were evaluated immediately after completion of the prosthetic treatment and after 1, 2, 3, 4 and 5 years of functional loading.

Results: The five-year survival rate is 98.3% for the IMZ group, 98.3% for the Brånemark group and 100% for the ITI group. Mean scores on indices for plaque, calculus, gingiva and bleeding were very low at all evaluation periods. Mean marginal bone loss over a period of 5 years, was 1.4 mm for the IMZ group, 0.7 mm for the Brånemark group and 0.9 mm for the ITI group.

Conclusion: It is concluded that two implants placed in the interforaminal region, connected with a bar, supply a proper base for the support of a mandibular overdenture in the edentulous patient. After 5 years no clinically relevant and statistically significant radiographic changes had developed between the three implant systems.

Accepted for publication 19 August 2003

Edentulous patients often experience problems with their mandibular full dentures. Lack of stability and retention, together with a decreased chewing ability are the main complaints of these patients (Van Waas 1990). A currently frequently applied treatment possibility is the use of endosseous implants to which an overdenture can be attached. One of the first studies concerning overdentures supported by endosseous implants was published by Van Steenberghhe et al. (1987). Various studies have revealed an implant survival rate of approximately 96% (Batenburg et al. 1998). At present, the results of prospective studies concerning overdentures retained by endosseous implants with a follow-up period of at least 10 years have become available. Buser et al. (1999) reported a 10-year survival rate of 96.2% for implants mainly placed in the anterior region of the mandible. Meringe-Stern et al. (2001) reported a 91.4% 10-year survival rate, and this group comprised not only mandibular overdentures, but also fixed partial dentures and single crowns. Ferrigno et al. (2002) reported a 10-year survival rate of 95.9% of a group treated with overdentures or fixed full-arch bridges. Major prospective studies evaluating one implant system with a follow-up period of at least 5 years specifically about overdentures retained by endosseous implants are Mericske-Stern et al. (1994) with the ITI dental implant system, Jemt et al. (1996) with the Brånemark implants system, Naert et al. (1998) with the Brånemark implants system and Behneke et al. (2002) with the ITI dental implant system. Comparison of implant systems is optimal in a prospective study with predefined inclusion and exclusion criteria (Antczak-Bouckoms 1988, Barnes 1990). Only few studies have been published with two or more different
endosseous implant systems in one prospective study on mandibular overdentures with a follow-up of at least 5 years. Meijer et al. (2000) presented a survival rate of 93% for the IMZ implant system and 86% for the Brånemark implant system after 5 years. In another study by Meijer et al. (2001), the 6-year results were presented for the IMZ implant system and the Brånemark implant systems, being 97.5% and 97.1%, respectively. Five-year results of a prospective study comparing a one-stage implant system with a two-stage implant system has never been published. The aim of this prospective comparative study was to evaluate the survival rate and the condition of the peri-implant tissues of the IMZ implant system (two-stage cylindertype), the Brånemark implant system (two-stage screwtype) and the ITI implant system (one-stage screwtype) supporting a mandibular overdenture during a 5-year follow-up period.

Materials and Methods

Patient selection and treatment

For this study, patients with severely resorbed mandibles were selected. All patients had persistent problems with conventional complete dentures due to reduced stability and insufficient retention of their mandibular denture. The patients were informed about the treatment options and possible risks. Informed consent was obtained from all participants. The study was approved by the hospital medical ethical committee. Inclusion criteria for the clinical trial were an edentulous period of at least 2 years and severe resorption of the mandible, being class V–VI according to the Cawood & Howell (1988) classification. Patients with a history of radiotherapy in the head and neck region or a history of preprosthetic surgery or previous implant placement were excluded. Allocation to one of the treatment options was done by means of 90 envelopes, which contained a note about their mandibular overdenture during a 5-year follow-up period.

Clinical analysis

The clinical analysis included a number of parameters. Loss of implants was scored after removal of a loose implant any time after placement. For presence of plaque, the index according to Mombelli et al. (1987) was used (score 0: no detection of plaque; score 1: plaque can be detected by running a probe across the smooth marginal surface of the implant; score 2: plaque can be seen by the naked eye; score 3: abundance amount of plaque). The presence of calculus (score 1) or the absence of calculus (score 0) was scored. To qualify the degree of peri-implant inflammation, the modified Löe & Silness (1963) index was used (score 0: normal peri-implant mucosa; score 1: mild inflammation, slight change in colour, slight edema; score 2: moderate inflammation, redness, edema and glazing; score 3: severe inflammation, marked redness and edema, ulceration). For bleeding, the bleeding index according to Mombelli et al. (1987) was used (score 0: no bleeding when using a periodontal probe; score 1: isolated bleeding spots visible; score 2: a confluent red line of blood along the mucosal margin; score 3: heavy or profuse bleeding). Probing depth was measured at four sites of each implant (mesially, labially, distally, lingually) by using a periodontal probe (Merit B, Hu Friedy, Chicago, USA) after removal of the bar; the distance between the marginal border of the mucosa and the tip of the periodontal probe was scored as the probing depth.

Radiographic analysis

Standardized intra-oral radiographs of each implant were obtained using a beam direction device as described by Meijer et al. (1992). Analysis was done with a digital sliding gauge (Helios digit E 2056, Schneider & Kern, Niedernhall, Germany). Two-point measurements were made along the implant axis from a fixed reference point to the level of bone (Meijer et al. 1993). Measurement was performed mesially and distally of each implant. Bias was prevented by the fact that there was no sequence in

| Table 1. Characteristics of the groups at the baseline of the study |
|---------------------|---------------------|---------------------|
| | IMZ group | Brå group | ITI group |
| | (n = 30) | (n = 30) | (n = 30) |
| Mean age in years (range) | 54.0 (38–77) | 56.6 (35–79) | 52.8 (38–74) |
| Gender; number male/female | 9/21 | 6/24 | 12/18 |
| Mean edentulous period | 21.0 (9.0) | 21.8 (10.5) | 19.6 (9.7) |
| Mean edentulous period | 21.0 (9.0) | 21.8 (10.5) | 19.6 (9.7) |
| Mean mandibular bone height in mm (SD) | 15.8 (2.3) | 15.7 (2.7) | 15.6 (2.5) |
| Mean bone quality (possible score 1–4) | 3.0 | 2.7 | 2.6 |

Note: The table includes characteristics of the groups at the baseline of the study.
measuring the radiographs and measurements were not done per patient. In this way, there was no recollection by the observer what bone loss was in earlier years.

Data analysis

Probing depth was measured at four sites around each implant and bone height measurement was done mesially and distally on the radiograph. It was assumed that the deepest pocket and the largest bone loss would have the most influence on the survival and clinical status of the implant. Therefore, in case of the items probing depth and radiographic bone height the worst score per implant was used as representative. ANOVA was carried out. Differences were tested with the Student's t-test. Analysis was done with SPSS (Statistical Package Social Sciences, version 10.0, SPSS Incorporated, Chicago, IL, USA). In all tests a significance level of 0.05 was chosen.

Results

All patients completed T_0 (evaluation after placement of the overdenture). At T_1 one patient of the ITI group had died. At T_3 two patients of the IMZ group and one patient of the Brånemark group did not attend the evaluation due to sickness and another patient had died in the ITI group. At T_4 three patients of the Brånemark group and two patients of the ITI group did not attend the evaluation due to sickness. At T_5 three patients of the Brånemark group and one patient of the ITI group did not attend the evaluation due to sickness. The assumption was made that not attending the evaluation was independent of the clinical or radiographic state. Of one patient of the Brånemark group and another patient had died in the ITI group. After one year (more bone loss in the IMZ group than in the Brånemark group and the ITI group) and after 4 years (less bone loss in the Brånemark group than in the IMZ group and the ITI group).

Discussion

The 5-year survival rate of implants in this prospective study is 98.3% for the IMZ group, 98.3% for the Brånemark group and 100% for the ITI group. These percentages are comparable to other prospective studies that have reported survival rate of implants supporting an overdenture ranging from 94.5% to 98.8% (Mericske-Stern et al. 1994, Jemt et al. 1996, Naert et al. 1998, Behneke et al. 2002). In a comparative study Meijer et al. (2000) reported a 5-year survival rate of 93% for the IMZ implant system and 86% for the Brånemark implant system. In another comparative study of Meijer et al. (2001), the 6-year results were presented of the IMZ implant system and the Brånemark implant system, being 97.5% and 97.1%, respectively.

Mean indices for plaque, calculus, gingiva and bleeding were very low at all evaluation periods (Table 2). Significant differences between the groups were at T_1 for the gingival index (the Brånemark group had a lower score than the other groups); at T_3 for the bleeding index (the Brånemark group and the ITI group had a lower score than the IMZ group) and at T_4 for the bleeding index (the ITI group had a lower score than the other groups). The mean probing depth (Table 2) was the highest for the IMZ group, followed by the Brånemark group and then by the ITI group with the lowest mean probing depth.

The mean marginal bone loss is listed in Table 3. The mean location of the bone level, measured from the top of the implant (T_0) was 1.80 mm for the IMZ system, 1.86 mm for the Brånemark system and 3.34 mm for the ITI system. Significant differences between the groups were after 1 year (more bone loss in the IMZ group than in the Brånemark group and the ITI group) and after 4 years (less bone loss in the Brånemark group than in the IMZ group and the ITI group).
Mean loss of marginal bone between implant surface around the neck of the IMZ implant. The large standard deviation for the parameter bone loss in the IMZ group indicates that some patients showed significant amounts of bone loss. These patients may be at risk for loss of implants.
From this study, it is concluded that two implants (two-stage IMZ, two-stage Brånemark or one-stage ITI) placed in the interferaminal region, connected with a bar, supply a proper base for the support of a mandibular overdenture in the (Cawood V–VI) edentulous patient. After 5 years no clinically relevant and statistically significant radiographic changes had developed between the three implant systems.

References

Address:
H. J. A. Meijer
Department of Oral and Maxillofacial Surgery and Maxillofacial Prosthodontics
Groningen University Hospital
PO Box 30.001
NL-9700 RB Groningen
The Netherlands
Fax: +31 50 361136
E-mail: h.j.a.meijer@kchir.ag.nl