Hirschsprung disease - genetics and development
Burzynski, Grzegorz Maciej

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
4. References

Barlow A, de Graaff E, Pachnis V. Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron 2003 Dec 4;40(5):905-16

Burns, A. J., and Le Douarin, N. M.
Enteric nervous system development: analysis of the selective developmental potentialities of vagal and sacral neural crest cells using quail-chick chimeras.

Burns AJ, Champeval D, Le Douarin NM.
Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia.
Dev Biol 2000 Mar 1;219(1):30-43

Burns AJ, Douarin NM.
The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system.
Development 1998 Nov;125(21):4335-47

Localizing a putative mutation as the major contributor to the development of sporadic Hirschsprung disease to the RET genomic sequence between the promoter region and exon 2. Eur J Hum Genet 2004 12:604-612

Loss-of-function mutations in SIP1 Smad interacting protein 1 result in a syndromic Hirschsprung disease.

Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschprung disease.
Nat Genet 2002;32:237-244.

Chakravarti, A and Lyonnet S.

Chalazonitis A, D’Autreaux F, Guha U, Pham TD, Faure C, Chen JJ, Roman D, Kan L, Rothman TP, Kessler JA, Gershon MD.
Bone morphogenetic protein-2 and -4 limit the number of enteric neurons but promote development of a TrkC-expressing neurotrophin-3-dependent subset.

Cornell RA, Eisen JS.
Notch in the pathway: the roles of Notch signaling in neural crest development.
Semin Cell Dev Biol 2005 Dec;16(6):663-72
Creuzet S, Couly G, Le Douarin NM.
Patterning the neural crest derivatives during development of the vertebrate head: insights from avian studies.

Davidson B, Goldberg I, Tell L, Vigdorchik S, Baekelandt M, Berner A, Kristensen GB, Reich R, Kopolovic J.
The clinical role of the PEA3 transcription factor in ovarian and breast carcinoma in effusions.

Mutation of the RET ligand, neurturin, supports multigenic inheritance in Hirschsprung disease.

Druckenberg, N., R., and Epstein, M. L.
The pattern of neural crest advance in the cecum and colon.

Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts.

GDNF signalling through the Ret receptor tyrosine kinase.
Nature 1996 Jun 27;381(6585):789-93

Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates.

Edery P, Attie T, Amiel J et al.
Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome).

Mutations of the RET proto-oncogene in Hirschsprung's disease.

Elworthy S, Pinto JP, Pettifer A, Cancela ML, Kelsh RN.
Phox2b function in the enteric nervous system is conserved in zebrafish and is sox10-dependent.
Mech Dev 2005 May;122(5):659-69

A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk.

ENCODE Project Consortium.
The ENCODE (ENCyclopedia Of DNA Elements) Project.

Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EM Jr, Milbrandt J.
GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys.

Epstein, M. L., Mikawa, T., Brown, A. M., and McFarlin, D. R.
Mapping the origin of the avian enteric nervous system with a retroviral marker.
Dev Dyn 1994 201, 236-44.

Ancestral RET haplotype associated with Hirschsprung's disease shows linkage disequilibrium breakpoint at -1249.

Functional haplotypes of the RET proto-oncogene promoter are associated with Hirschsprung disease (HSCR).
Hum Mol Genet 2003 12:3207-3214

Association between c135G/A genotype and RET proto-oncogene germline mutations and phenotype of Hirschsprung's disease.

Fu M, Lui VC, Sham MH, Pachnis V, Tam PK.
Sonic hedgehog regulates the proliferation, differentiation, and migration of enteric neural crest cells in gut.

Fukuda T, Kiuchi K, Takahashi M.
Novel mechanism of regulation of Rac activity and lamellipodia formation by RET tyrosine kinase.
References

Furness, J. B.

Segregation at three loci explains familial and population risk in Hirschsprung disease.
Nat Genet 2002 31:89-93.

Garcia-Barcelo M, Ganster RW, Lui VC, Leon TY, So MT, Lau AM, Fu M, Sham MH, Knight J, Zannini MS, Sham PC, Tam PK.
TTF-1 and RET promoter SNPs: regulation of RET transcription in Hirschsprung’s disease.

Garcia-Castro MI, Marcella C, Bronner-Fraser M.
Ectodermal Wnt function as a neural crest inducer.

Garver KL, Law JC, Garver B.
Hirschsprung disease: a genetic study.

Gershon, M. D., Kirchgessner, A. L. and Wade, P. R.
Functional anatomy of the enteric nervous system. In Physiology of the Gastrointestinal

Goldstein AM, Brewer KC, Doyle AM, Nagy N, Roberts DJ.
BMP signaling is necessary for neural crest cell migration and ganglion formation in the enteric nervous system.

de Graaff, E., Srinivas, S., Kilkenny, C., D'Agati, V., Mankoo, B. S., Costantini, F. and Pachnis, V.
Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis.

Graham A, Begbie J, McGonnell I.
Significance of the cranial neural crest.
Dev Dyn 2004 Jan;229(1):5-13

Grice EA, Rochelle ES, Green ED, Chakravarti A, McCallion AS.
Evaluation of the RET regulatory landscape reveals the biological relevance of a HSCR-implicated enhancer.

A common haplotype at the 5’ end of the RET proto-oncogene underlies genetic susceptibility to HSCR development through reduced gene expression. Hum Mut 2005 25:189-195

Holschneider AM Hirschsprung's congenital megacolon. The concept of physiopathology and therapy Med Welt 1982 Feb 12;33(6):210-3

Kapur RP
Colonization of the murine hindgut by sacral crest-derived neural precursors: experimental support for an evolutionarily conserved model.
Dev Biol 2000 Nov 1;227(1):146-55

Kapur RP, Yost C, Palmiter RD.
A transgenic model for studying development of the enteric nervous system in normal and aganglionic mice.
Development 1992 Sep;116(1):167-75

Kim J, Lo L, Dormand E, Anderson DJ.
SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells.
Neuron 2003 Apr 10;38(1):17-31

Kruger GM, Mosher JT, Tsai YH, Yeager KJ, Iwashita T, Gariepy CE, Morrison SJ.
Temporally distinct requirements for endothelin receptor B in the generation and migration of gut neural crest stem cells.

Kusafuka T, Wang Y, Puri P.
Novel mutations of the endothelin-B receptor gene in isolated patients with Hirschsprung's disease.

LaBonne C, Bronner-Fraser M.
Induction and patterning of the neural crest, a stem cell-like precursor population.

Lang D, Epstein JA.
Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer.

Le Douarin NM, Teillet MA.
The migration of neural crest cells to the wall of the digestive tract in avian embryo.

Le Douarin, N. M., and Teillet, M. A.
Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and of neurectodermal mesenchymal derivatives, using a biological cell marking technique.
Dev Biol 1974 41, 162-84.

Le Douarin, N. M., and Kalcheim, C.
McCallion AS, Stames E, Conlon RA, Chakravarti A.
Phenotype variation in two-locus mouse models of Hirschsprung disease: tissue-specific interaction between Ret and Ednrb.
Proc Natl Acad Sci U S A 2003 Feb 18;100(4):1826-31

Genetic evidence does not support direct regulation of EDNRB by SOX10 in migratory neural crest and the melanocyte lineage.
Mech Dev 2006 Jan 10

Mollaaghababa R, Pavan WJ.
The importance of having your SOX on: role of SOX10 in the development of neural crest-derived melanocytes and glia.
Oncogene 2003 May 19;22(20):3024-34

Renal and neuronal abnormalities in mice lacking GDNF.
Nature 1996 382, 76-79

Natarajan D, Marcos-Gutierrez C, Pachnis V, de Graaff E.
Requirement of signalling by receptor tyrosine kinase RET for the directed migration of enteric nervous system progenitor cells during mammalian embryogenesis.
Development 2002 Nov;129(22):5151-60.

Clinical features of a form of Hirschsprung's disease caused by a novel genetic abnormality.

Newgreen, D., Young, H. M., and Burns, A. J.

Oikawa T.
ETS transcription factors: possible targets for cancer therapy.
Cancer Sci 2004 95:626-633

Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF.
The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives.
Passarge E
The genetics of Hirschsprung's disease. Evidence for heterogeneous etiology and a study of sixty-three families.

Homozygosity for a frequent and weakly penetrant predisposing allele at the RET locus in sporadic Hirschsprung disease.

Ablation of various regions within the avian vagal neural crest has differential effects on ganglion formation in the fore-, mid- and hindgut.
Dev Dyn 1993 196, 183-94.

Pingault V, Bondurand N, Kuhlbrodt K et al. SOX10 mutations in patients with Waardenburg-Hirschsprung disease.

Pomeranz, H. D., Rothman, T. P., and Gershon, M. D.
Colonization of the post-umbilical bowel by cells derived from the sacral neural crest: direct tracing of cell migration using an intercalating probe and a replication-deficient retrovirus.

Mutations of the ret gene in isolated and syndromic Hirschsprung disease in human disclose major and modifier alleles at a single locus.
J Med Genet 2006 Jan 27

Potterf SB, Mollaaghababa R, Hou L, Southard-Smith EM, Hornyak TJ, Arnheiter H, Pavan WJ.
Analysis of SOX10 function in neural crest-derived melanocyte development: SOX10-dependent transcriptional control of dopachrome tautomerase.
Dev Biol 2001 Sep 15;237(2):245-57

Single nucleotide polymorphic alleles in the 5' region of the RET proto-oncogene define a risk haplotype in HSCR.
J Med Genet 2003 40:714-718

Salomon R, Attie T, Pelet A et al. Germline mutations of the RET ligand GDNF are not sufficient to cause Hirschsprung disease.

Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F. and Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret.

Serbedzija, G. N., Burgan, S., Fraser, S. E., and Bronner-Fraser, M.
Vital dye labelling demonstrates a sacral neural crest contribution to the enteric nervous system of chick and mouse embryos.

Frequency of RET mutations in long- and short-segment Hirschsprung disease.

Shepherd, I. T., Pietsch, J., Elworthy, S., Kelsh, R. N., and Raible, D. W.
Roles for GFRalphal receptors in zebrafish enteric nervous system development.

Shin MK, Levorse JM, Ingram RS, Tilghman SM.
The temporal requirement for endothelin receptor-B signalling during neural crest development.
Nature 1999 Dec 2;402(6761):496-501

Shoba T, Dheen ST, Tay SS.
Retinoic acid influences the expression of the neuronal regulatory genes Mash-1 and c-ret in the developing rat heart.

Shoba T, Dheen ST, Tay SS.
Retinoic acid influences Phox2 expression of cardiac ganglionic cells in the developing rat heart.

Sonnenberg-Riethmacher E, Miehe M, Stolt CC, Goerich DE, Wegner M, Riethmacher D.
Development and degeneration of dorsal root ganglia in the absence of the HMG-domain transcription factor Sox10.
Southard-Smith EM, Kos L, Pavan WJ.
Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model.
Nat Genet 1998 Jan;18(1):60-4

Stoller JZ, Epstein JA.
Cardiac neural crest.
Semin Cell Dev Biol 2005 Dec;16(6):704-15

Stolow MA, Shi YB.
Xenopus sonic hedgehog as a potential morphogen during embryogenesis and thyroid hormone-dependent metamorphosis.

Signalling by the RET receptor tyrosine kinase and its role in the development of the mammalian enteric nervous system.
Development 1999 Jun;126(12):2785-97

Taraviras S, Pachnis V.
Development of the mammalian enteric nervous system.

Torfs CP, Christianson RE.
Anomalies in Down syndrome individuals in a large population-based registry.

Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma.
Am J Hum Genet 2004 Apr;74(4):761-4

PHOX2B genotype allows for prediction of tumor risk in congenital central hypoventilation syndrome.
Am J Hum Genet 2005 Mar;76(3):421-6

Villanueva S, Glavic A, Ruiz P, Mayor R.
Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction.
Dev Biol 2002 Jan 15;241(2):289-301

