Large herbivores in space
Cromsigt, Joris Petrus Gerardus Marinus

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
5

Resource partitioning among savanna grazers mediated by local heterogeneity: an experimental approach.

Joris P. G. M. Cromsigt and Han Olff

Ecology, in press

Johan, baba, thanks for your important contribution to our project, while supervising the field team from 2003-2004 and greatly improving the safety situation within the project. It was also good to work with you in your new position as a research technician for Ezemvelo KZN Wildlife in Hluhluwe-iMfolozi Park. I miss the Mr C calls in the office in Hluhluwe...
Abstract

Recent theoretical studies predict that body size-related inter-specific differences in spatial scale of perception and resource use may contribute to coexistence of species that compete for the same class of resources. These studies provide a new theoretical framework for explaining resource partitioning patterns amongst African ungulates that coexist in spatially heterogeneous savanna grasslands. According to these studies different-sized ungulates can coexist because larger species forage at a coarser scale but can tolerate lower quality food, while smaller species need higher quality food but forage at a finer scale. To test this hypothesis in an African savanna, we created an experimental mosaic with variation in grain (spatial detail) and quality of short grass patches and directly observed the visitation of naturally occurring grazers to this mosaic over a 2-year period (total of 903 observation hours). Of the 7 species that visited our experiment warthog, impala, zebra and white rhino visited long enough to allow data analysis. We showed that warthog and impala avoided plots with a finer grain of short grass and that warthog preferred the fertilized above the unfertilized plots. Zebra and White Rhino did not avoid the finer grain plots. Our results suggest that differences in grain and quality of a resource might indeed contribute to partitioning of this resource by savanna ungulates. Although a number of four species is unusually high for an experimental study on resource partitioning amongst naturally occurring savanna ungulates, this number is too low to evaluate the allometric basis of our hypothesis. Our results, however, encourage wider experimental testing of the role of spatial heterogeneity in facilitating the coexistence of potentially competing savanna herbivores.
Small-scale spatial resource partitioning

Introduction

Large African grazers are important both ecologically (Bell 1971, McNaughton 1985, Owen-Smith 1988) and economically (Prins et al. 2000, Gordon et al. 2004) but their diversity and abundance are increasingly threatened by human activities (Prins 1992, Cincotta et al. 2000, Olff et al. 2002). Protected areas often hold a high number of large grazer species that apparently all eat the same grasses while the mechanism of resource partitioning is often unclear (Sinclair 1985). We need more insight in these mechanisms to predict the consequences of increasing ecological isolation of protected areas, and increasing human pressure on unprotected areas. The resource use of African grazers has been intensively studied both theoretically (e.g., Du Toit and Owen-Smith 1989, Illius and Gordon 1992, Gordon and Illius 1996, Arsenault and Owen-Smith 2002) and observationally (e.g., Jarman 1974, Underwood 1983, Voeten and Prins 1999). Using classical niche approaches, these authors conclude that food quality and quantity are the two main niche axes that allow resource partitioning. This is in accordance with the prediction that larger species, having a lower per mass metabolic rate, need large amounts of food but can cope with relatively low food quality, whereas smaller species, with higher per mass metabolic rates, can cope with lower amounts of food but require a relatively high food quality (Coe 1983, Bugalho 1995, Belovsky 1997, Wilmhurst et al. 2000, Olff et al. 2002).

Variation in food quantity has mostly been attributed to variation in the vertical dimension (vegetation height), where different grazers specialize on different heights (Perrin and Brereton 1999, Murray and Illius 2000, Farnsworth et al. 2002). However, variation in food quantity also may arise from variation in horizontal dimensions (patch size). Several studies have shown the impact of vegetation patchiness on herbivore foraging behavior (Wilmhurst et al. 1995, Hester et al. 1999, WallisDeVries et al. 1999, Fryxell et al. 2004) but there are few studies examining the effect of such patchiness on local resource partitioning in diverse herbivore assemblages. Resource partitioning along the quality axis has mostly been studied theoretically (Illius and Gordon 1992, Gordon and Illius 1996, Belovsky 1997) with few experimental tests in the field. The above-mentioned studies on food quantity as well as quality suggest that savanna herbivores can coexist if spatial heterogeneity in food quality and food quantity is implicitly assumed. However, the difficulty in making this spatial component explicit in analytically tractable models so far has restricted the application and experimental test of these insights to further understand grazer coexistence in savannas.

Using principles of fractal geometry, Ritchie and Olff (1999) incorporated spatial heterogeneity and scale into niche dimensions of local food abundance and food quality to explain the coexistence of different-sized species (see also Olff and Ritchie 2001, Haskell et al. 2002, and Ritchie and Olff 2004). They suggested that larger species should perceive and use less spatial detail (coarser grain) of heterogeneously distributed resources. They show theoretically how these
Chapter 5

differences in scale of resource perception combined with variation in patch size and resource quality within patches can explain the coexistence of different-sized species. Within a size hierarchy, species may use resources exclusively in patches that are of too low resource concentration for the next smaller species and meanwhile are too small for the next bigger species. The size-ratio (the relative difference between two species that are next to each other in the size hierarchy), and hence the number of species, will be set by variation in resource availability and the size of these ‘exclusive spatial niches,’ so that populations of all species can be sustained. Based on only the presence of the exclusive spatial niches, this model predicts a minimum number of species that can be sustained without having to understand the outcome of resource competition in the patches that are used jointly by different species. This new explanation for resource partitioning in spatially structured habitats has not yet been tested experimentally.

We designed an experiment in which we manipulated the scale of resolution (grain) and resource quality of patches of short grass and followed the visitation of different grazer species. The experiment was performed in a South African savanna with a complete and diverse large-grazer assemblage. We specifically tested whether scale of resolution and quality can form axes along which large grazers partition resources. Additionally, we tested whether resource partitioning along these axes had an allometric basis as expected by Ritchie and Olff (1999).

Methods

Study area

The study was performed in the Hluhluwe-iMfolozi Park, an 89,665 ha reserve in Kwazulu-Natal, South Africa. Mean annual rainfall varies from 985 mm in high altitude regions to 650 mm in lower areas and mainly falls between October and March. Daily maximum temperatures range from 13 to 35 ºC. The park is inhabited by a complete set of indigenous large herbivores and carnivores (Brooks and MacDonald 1983), including 7 species that have grass as a major component of their diet: white rhino (Ceratotherium simum), African buffalo (Syncerus caffer), plains zebra (Equus burchelli), blue wildebeest (Connochaetes taurinus), waterbuck (Kobus ellipsiprymnus), warthog (Phacochoerus aethiopicus), and impala (Aepyceros melampus).

Experimental design

The experiment was set up in the northern part of the reserve, with a yearly average rainfall of approximately 700-800 mm. Manipulations were performed in an open savanna, dominated by the tall grasses Eragrostis curvula and Panicum maximum with bush encroachment of Dichrostachys cinerea, Acacia spp. and Gymnosporia senegalensis. May 2000 we created an experimental mosaic of different-sized short grass patches in the tall, woody matrix vegetation using a brush cutter and we subsequently maintained the mosaic with a lawn mower at a
height of approximately 5 cm. After about one year the grazing pressure kept the grass at approximately this height and, at that point, we stopped mowing.

We manipulated resource quality and scale of resolution in a basic layout of adjacent 8×8-m treatment plots (Fig. 1). In this set-up the mown short-grass patches represent the resource offered in 8×8-m treatment plots. We created differences in scale of resource resolution by varying the size and number of short grass patches in the 8×8-m plots. As shown in Fig. 1, the amount of short grass and the configuration of short grass patches in an 8×8-m treatment plot are confounded factors. We, therefore, use the term grain aiming at both two factors. If we talk about a plot with coarser grain, this plot has a larger amount of short grass and at the same time the short grass in the plots is less fragmented. Our design included 4 levels of resource grain, varying from fine to coarse grain; i.e. 9 1×1-m (G1), 4 2×2-m (G2), 2 4×4-m (G4), and 1 8×8-m (G8) short grass patches per 8×8-m plot (Fig. 1) Note that the total area short grass increases proportionally between grain levels. The variation in grain of short grass, which we created, corresponded with the range of natural grazing lawn patches that occurred in the area surrounding the experiment at a low density.

To create resource quality differences we applied an artificial slow-release fertilizer to the mown short grass in half of the 8×8-m plots every 3 months for 2 and half years; from June 2000 up to November 2002. With this approach we expected to create a more or less constant nutrient supply. To patches of all grain sizes we applied 12 g N, 3.9 g P, 19.8 g K, 22.1 g Ca and 18.8 g S per m² short grass per year. The nutrient treatments were coded with U (unfertilized) or F (fertilized).

The experimental design resulted in 8 treatment combinations, with, e.g., G4U being the 4×4-m grain, unfertilized patches. Each combination of grain and

Figure 1 - The experimental layout, existing of 8 x 8 meter treatment plots with a combination of two treatments (patch size and fertilizer application). Manipulated patches are shown in black and grey; the shaded background represents the untreated matrix of tall grass and shrubs. Half of the plots were fertilized (black) and the other half remained unfertilized (grey). Within each 8x 8 m plot, we created 4 different levels of spatial scale of short grass patches: 9 patches of 1 x 1m (G1), 4 patches of 2 x 2 m (G2), 2 patches of 4 x 4 meter patches (G4) and 1 patch of 8 x 8 meter (G8).
fertilization was replicated 4 times. This resulted in 32 8×8-m plots that were situated next to each other (Fig. 1) to be able to easily oversee the whole experiment.

Effects of the treatments on the vegetation

In July 2002 we took grass samples to determine leaf nitrogen concentrations. We clipped all aboveground grass material within 5 randomly placed 50×50 cm frames in the short grass subplots of each treatment plot. Before clipping the total aerial vegetation cover (%) was estimated for each frame. Clipped material was dried for 48 hours at 70 ºC. For each sample we measured the total dry weight (DW), the DW of the leaves as a % of total DW, the DW of the stems (%) and the DW of the dead organic matter (% DOM). Subsequently we pooled the 5 dried leaf samples per 8×8-m plot and ground and analyzed each pooled sample for total nitrogen content (as a % of leaf dry weight) according to the Macro-Kjeldahl method (Donkin et al. 1993). In September 2002 we recorded grass species composition in 5 randomly placed 50×50 cm frames in the short grass subplots of each treatment plot. Within each frame the 5 dominant grass species were identified. The species were ranked according to their total cover in the frame, receiving a dominance rank from 1 to 5 (in order of increasing cover).

Animal visitation

The experimental site was situated on a hill slope and, using binoculars, we observed grazer visitation from a car that was standing hidden between trees at the opposite hillside (about 450 m from the experiment) to avoid disturbing the animals. Between October 2000 and November 2002 we observed the experiment 4 times a week in periods of 3 hours (divided over early morning and late afternoon sessions), except in case of bad weather, which made observations impossible. In total we carried out 329 observation periods, resulting in a total of 903 observation hours. During an observation period, we scanned the experimental site for the presence of animals after every 5 minutes. When an animal was present, every minute the position of the animal in the mosaic was recorded according to the grid that is shown in Fig. 1, i.e. per 8×8-m plot. Next to the position we recorded the animal’s behavior (grazing versus non-grazing, e.g., grooming or looking around) and whether individuals were grazing in mown short grass patches versus tall matrix vegetation.

Data analysis

Effect of treatments on the vegetation

Before further analysis, we averaged the dry weight (DW), % vegetation cover and species dominance rank values of the 5 samples that we took per 8×8-m treatment plot. We already had 1 value per treatment plot for %N, because samples were pooled before N analysis. We tested the effects of the treatments on these variables with two-way analyses of variance followed by Student-Newman-Keuls *a posteriori* contrasts.
Effect of fertilizer application on animal visitation

We expressed animal visitation as the total time an individual of a particular species was observed grazing in the short grass subplots of each 8×8-m plot as a percentage of the total observation time (903 h). Besides grazing in the short grass plots, the total observation time existed of time when no animal was observed and when animals exhibited non-grazing behavior or grazed in the matrix vegetation. We did not identify individuals; i.e. 20 minutes of grazing within the experimental area could consist of the same individual grazing 20 minutes, or two individuals grazing together for 10 minutes.

We first tested for an effect of fertilizer application and grain on animal visitation with an analysis of variance, followed by Student-Newmann-Keuls contrasts. As mentioned, 8×8-m plots with a coarser grain also have a larger total area short grass. Randomly distributed grazing animals (without preference for a particular grain) would be expected to graze longer in plots with a coarser grain. Therefore, this statistical design permits us to study the effect of fertilizer application, and possible interactions with grain level, rather than testing a preference for finer or coarser grain.

Animal preference for plots with finer or coarser grain

To analyze whether animals preferred a finer or coarser resource grain, corrected for the total area short grass available in each grain level, we performed a scaling analysis. This scaling analysis is based on the proportional increase of total area short grass between grain levels. We introduce a scaling exponent γ that represents the preference of a certain species for a finer or coarser grain by exploring whether the percentage of total time observed grazing in an 8×8-m plot (Q) scaled with total area short grass (A) in that 8×8-m plot as $Q = c \times A^\gamma$. If γ is equal to 1 then Q increases proportionally with A, meaning that the species does not clearly prefer a finer or coarser grain (e.g., a two-fold increase in area short grass in an 8×8-m plot leads to a two-fold increase in grazing time). If γ is different from 1 the species displays a disproportionate preference for coarser ($\gamma > 1$), or finer ($\gamma < 1$) grain of short grass patches, where the value of γ represents the magnitude of preference or avoidance.

We first calculated Q as the average % grazing time for each treatment combination ($n = 4$). We estimated γ for each of the grazer species, based on these 8 average grazing time values, as the slope of the linear regression of $\log(Q)$ over $\log(A)$. In addition to the fit of the regression (R^2 and level of significance), we also estimated the 97.5 confidence intervals for γ to indicate whether γ is likely to differ from 1 ($\alpha = 0.05$).

Influence of context of treatment plots on plot selection

In the previous analysis we analyzed animal preference for resource grain on the 8×8-m plot level. The advantage of this analysis was that the grazing time for each grain level was the result of an average of 4 replicates. This analysis, however, did not account for the different context that surrounded each replicate (see Fig. 1, e.g. plot A1 (treatment G8F) was surrounded by matrix, two G2 plots and 1 G1 plot,
while plot E2 (also G8F) is surrounded by 2 G8, 1 G4, 3 G2 and 2 G1 plots and no matrix). We performed another analysis to test whether the context of a treatment plot influenced the selection of that plot. We divided the experiment in a 1x1-m grid and for each grid cell we calculated the proportion of nearby cells with short grass \(p_l \) for different window lengths \(l \) around that cell (3, 5, 7, 9, 11, 13, 15, 17 and 19 m). We used this range of window lengths to vary the context of each treatment plot because beforehand we did not know the size of the context that would influence the selection of an animal of a certain plot. To calculate an average short grass context for each 8x8-m treatment plot, we averaged the 64 values of \(p_l \) for each 8x8-m plot and each window length. Per window length, we sorted the 32 8x8-m plots by increasing average \(p_l \) value and then aggregated the 32 values into 8 classes calculating an average % grazing time and average \(p_l \) per class. Based on these 8 averages, we estimated \(\gamma \) as the \(B \) coefficient from a linear regression of log(Q) over log(\(p_l \)) and provided 97.5 confidence intervals for \(\gamma \) to indicate whether \(\gamma \) significantly deviated from 1 (\(\alpha = 0.05 \)). We performed these regressions for all 4 species for all 9 window sizes \(l \).

Table 1

The effect of fertilizer application and grain of short grass patches on properties of the above-ground grass biomass. DW = total aboveground dry weight (g per 0.25 m²); % Leaf, Stem, DOM = % dry weight leaves, stems or dead organic matter of total dry weight; L/S = leaf - stem ratio (% Leaf / % Stem); Leaf N = N content of the leaves as a % of leaf dry weight; Cover = % of 0.25 m² that is covered by vegetation (aerial cover). The results are based on samples that were clipped in July 2002. The table shows the means (n=4), different superscript letters indicate a significant difference within a variable between treatments (\(P < 0.05 \), Student-Newman-Keuls test after two-way analysis of variance). There were no significant interactions between treatments.

<table>
<thead>
<tr>
<th>Grain</th>
<th>Fertilization</th>
<th>DW (g)</th>
<th>% Leaf</th>
<th>% Stem</th>
<th>% DOM</th>
<th>L/S</th>
<th>Leaf N (%)</th>
<th>Cover (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Fertilized</td>
<td>3.32a</td>
<td>39a</td>
<td>12a</td>
<td>49a</td>
<td>4.43a</td>
<td>2.33a</td>
<td>15.50a</td>
</tr>
<tr>
<td>G2</td>
<td>Fertilized</td>
<td>4.13ac</td>
<td>49a</td>
<td>14a</td>
<td>37a</td>
<td>4.65a</td>
<td>2.78a</td>
<td>27.00b</td>
</tr>
<tr>
<td>G4</td>
<td>Fertilized</td>
<td>4.19a</td>
<td>41a</td>
<td>16a</td>
<td>43a</td>
<td>3.25a</td>
<td>2.42a</td>
<td>38.50c</td>
</tr>
<tr>
<td>G8</td>
<td>Fertilized</td>
<td>5.04a</td>
<td>43a</td>
<td>18a</td>
<td>39a</td>
<td>2.92a</td>
<td>2.84a</td>
<td>43.50c</td>
</tr>
<tr>
<td>G1</td>
<td>Unfertilized</td>
<td>4.50b</td>
<td>30b</td>
<td>11b</td>
<td>58b</td>
<td>3.58a</td>
<td>2.00b</td>
<td>16.50a</td>
</tr>
<tr>
<td>G2</td>
<td>Unfertilized</td>
<td>8.58cd</td>
<td>32b</td>
<td>15b</td>
<td>53b</td>
<td>2.45b</td>
<td>2.29b</td>
<td>27.50b</td>
</tr>
<tr>
<td>G4</td>
<td>Unfertilized</td>
<td>10.43d</td>
<td>26b</td>
<td>12a</td>
<td>61b</td>
<td>2.96b</td>
<td>2.06b</td>
<td>46.50c</td>
</tr>
<tr>
<td>G8</td>
<td>Unfertilized</td>
<td>10.43d</td>
<td>29b</td>
<td>10a</td>
<td>61b</td>
<td>3.63a</td>
<td>2.01b</td>
<td>51.75c</td>
</tr>
</tbody>
</table>

Results

Effect of treatments on the vegetation

The 5 most abundant grass species in the short grass subplots towards the end of the experiment were (with their average dominance rank): *Eragrostis curvula* (4.0), *Eragrostis superba* (3.7), *Urochloa mosambicensis* (1.3), *Panicum maximum* (1.1) and *Digitaria longiflora* (1.0). Four other additional grass species were found with lower abundances: *Themeda triandra*, *Bothriochloa insculpta*, *Heteropogon contortus* and *Sporobolus pyramidalis*. The vegetation composition
in terms of dominant grass species did not differ among treatments ($P > 0.05$). As mentioned in Methods the surrounding matrix was dominated by the grasses *Eragrostis curvula* and *Panicum maximum*.

The percentage total cover of the vegetation was significantly higher in the G8 and G4 plots than in the G2 plots and higher in G2 than in G1 ($F_{3, 24} = 21.5, P < 0.01$, Table 1). The total aboveground dry weight in the G1 treatment was lower than in G4 and G8, while G2 had an intermediate weight ($F_{3, 24} = 3.3, P < 0.05$, Table 1). Fertilizer application reduced the aboveground total dry weight ($F_{1, 24} = 20.8, P < 0.01$) and the % dead organic matter ($F_{1, 24} = 36.3, P < 0.01$, Table 1), probably due to higher grazing pressure. The percentage leaves of total biomass ($F_{1, 24} = 40.1, P < 0.01$) and the nitrogen concentration of the leaves ($F_{1, 24} = 5.7, P < 0.05$) was higher in the fertilized plots than in the unfertilized plots (Table 1). The percentage stems of total biomass and the leaf/stem ratio did not differ between grain size and fertilizer application treatments (Table 1).

Animal visitation

During our observations, the experiment was visited by all grazer species present in the reserve. Buffalo, waterbuck and wildebeest, however, were observed grazing for only a low number of minutes (less than 20 minutes). Impala, warthog, white rhino and zebra where observed grazing long enough to allow statistical analysis: 1798, 2737, 105 and 674 minutes (no. of individuals × time observed) respectively.

![Figure 2](image)

Figure 2 - Mean percentage (± 1 s.d.) of the time grazed by four grazer species of the total observation time in the 8×8 meter plots, for different levels of grain of short grass patches (see Fig. 1) and fertilizer application treatment. Different letters indicate a significant difference between treatments ($P < 0.05$, Student-Newman-Keuls test after two-way analysis of variance).
Effect of fertilizer application on animal visitation

Impala, zebra and white rhino visited the fertilized plots as long as the unfertilized plots ($F_{1,24} = 0.173, P = 0.681; F_{1,24} < 0.001, P = 0.987; F_{1,24} = 2.737, P = 0.111$, respectively). All three species visited the plots with the coarsest grain (G8) more than the other grain levels ($F_{3, 24} = 16.892, P < 0.001; F_{3, 24} = 5.329, P = 0.006; F_{3, 24} = 12.326, P < 0.001$, respectively). Fertilizer application positively influenced warthog visitation, but this effect depended on grain level (interaction fertilization × grain, $F_{3, 24} = 35.622, P < 0.001$). Warthog visited the fertilized plots more than the unfertilized plots but only for the plots with coarser grain, G4 and G8 (Fig. 2A). Data in Fig. 2 show the visitation of the 8x8 treatment plots uncorrected for the differences between the treatments in the total area of short grass (which was however the same for the fertilizer application treatments).

Animal preference for plots with finer or coarser grain

Fig. 3 shows the preference of species for a finer or coarser grain, corrected for the total area of short grass per grain level. Warthog disproportionately avoided

Figure 3 - Scaling of the percentage of time grazed with the total area of short grass per treatment plot on a log-log axis. The symbols represent average % of time grazed ($n = 4$) for eight treatment combinations; 4 levels of total area short grass per 8x8-m plot (9, 16, 32 and 64 m2) times 2 fertilization levels (solid dots show the fertilized plots and open dots represent the unfertilized plots). The slope, γ, of the regression through the 8 points captures the preference or avoidance of each species for the grain (spatial detail) of area of short grass. When γ is different from 1 the species has a disproportionate preference for a coarser ($\gamma > 1$), or finer ($\gamma < 1$) grain. The line represents the situation of no disproportionate preference with a γ of 1. The results of the regressions for the different species are as follows (within brackets is the 97.5% confidence interval of γ), warthog: $\gamma = 2.8$ (1.3-4.3), $R^2 = 0.84, P = 0.001$; impala: $\gamma = 1.2$ (0.78-1.69), $R^2 = 0.91, P = 0.000$; zebra: $\gamma = 0.7$ (0.18-1.26), $R^2 = 0.72, P = 0.008$; white rhino: $\gamma = 1.4$ (0.34-2.43), $R^2 = 0.72, P = 0.008$.
finer grain mosaics ($\gamma = 2.8$ with lower confidence interval > 1). The slope of $\gamma > 1$ implies that the warthog’s visitation of smaller patches declined faster than expected from the decline in area of short grass in these 8x8-m plots (Fig. 3). This decline is faster in the fertilized plots than in the unfertilized plots (analysis of covariance with area short grass as a covariate, interaction fertilization x area short grass; $F_{1, 28} = 104.375$, $P < 0.001$). The decline in visitation by impala, zebra and white rhino towards finer grain was not significantly different as expected from the decline in the area of short grass towards these treatments (γ not different from 1, Fig. 3).

Influence of context of treatment plots on plot selection

The R^2 of the regression of log % of time grazed (Q) of the 4 species over log proportion of short grass in neighboring cells (p_l) in a window around a 1x1-m cell declined for warthog, impala and white rhino with increasing window length l (Fig. 4).

![Figure 4 - Explained variation (R^2) of regressions of % of time grazed versus the proportion of grass in nearby cells around each 1x1-m cell, for a range of window sizes (3-19 m), reflecting different scales of resource perception. Results are shown for warthog (solid dots), impala (open triangles), zebra (solid triangles), and white rhino (open dots). The arrows show the scale of perception (window size) for the 4 species that had the best fitting regression. The results of these best fits are as follows (within brackets is the 97.5% confidence interval of γ), warthog: $\gamma = 3.5$ (1.8-5.1), $R^2 = 0.86$, $P = 0.0008$; impala: $\gamma = 2.1$ (1.2-2.9), $R^2 = 0.89$, $P = 0.0004$; zebra: $\gamma = 1.2$ (0.3-2.2), $R^2 = 0.70$, $P = 0.0094$; white rhino: $\gamma = 1.8$ (0.6-3.1), $R^2 = 0.76$, $P = 0.0048$.](image-url)
The proportion of short grass in window of lengths > 14 m did not explain further spatial variation in visitation of these three species, as the fit of the regressions steeply declined beyond this scale and were not significant. With window size smaller than 14 m, the fit for warthog and impala did not change much, while the fit for white rhino kept improving. For zebra, only the proportion of short grass within window lengths of 9 m contributed significantly to explaining the spatial variation in visitation, and regressions at the other scales were not significant (Fig. 4). Thus the approximate spatial scale at which the % of time grazed correlated best with proportion of grass in neighboring cells declined from zebra, to warthog and impala, to white rhino. The analysis in Fig. 4 also showed that for the regression with the best fit (with \(l = 5 \)) impala disproportionately avoided finer grain mosaics (\(\gamma = 2.1 \) with lower confidence interval > 1).

Discussion

Our results showed that differences in resource concentration and grain of experimentally manipulated short grass patches might create opportunities for spatial resource partitioning between different grazer species. In contrast to the other species, warthog preferred the plots with a coarser grain of short grass, especially if these plots were fertilized (Fig. 2 and 3). Fertilization of the plots increased N content of the leaves and proportion of leaves of above-ground dry weight and reduced the proportion of grass dead standing biomass. When we included the context of treatment plots in our analysis impala visitation per m² of short grass, like that of warthog, decreased towards finer grain mosaics (Fig. 4). Zebra and white rhino maintained a constant visitation per unit area of short grass, despite a finer resource grain with and without including the context of treatment plots in our analysis (Fig. 2 and 4). Our results also suggested that the extent of the context that influenced plot selection differed between species. This extent declined from zebra, warthog and impala to white rhino (Fig. 4). This suggests that the largest herbivore species had the finest scale of resource selection.

With our experimental study in a natural environment we chose a site-centered approach to studying resource partitioning among naturally occurring grazers. This time-demanding approach has been rarely used and has the advantage of directly observing individuals of species that come from the same local grazer assemblage pool and that can select from the same available resource patches during the same time period. Most studies on resource partitioning amongst African ungulates have been animal-centered studying animal food preferences only on those random locations where a certain herbivore is seen (e.g., Underwood 1983, Voeten and Prins 1999) and, therefore, often have the problem that species comparisons have to be based on data that originate from different sites and sometimes different time periods, potentially leading to spurious correlations. The few studies that did choose a site-based experimental approach generally had a focus on individual foraging behavior instead of community ecology, therefore including only 1 or 2 species (e.g., Wilmshurst et al. 1995, Wallis
de Vries et al. 1999), making it difficult to use their results to discuss general
resource partitioning mechanisms.

As mentioned in Methods the amount and the configuration of short grass
patches are confounded factors in our experimental design. One could argue that
these factors should be tested separately in a factorial design. However, a design
where we would keep the amount constant and vary the configuration has other
major disadvantages. In such a design the spatial extent of the treatment plots
would not be the same (e.g. we would get an 8×8-m treatment plot for the coarsest
grain of 164 m² short grass patch and a 17×17-m treatment plot for the finest grain
with 64 1 m² short grass patches). First of all, using this design the whole
experimental area would become too large to oversee at one glance, making it
practically impossible to directly observe animals. Secondly, a significant increase
of the total experimental area would have implications for the amount of
underlying heterogeneity that is covered by the study; e.g. the natural underlying
variation in soil fertility. Different-sized treatment plots would vary in the cover of
this underlying heterogeneity, where it would be larger in the larger treatment plots
than in the smaller plots. Therefore, we chose for a design where we kept treatment
plot size constant and proportionally increased the total area short grass between
grain levels so that we could use a scaling analysis to test preference for grain level.

Our results did not confirm the central hypothesis of Ritchie and Olff
(1999) that larger herbivore species sample resources at a coarser resolution than
smaller species. After all, in our study the smaller species, warthog and impala,
selected for coarser grain plots. However, there are several reasons why we can also
not refute their hypothesis, such as the limited number of species in our analysis,
the scale of our experiment and confounding factors such as the influence of group
size and predator avoidance behavior.

The fact that we could only analyze a limited number of four species makes
it difficult to test the allometric nature of the hypothesis of Ritchie and Olff (1999).
This is a generally recognized problem with experimental tests of macro-ecological
theories, where autecological differences overrule the general macro-ecological
patterns in a limited set of species. We, however, want to emphasize that the
number of four species in itself is not a low number for an experimental test of
resource partitioning amongst savanna ungulates. As discussed earlier there are
hardly any site-centered studies that experimentally test resource partitioning
patterns that include more that one or two species.

Ritchie and Olff (1999) did not explicitly state the relevant range of scales
over which they might expect the allometric scaling to occur for different groups of
species. Whether the theory holds across other scales is still open for debate and
empirical testing. We chose to test their model at the scale of resource patches
varying in size from 1 to 64 square meters. The allometric relation might, however,
become apparent at larger scales, where larger species are more abundant in
landscapes that are dominated by large (several hectares) high quality resource
patches (such as post-burn grasslands or fertile floodplains), while smaller species
are more prevalent in landscapes that are characterized by a high proportion of small high quality resource patches (e.g. related to trees that locally enhance nutrient availability, Ludwig et al. 2004). On the other hand, the allometric scaling hypothesis might also work on scales smaller than our experiment within a food patch, where smaller grazers select for high quality parts within a plant and larger grazers forage on the whole or a bunch of plants (hereby increasing quantity but decreasing quality of a bite). The original hypothesis, therefore, has to be more widely explored on other scales and locations before we can reject it. The challenge will be to develop appropriate observational and experimental studies on these other scales.

Next to the mentioned issues of scale and number of species there are some confounding factors that hamper the analysis of our results in the light of the allometric hypothesis, i.e. the role of group size and predator avoidance. Hester et al. (1999) suggested that the use of resource patchiness by herbivores relates to their social group size, where an increased group size limits utilization of smaller patches. In their study, solitary sheep chose smaller patches than red deer that foraged in small groups. In our study 100% of the rhino observations existed of individual animals in contrast with around 60% for the other 3 species. The average group size of the 4 species in Hluhluwe-iMfolozi GR exists of 2.3 individuals for warthog, 2.0 for white rhino, 4.1 for zebra and, 8.1 for impala (unpublished data, Ezemvelo KZN Wildlife). Multiplying these average group sizes with an estimate for individual daily energy expenditure (DEE) as two times basal metabolic rate:

\[
\text{DEE} = 2 \times 70 \times (\text{body mass})^{0.75} \times 0.004184 \text{ MJ day}^{-1} \text{ (Demment and Van Soest 1985)}
\]

we come to a ranking in increasing order of the estimated DEE of an average group of each species (MJ day\(^{-1}\)): warthog (36), impala (96), zebra (148) and white rhino (390). Based on this ranking we would expect warthog to select finer grain resources compared with the other species, however in our study warthog selected coarser grain. However, reflecting back on issues of scale, our largest plots might already be too small for the species with the higher DEE of an average group size. This might also explain why buffalo hardly visited the experiment (with a high estimated value of 596 MJ day\(^{-1}\)). In conclusion group size differences between species might be very important and should be taken into account in future tests of the allometric hypothesis.

Another factor that might confound the testing of the Ritchie and Olff (1999) hypothesis is that not only the partitioning of food resources but also predation can shape African ungulate communities (Sinclair 1985). Sinclair et al. (2003) showed that smaller herbivore species in the Serengeti encounter greater predation risk than larger herbivores. Moreover, Sinclair et al. (2003) suggested a threshold body weight of 150 kg marking a transition from predator-limited to resource-limited population dynamics. Following this argument, warthog and impala would be more limited by predation than food availability. Other studies have suggested that a higher predation risk stimulates animals to choose more open areas (Underwood 1982). This would suggest that our coarser experimental
plots could be perceived as safer (better view) and may explain the preference of warthog and impala (Fig. 3 and 4) for the coarser resource mosaics. Moreover, note that the species that avoids finer grain most strongly, warthog, is also the smallest of the 4 species. In contrast with the other 3 species it was more difficult for warthog to look over the tall vegetation surrounding the short grass patches. Thus, warthog might have selected for the coarser grain plots as a predator avoidance strategy.

As discussed there are still some significant hurdles that we have to take while experimentally testing the suggested allometric basis of resource partitioning in spatially heterogeneous savannas. But we think that our study is an important first step in dealing with some of these problems. Moreover, we present some of the first experimentally based results that suggest that differences in grain of short grass patches might create opportunities to partition resources amongst savanna ungulates. We showed that warthog and impala preferred coarser grain of short grass patches, while Zebra and White Rhino had no preference for the level of grain. These results seem to justify the increasing focus on the role of spatial heterogeneity in savanna systems (Du Toit et al 2003) which is needed to advance the further understanding of the coexistence and diversity patterns of African ungulate species.

Acknowledgements

We would first of all like to thank the many people that helped collecting the data for this study; X. Mthiyane, N. Mbatha and K. Mpanza, G. Lagendijk, J. Kusters, L. Feddema, R. Turk, S. Beuker, M. Hoekstra, P. Jacobs, F. Hengeveld, M. Harteveld, S. Wessels, L. Holtjer, A. van Zwol, V. Fuld, J. Reinders, M. te Beest and E. Folmer. Without all of them we wouldn’t have got such an impressive amount of observation hours. Secondly we thank the management and research staff of HiP to allow us to manipulate a small part of natural savanna and for their logistic support; specifically D. Balfour, O. Howison, S. van Rensburg, S. Nxumalo, J. Ngubane and D. Robertson. Emile Apol is thanked for his valuable contribution to the data analysis. Furthermore, we thank M. Boyce, N. Owen-Smith, J. M. Fryxell and two anonymous reviewers for their valuable comments on earlier versions of the manuscript. We thank the ‘Dungbeetle’ research community in Hluhluwe-iMfolozi for making this reserve such an inspirational working place. This study has been financially supported by NWO-WOTRO (grant no. W84-501 and ALWPIONIER grant 833.02.001 to HO). We dedicate this paper to the memory of Xolani Mthiyane, who had an important role in the establishment and data collection of this experiment, but unfortunately passed away in a tragic accident in 2004.