

University of Groningen

Ion induced radiation damage on the molecular level

Alvarado Chacon, Fresia

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date:

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Alvarado Chacon, F. (2007). Ion induced radiation damage on the molecular level. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 19-07-2025

Atomic units and conversion factors

The atomic units (a.u.) originate from the typical dimensions of the hydrogen atom. The length is the classical Bohr radius a_0 of the ground state electron, the velocity αc is the classical velocity of the electron in the ground state of hydrogen, and the time is the ratio of the length and velocity. The charge in atomic units is the charge of the electron, the mass is the mass of the electron and the energy is the sum of the kinetic and the potential energy of the hydrogen 1s electron, 2×13.6 eV. An overview of the most important quantities is given in the following table 1. The atomic unit system is based on the following definition:

$$\hbar = m_e = e = 4\pi\varepsilon_0 = 1,\tag{1}$$

where \hbar is Planck's constant divided by 2π , m_e and -e are the mass and the charge of the electron, respectively, and ε_0 the permittivity of free space.

Throughout this thesis both the projectile velocity in a.u. and its kinetic energy in keV/amu are used. For non-relativistic collision energies the relation between them is given by:

$$v (a.u.) = 0.20\sqrt{E(\text{keV/amu})}$$
 (2)

Some conversion factors of interest are given in table 2 in the backside of this page.

length	a_0	5.292×10^{-11}	m
time	$a_0/\alpha c$	2.419×10^{-17}	s
velocity	αc	2.188×10^{6}	m/s
mass	m_e	9.109×10^{-31}	kg
charge	e	1.602×10^{-19}	С
energy	$m_e(\alpha c)^2$	4.359×10^{-18}	J
angular momentum	ħ	1.054×10^{-34}	J s

Table 1: Atomic units

 Table 2: Conversion factors

1 amu	1.660×10^{-27}	kg
	1822.888	m_e
1 a.u.	27.2116	eV
energy	627.5095	kcal/mol
1 cal	4.184	J