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Abstract— Using concepts from switched adaptive control
theory, provably correct solution is given to the three land-
mark station keeping problem in the plane in which range
measurements are the only sensed signals upon which station
keeping is to be based. The performance of the resulting system
degrades gracefully in the face of measurement and miss-
alignment errors, provided the measurement errors are not too
large.

I. INTRODUCTION

“Station keeping” is a term from orbital mechanics which

refers to the “practice of maintaining the orbital position of

satellites in geostationary orbit” {Wikipedia}. In this paper

we take station keeping to mean the practice of keeping a

mobile autonomous agent in a prescribed position in the

plane which is determined by prescribed distances from

two or more landmarks. We refer to these landmarks as

neighboring agents because we envision solutions to the

station keeping problem as potential solutions to multi-

agent formation maintenance problems. We are particularly

interested in solutions to the station keeping problem in

which the only signals available to the agent whose position

is to be maintained, are noisy range measurements from its

neighbors1.

The station keeping problem is closely related to the Si-

multaneous Localization and Mapping (SLAM) problem [1],

[2]. SLAM is the process of building a map of an unknown

environment by using mobile robots’ sensed information and

simultaneously estimating those robots’ locations by using

this map. The station keeping problem can be cast as a

SLAM problem in which the map describes the positions

of the landmarks and the autonomous agent is the robot

to be localized. There are several approaches to address

the SLAM problem, such as those based on Kalman filters

[3], [4] and those using sequential Monte Carlo techniques

[5]. Kalman filtering based methods can only be applied to

linearized observation models with the assumption that the

measurement errors are Gaussian. Sequential Monte Carlo

based methods use nonlinear observation models and do not

require suitable probabilistic models for measurement noises,

but do require large numbers of samples; typically such

methods are computationally difficult to implement. There

are also several interesting and new set-based techniques

This research was supported by the National Science Foundation, the US
Army Research Office, and by a gift from the Xerox Corporation.

1We are indebted to B. D. O. Anderson for making us aware of this
problem.

addressed to the range-only SLAM problem [6], [7], but

these have not been validated mathematically.

Our approach to station keeping is novel in that we treat

station keeping as a problem in switched adaptive control.

In Section 2 we formulate the station keeping problem

of interest. Error models appropriate to the solution to

the problem are developed in Section 3. In Section 4 we

present a switched adaptive control system which solves the

three neighbor station keeping problem. Agent positioning

in the absence of errors occurs exponentially fast while

performance degrades gracefully in the face of measurement

and miss-alignment errors, provided the measurement errors

are not too large. In Section 5 we sketch the ideas upon which

these claims are based. Finally in Section 6, we discuss

possible approaches to an implementation issue which arises

because the underlying parameter space appropriate to the

problem is not typically convex.

II. FORMULATION

Let n > 1 be an integer. The system of interest consists

of n + 1 points in the plane labelled 0, 1, 2, . . . , n which

will be referred to as agents. Let x0, x1, . . . , xn denote the

coordinate vector of current positions of agents 0, 1, 2, . . . n

respectively with respect to a common frame of reference.

Assume that the formation is supposed to come to rest and

moreover that agents 1, 2, 3, . . . , n are already at their proper

positions in the formation and are at rest. Thus

ẋi = 0, i ∈ {1, 2, 3, . . . , n} (1)

We further assume that the nominal model for how agent 0
moves is a kinematic point model of the form

ẋ0 = u (2)

where u is an open loop control taking values in IR2.

Suppose that agent 0 can sense its distances

y1, y2, y3, . . . , yn from neighboring agents 1, 2, 3, . . . , n

with uniformly bounded, additive errors ǫ1, ǫ2, . . . , ǫn

respectively. Thus

yi = ||xi − x0|| + ǫi, i ∈ {1, 2, . . . , n} (3)

Suppose in addition that agent 0 is given a set of non-negative

numbers d1, d2, . . . , dn, where di represents a desired dis-

tance from agent 0 to agent i. The problem is to devise a

control law depending on the di and the yi which, were the

ǫi all zero, would cause agent 0 to move to a position in

the formation which, for i ∈ {1, 2, . . . , n}, is di units from
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agent i. We call this the n neighbor station keeping problem.

We shall also require the controllers we devise to guarantee

that errors between the yi and their desired values eventually

become small if the measurement errors are all small.

Let x∗ denote the target position to which agent 0 would

have to move were the station keeping problem solvable.

Then x∗ would have to satisfy

di = ||xi − x∗||, i ∈ {1, 2, . . . , n} (4)

There are two cases to consider:

1) If n = 2, there will be two solutions x∗ to (4) if |d1 −
d2| < ||x1 − x2|| < d1 + d2 and no solutions if either

|d1 − d2| > ||x1 − x2|| or ||x1 − x2|| > d1 + d2.

We will assume that two solutions exist and that the

target position is the one closest to the initial position

of agent zero.

2) If n ≥ 3, there will exist a solution x∗ to (4) only if

agents 1 through n are aligned in such a way so that

the circles centered at the xi of radii di all intersect

at at least one point. If the xi are so aligned and at

least three xi are not collinear, then x∗ is even unique.

Such alignments are of course exceptional. To account

for the more realistic situation when points are out of

alignment, we will assume instead of (4), that there is

a value of x∗ for which

di = ||x∗ − xi|| + ǭi, i ∈ {1, 2, . . . , n} (5)

where each ǭi is a small miss-alignment error.

Our specific control objective can now be stated. Devise a

feedback control for agent 0, using the di and measurements

yi, which bounds the induced L2 gains from each ǫi and

each ǭi to each of the errors

ei = y2
i − d2

i , i ∈ {1, 2, 3, . . . , n} (6)

We will address this problem using well known concepts and

constructions from adaptive control.

III. ERROR MODELS

The controllers which we propose to study will all be

based on suitably defined error models.

A. Error Equations

To begin, we want to derive a useful expression for each

ei. In view of (3)

y2
i = ||xi − x0||

2 + 2ǫi||xi − x0|| + ǫ2i

But ||xi−x0||
2 = ||xi−x∗||2+2(x∗−xi)

′x̄0+ ||x̄0||
2 where

x̄0 = x0 − x∗ (7)

Moreover from (5), d2
i

= ||xi − x∗||2 + 2ǭi||xi − x∗|| +
ǭi

2. From these expressions and the definition of ei in (6) it

follows that

ei = 2(x∗ − xi)
′x̄0 + ||x̄0||

2 + 2ǫi||x̄0|| + ηi (8)

where

ηi = 2ǫi||xi − x0|| + ǫ2i − 2ǭi||xi − x∗|| − ǭ2i − 2ǫi||x̄0||

Note that |||xi − x0|| − ||x̄0||| ≤ ||xi − x∗|| because of the

triangle inequality and the definition of x̄0 in (7). From this

and (5) it is easy to see that

|ηi| ≤ (|ǫi| + |ǭi|)γi (9)

where γi = 2di + |ǫi − ǭi|.

B. Station Keeping with n = 3 Neighbors

In this section we consider the case when n = 3. We shall

assume that x1, x2, and x3 are not collinear. Note first that

we can write

˙̄x0 = u (10)

because of (2) and the fact that x̄0 = x0 − x∗. Let

e =

[
e1 − e3

e2 − e3

]

and define q = Bx̄0, where

B = 2 [ x3 − x1 x3 − x2 ]
′

(11)

The error model for this case is then

e = q + ǫ||B−1q|| + η (12)

q̇ = Bu (13)

where

ǫ = 2

[
ǫ1 − ǫ3
ǫ2 − ǫ3

]
η =

[
η1 − η3

η2 − η3

]

Our assumption that the xi are not collinear implies that B

is non-singular. Note that since B is nonsingular, x0 = x∗

whenever q = 0. This in turn will be the case when

e = 0 provided ǫ = 0 and η = 0. The term ||B−1q||ǫ
can be regarded as a perturbation and can be dealt with

using standard small gain arguments. Essentially linear error

models like (12), (13) can also be derived for any n > 3.

C. Station Keeping with n = 2 Neighbors

In the two-neighbor case we’ve assumed that |d1 − d2| <

||x1 − x2|| < d1 + d2 and thus that two solutions x∗ to

(4) exist. We will assume that x̄0 has been defined so that

||x̄0(0)|| is the smaller of the two possibilities. As before,

and for the same reason, (10) holds. For this version of the

problem we define

e =

[
e1

e2

]

Let q = Bx̄0, where now

B = 2 [ x∗ − x1 x∗ − x2 ]
′

(14)

The error model for this case is then

e = q + ǫ||B−1q|| + ||B−1q||21 + η (15)

q̇ = Bu (16)

where

1 =

[
1
1

]
ǫ = 2

[
ǫ1
ǫ2

]
η =

[
η1

η2

]
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Note that our assumption that |d1−d2| < ||x1−x2|| < d1+d2

implies that x1, x2, x
∗ are not collinear. This in turn implies

that B is non-singular. The essential difference between this

error model and the error model for the three neighbor case

is that the two-neighbor agent model has a quadratic function

of state in its readout equation whereas the three-neighbor

error model does not.

IV. STATION KEEPING SUPERVISORY CONTROLLER

In this section we will develop a set of controller equations

aimed at solving the station keeping problem with three

neighbors. Because of its properties, the controller we pro-

pose can also be used for the two neighbor version of the

problem; however in this case meaningful results can only be

claimed if agent 0 starts out at a position which is sufficiently

close to its target x∗.

In the sequel we will assume that ||ǫ|| ≤ ǫ∗, t ≥ 0 where

ǫ∗ is a positive constant which satisfies the constraint

ǫ∗ <
1

||B−1||
(17)

Note that this constraint says that the allowable measurement

error bound will decrease as agents 1, 2, and 3 are positioned

closer and closer to collinear and/or further and further away

from agent 0. While we are unable to fully justify this

assumption at this time, we suspect that it is intrinsic and

is not specific to the particular approach to station keeping

which we are following. Our suspicion is prompted in part

by the observation that the map q �−→ q + ǫ||B−1q|| will be

invertible for all ||ǫ|| ≤ ǫ∗ if and only if (17) holds.

The type of control system we intend to develop assumes

that B is unknown, but requires one to define at the outset a

closed bounded subset of 2 × 2 non-singular matrices P ⊂
IR2×2 which is big enough so that it can be assumed that

B ∈ P . P can consist of one connected subset or a finite

union of compact, connected subsets. It is not necessary for

the subsets to be disjoint. These properties can be used to

advantage in defining P .

The supervisory control system to be considered consists

of a “multi-estimator” E, a “multi-controller” C, a “monitor”

M and a “dwell-time switching logic” S. These terms and

definitions have been discussed before in [8] and elsewhere.

They are fairly general concepts, have specific meanings, and

apply to a broad range of problems. Although there is consid-

erable flexibility in how one might define these component

subsystems, in this paper we shall be quite specific. The

numbered equations which follow, are the equations which

define the supervisory controller we will consider.

A. Multi-Estimator E

For the problem of interest, the multi-estimator E is

defined by the two equations

ż1 = −λz1 + λe (18)

ż2 = −λz2 + u (19)

where λ is a design constant which must be positive but is

otherwise unconstrained.

Note that the signal ρ = z1 + Bz2 − q satisfies

ρ̇ = −λρ + λ(ǫ||B−1q|| + η)

and that the output estimation error

ēB = z1 + Bz2 − e

can be written as ēB = ρ−ǫ||B−1q||−η. These relationships

can be conveniently represented by the block diagram in

Figure 1. The diagram describes a nonlinear dynamical

λ
s+λ

ǫ ||B−1 · ||

η
+

+

−

+

−
+

ρ

q||B−1q||ǫ ||B−1q||

ēB

z1 + Bz2

Fig. 1. Subsystem

system with inputs η and z1+Bz2 and output ēB . It is easy to

verify that this system is globally exponentially stable with

stability margin no smaller than λ(1 − ǫ∗||B−1||) because

of the measurement constraint (17) discussed earlier. The

diagram clearly implies that if ǫ and η were to tend to 0,

so would ēB ; in this case z1 + Bz2 would therefore be

an asymptotically correct estimate of e. We exploit these

observations below.

B. Multi-Controller C

The multi-controller C we propose to study is simply

u = −λB̂−1e (20)

where B̂ is a piecewise constant switching signal taking

values in P . The definition of u has been crafted so that

the “closed-loop parameterized system” matrix −λPP−1

is stable with “stability margin” λ for all P ∈ P . Other

controllers which accomplish this could also be used {e.g.,

u = −λB̂−1(z1 + B̂z2)}. The consequence of this definition

of u is predicted by the certainty equivalence stabilization

theorem [9] and is as follows. Let ē
B̂

= z1 + B̂z2 − e and

define the so called injected sub-system to be the system

which results when z1 +Bz2 − ē
B̂

is substituted for e in the

closed loop system determined by (18), (19) and (20). Thus

ż1 = λB̂z2 − λē
B̂

ż2 = −λB̂−1z1 − 2λz2 + λB̂−1ē
B̂

Certainty equivalence implies that this model, viewed as a

system with input ē
B̂

, is also stable with stability margin λ

for each fixed B̂ ∈ P . In this special case one can deduce this

directly using the state transformation {z1, z2} �−→ {z1, z1+
B̂z2}. For this system to have stability margin λ means that

for any positive number λ0 < λ the matrix λ0I + A(B̂) is

exponentially stable for all constant B̂ ∈ P . Here

A(B̂) =




0 λB̂

−λB̂−1 (λ0 − 2λ)I
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which is the state coefficient matrix of the injected system.

In the sequel, we fix λ0 at any positive value such that

λ0 < λ(1− ǫ∗)||B||−1. This number turns out to be a lower

bound on the convergence rate for the entire closed-loop

control system.

We need to pick one more positive design parameter,

called a dwell time τD. This number has to be chosen

large enough so that the injected linear system defined

above is exponentially stable with stability margin λ for

every “admissible” piecewise constant switching signal B̂ :
[0,∞) → P , where by admissible we mean a piecewise

constant signal whose switching instants are separated by at

least τD time units. This is easily accomplished because each

λ0I +A(P ), P ∈ P is a stability matrix. All that’s required

then is to pick τD large enough so that the induced norm

{any matrix norm} of each matrix e{λ0I+A(P )}t, P ∈ P , is

less than 1.

It is useful for analysis to add to Figure 1, two copies

of the injected system just defined, one {Σ1} with output

e = z1+B̂z2− ē
B̂

and the other {Σ2} with output z1+Bz2.

The multiple copies are valid because the injected system

each is an exponentially stable linear system. The resulting

system is shown in Figure 2.

λ
s+λ

ǫ ||B−1 · ||

η
+

+

−

+

−
+

ρ

q||B−1q||ǫ ||B−1q||

ēB ē
B̂

eΣ1

Σ2

Fig. 2. Subsystem for Analysis

Note that if there were a gain between ēB and ē
B̂

, and

if ǫ were small enough, the resulting system would be

exponentially stable and bounded η would produce bounded

e. We return to this observation later.

C. Monitor M

The state dynamic of monitor M is defined by the equation

Ẇ = −2λ0W +

[
λz1 − e

z2

] [
λz1 − e

z2

]′

(21)

where W is a “weighting matrix” which takes values in the

linear space X of 4 × 4 symmetric matrices. Note that it

takes only 10 differential equations rather than 16 to generate

W because of symmetry. The output of M is a parameter

dependent “monitoring signal” µP = M(W,P ) where M :
X × P → IR is defined as

M(X, P ) = trace{[ I P ] X [ I P ]
′
} (22)

The readout map M(·) is used in defining the switching

logic S. The signals µP , P ∈ P are helpful in motivating

the definition of M and the switching logic S which follows;

however, they are actually not used anywhere in the imple-

mented system. It is obvious that they could not be because

there are infinitely many of them.

Note that for any P ∈ P ,

µ̇P = −2λ0µP +trace([ λz1 + Pz2 − e ] [ λz1 + Pz2 − e ]
′
)

so

µ̇P = −2λ0µP + ||z1 + Pz2 − e||2

But ēP = z1 + Pz2 − e, so

µ̇P = −2λ0µP + ||ēP ||
2

Therefore, if for motivational purposes we were to temporar-

ily initialize W (0) = 0, then

M(W,P ) =

∫ t

0

{e−2λ0(t−s)||ēP ||
2}ds

Thus if we introduce the exponentially weighted 2 norm

||ω||t =

√∫ t

0

{eλ0s||ω(s)||}2ds

where ω is a piecewise continuous signal, then

M(W (t), P ) = e−2λ0t||ēP ||
2
t , t ≥ 0

Minimizing M(W (t), P ) with respect to P and setting B̂(t)
equal to the minimizing value, would then yield an inequality

of the form

||ē
B̂
||t ≤ ||ēB ||t

Were it possible to accomplish this at every instant of time

and were B̂ changing slowly enough so that all of the time-

varying subsystems in Figure 2 were exponentially stable,

then one could conclude that for ǫ∗ sufficiently small, the

resulting overall system with input η and output e would be

stable with respect to the exponentially weighted norm we’ve

been discussing. It is of course not possible to carry out

these steps instantly and even if it were, B̂ would likely be

changing too fast for the time-varying subsystems in Figure

2 to be exponentially stable. What will be achieved is not

quite this because of the requirement that B̂ not change too

fast. Nonetheless, we will end up with an input-output stable

system.

D. Dwell-time Switching Logic S

For our purposes a dwell-time switching logic S, is a hybrid

dynamical system whose input and output are W and B̂

respectively, and whose state is the ordered triple {X, τ, B̂}.

Here X is a discrete-time matrix which takes on sampled

values of W , and τ is a continuous-time variable called a

timing signal. τ takes values in the closed interval [0, τD].
Also assumed pre-specified is a computation time τC ≤ τD

which bounds from above for any X ∈ W , the time it would

take a supervisor to compute a value P ∈ P which minimizes

M(X,B). Between “event times,” τ is generated by a reset

integrator according to the rule τ̇ = 1. Event times occur

when the value of τ reaches either τD − τC or τD; at such

times τ is reset to either 0 or τD − τC depending on the
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value of S’s state. S’s internal logic is defined by the flow

diagram shown in Figure 3 where PX denotes a value of

P ∈ P which minimizes M(X, P ).

Initialize

B̂

τ = 0

τ = τD − τC

X = W

M(X, PX) < M(X, B̂)

τ = τD − τC τ = τD

B̂ = PX

y n

n y

y n

Fig. 3. Dwell-Time Switching Logic S

The definition of S clearly implies that its output B̂ is

an admissible switching signal. This means that switching

cannot occur infinitely fast and thus that existence and

uniqueness of solutions to the differential equations involved

is not an issue.

Note that implementation of the switching logic just

described requires an algorithm capable of minimizing

M(X, P ) over P for various values of X ∈ X . Although

the quadratic term in M(X, P ) is a positive semi-definite

function in the elements of P and P is compact, this

minimization problem is nonetheless formidable because P
is typically not a convex set or even a finite union of

convex sets. While this issue does not in any way limit the

theoretical validity of the algorithm we are discussing, it is of

obvious practical importance when implementation is taken

into account. There are several ways one might seek to deal

with this issue. We will discuss them later in the paper.

V. RESULTS

The results which follow rely heavily on the following

Proposition which characterizes the effect of the monitor-

dwell time switching logic subsystem.

Proposition 1: Suppose that P is a compact subset of

a finite dimensional space, that W (0) = 0, that B̂ is the

response of the monitor-switching logic subsystem {M, S}
to any continuous input signals e, z1, and z2 taking values

in IR2, and that ēP = z1 + Pz2 − e, P ∈ P . For each

real number γ > 0 and each fixed time T > 0, there

exists piecewise-constant signals H : [0,∞) → IR2×4 and

ψ : [0,∞) → {0, 1} such that

|H(t)| ≤ γ, t ≥ 0 (23)
∫ ∞

0

ψ(t)dt ≤ 4(τD + τC) (24)

and

||(1 − ψ)(ē
B̂
− Hz) + ψēB ||T ≤ δ||ēB ||T (25)

where

δ = 1 + 8

(
1 + diameter{P}

γ

)4

and z = [ z′1 z′2 ]
′
.

This proposition is proved in [8]. The proposition summa-

rizes the key consequences of dwell time switching which

are needed to analyze the system under consideration. While

the inequality in (25) is more involved than the inequality

||ē
B̂
||t ≤ ||ēB ||t mentioned earlier, the former is provably

correct whereas the latter is not. Despite its complexity, (25)

can be used to establish input-output stability with respect to

the exponentially weighted norm || · ||t. The idea is roughly

as follows. Fix T > 0 and pick γ small enough so that

λ0I +A(B̂)+ (1−ψ)D(B̂)H is exponentially stable where

D(B̂) = [−λI ′ λ(B̂−1)′ ]
′
. The fact that ψ has a finite L1

norm {cf. (24)}, implies that λ0I+A(B̂)+(1−ψ)D(B̂)H+
ψ [ 0 B̂ − B ] is exponentially stable as well. Next define

ē = (1 − ψ)(ē
B̂
− Hz) + ψēB

Then

||ē||T ≤ δ||ēB ||T (26)

because of (25). The definition of ē implies that

ē
B̂

= ē + (1 − ψ)Hz + ψ [ 0 B̂ − B ] z

Substitution into the injected system defined earlier yields

the exponentially stable system

ż = {A(B̂) + (1−ψ)D(B̂)H + ψ [ 0 B̂ − B ]}z + D(B̂)ē

with input ē. Now add to Figure 1, two copies of the system

just defined, one {Σ̄1} with output e = [ I B̂ ] z − {ē +
(1 − ψ)Hz + ψ [ 0 B̂ − B ] z} and the other {Σ̄2} with

output z1 + Bz2 = [ I B ] z. Like before, the multiple

copies are valid because the matrix A(B̂)+(1−ψ)D(B̂)H+
ψ [ 0 B̂ − B ] is exponentially stable. The resulting system

is shown in Figure 4. In the light of (26) it is easy to see

λ
s+λ

ǫ ||B−1 · ||

η
+

+

−

+

−
+

ρ

q||B−1q||ǫ ||B−1q||

ēB ē eΣ̄1

Σ̄2

Fig. 4. Snapshot at time T of the Overall Subsystem for Analysis
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that if the bound ǫ∗ on ǫ is sufficiently small, the induced

gain of this system from η to e with respect to || · ||T is

bounded by a finite constant gT . It can be shown that gT in

turn, is bounded above by a constant g not depending on T

[8]. Since this is true for all T , it must be true that g bounds

the induced gain from η to e with respect to || · ||∞.

The following results are fairly straightforward conse-

quences of these ideas. Detailed proofs, specific to the

problem at hand, can be found in the full-length version of

this paper. The results are as follows:

1) If all measurement errors ǫi and all miss-alignment

errors ēi are zero, then, no matter what its initial value, x0(t)
tends to the unique solution x∗ to (4) as fast as e−λ0t.

2) If the measurement errors ǫi and the miss-alignment

errors ēi are not all zero, and the ǫi sufficiently small, then

no matter what its initial value, x0(t) tends to a value for

which the norm of the error e is bounded by a constant times

the sum of the norms of the ǫi and the ǭi.

VI. DEALING WITH A NON-CONVEX PARAMETER SPACE

Although the quadratic term in M(X, P ) is a positive

semi-definite function of the elements of P , the problem of

minimizing M(X, P ) over P is still very complex because

P is not typically convex or even a finite union of convex

sets. The root of the problem stems from the requirement

that the algebraic curve S = {P : p11p22 − p12p21 = 0}
in IR2×2 on which P is singular cannot intersect P . There

is considerable experience with simulations which suggests

that this singularity issue can simply be ignored, because the

chances of encountering a minimizing P which lies in S are

very low. Nonetheless one would like to have a systematic

way of dealing with this problem. One such approach relies

on an idea called “cyclic switching” which was specifically

devised to deal with this type of problem [10], [11]. Cyclic

switching is roughly as follows. First P is allowed to contain

singular matrices, in which case it is reasonable to assume

that it is a finite union of compact convex sets. Minimization

over P thus becomes a finite number of standard quadratic

programming problems. For minimizing values of B̂ which

turn out to be close to or on S, one uses a specially structured

switching controller in place of (20) – one which does not

require B̂ to be nonsingular. This controller is used for a

specific length of time over which a “switching cycle” takes

place. At the end of the cycle, minimization of M(W, B̂) is

again carried out; if B̂ is again close to S, another switching

cycle is executed. On the other hand, if B̂ is not close to

S, the standard certainty equivalence control (20) is used.

Cyclic switching is completely systematic and can be shown

to solve the singularity problem of interest here.

There is another possible way to deal with the singularity

problem. What we’d really like is to construct a parameter

space P which is a finite union of convex sets, defined so

that every matrix in P is nonsingular and, in addition, the

matrices in P correspond to a “large” class of possible posi-

tions of agents 1, 2, 3. This suggests the following problem.

Convex Covering Problem: Suppose that we are given

a compact subset P0 of a finite dimensional space which

is disjoint from a second closed subset S {typically an

algebraic curve}. Define a convex cover of P0 to mean a

finite set of possibly overlapping convex subsets Ei such that

the union of the Ei contains P0 but is disjoint from S. One

could then define P to be the union of the Ei. The existence

of such a convex cover can be easily established [12]. The

question then is how might one construct a convex cover

consisting of the smallest number of subsets possible.

There is a third way to avoid the tractability problem

which is to use a different parameterization. This is discussed

in [12].

VII. CONCLUDING REMARKS

In this paper we have devised a constructive solution to

the three neighbor station keeping problem in which range

measurements are the only sensed signals upon which station

keeping is to be based. We have performed many simulations

and have observed results consistent with our theoretical

findings. In addition we have carried out experiments on

a mobile robot testbed in GRASP Lab at UPenn which

demonstrate the practicality of the algorithm proposed. The

same approach followed in this paper can be used to address

the problem of maintaining an agent’s position in a moving

formation in the plane using range-only measurements [13].
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