Limited tolerance towards folded elements during secretion of the autotransporter Hbp

Jong, Wouter S.P.; Hagen-Jongman, Corinne M. ten; Blaauwen, Tanneke den; Slotboom, Dirk Jan; Tame, Jeremy R.H.; Wickström, David; Gier, Jan-Willem de; Otto, Ben R.; Luiirink, Joen; Wickstrom, D.

Published in:
Molecular Microbiology

DOI:
10.1111/j.1365-2958.2007.05605.x

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Limited tolerance towards folded elements during secretion of the autotransporter Hbp

1Department of Molecular Microbiology, Institute of Molecular Cell Biology, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
2Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University SE-106 91 Stockholm, Sweden
3Department of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 SM Amsterdam, The Netherlands
4Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
5Protein Design Laboratory, Yokohama City University, Yokohama 230-0045, Japan

$Corresponding author
E-mail: joen.luirink@falw.vu.nl
Tel: +31-(0)20-5987175
Fax: +31-(0)20-5986979
Supplementary Fig. S1

Fig. S1. Hbp derivatives used in this study. Hbp residues targeted for mutation are indicated in the crystal structure of the secreted Hbp passenger (1WXR[PDB]; Otto et al, 2005) (A) Hbp707C/712C: Ala\(^{707}\)(red)/Asp\(^{712}\)(yellow) → Cys\(^{707}\)/Cys\(^{712}\). (B) Hbp110C/348C: Leu\(^{110}\)(yellow)/Gly\(^{348}\)(red) → Cys\(^{110}\)/Cys\(^{348}\). (C) Hbp(Calm): Hbp domain 2 (aa 483-555; red) substituted by the Ca\(^{2+}\)-loaded form of human calmodulin (1CLL[PDB]; Chattopadhyaya et al, 1992). Ca\(^{2+}\)-ions are represented by white spheres. The structure of Hbp has been rotated with respect to the vertical axis to provide the best view of the three mutants. Images were created using MacPyMOL.

References

Supplementary Fig. S2

Fig. S2. Secreted Hbp707C/712C contains a disulphide bridge. Cultures of DHB4 cells expressing either Hbp or Hbp707C/712C were treated with 100 mM iodoacetamide 2h and 45min after induction with IPTG. Cultures were directly chilled on ice after which spent medium was isolated and subjected to TCA precipitation. TCA pellets were suspended in non-reducing SDS-PAGE sample buffer containing 50 mM iodoacetamide, boiled for 5 min and resolved by non-reducing 12% NuPAGE/MOPS (Invitrogen). After staining with SimplyBlue SafeStain (Invitrogen), the appropriate protein bands were cut out of gel and treated with trypsin. The generated peptides were mixed with α-cyano-4-hydroxy-cinnamic acid matrix and spotted on a target for MALDI-TOF peptide mass fingerprinting. An intense peak with an m/z value of 2391 was detected in trypsin digest of the mutant, but not in the digest of the wild type protein (not shown). We hypothesized that the peak corresponded to the tryptic peptide 691NDGQGTAFTLEEGTSVCTKDACK713 (m/z 2374) in which trypsin had also cleaved between positions 709 and 710, but the two resulting peptides were covalently connected by a disulphide bridge between the two cysteines. The m/z value of the resulting molecule is 2374 +18 (hydrolysis by trypsin at position 709) -2 (disulphide formation) + 1 (proton addition, single charge) = 2391. This was unambiguously confirmed by MALDI-TOF-TOF tandem mass spectrometry (see figure). A large series of y-ions was found (ranging from y7 to y21) confirming the presence of the amino acid sequence 691NDGQGTAFTLEEGTSV706. y-ions below y7 were not found, likely because the disulphide bond caused anomalous/reduced fragmentation. The smallest y-ion (y7) corresponds to the C-terminus of the molecule, consisting of the two peptides 707CTK709 and 710DACK713 linked by the disulphide bridge (m/z 784.4 for the protonated molecule). The two peaks labeled with the asterisk were not assigned.
Supplementary Fig. S3

Fig. S3. Subcellular localization of secretion incompetent Hbp derivatives. KS476 cells expressing either Hbp, Hbp110C/348C, Hbp(Calm) or Hbp(Δβ-cleav) were fractionated. The following fractions were obtained: total cells (T), soluble fraction (S), total membranes (M), inner membranes (IM) and outer membranes (OM). Cells were chilled on ice 1h after induction with 1 mM IPTG, collected by centrifugation and broken in a French pressure cell to obtain a total cell lysate. Unbroken cells and debris were removed by centrifugation at 5,000xg for 5 min. The total membrane fraction was collected by ultracentrifugation. The resulting supernatant fraction was taken as the soluble protein fraction. To separate the inner membranes from the outer membranes, the total membrane fraction was treated with 0.5% Sarkosyl as described previously (Filip et al., 1973). Samples of the fractions, derived from equal amounts of cell material, were analyzed by SDS-PAGE and immunoblotting using antiserum against Hbp (*top panel*). To verify the membrane separation, both the inner membrane protein Leader peptidase (Lep) (*center panel*) and the outer membrane protein A (OmpA) (*bottom panel*) were detected in the fractions by immunoblotting. The pro-form (*pro*) and passenger (*pass*) of the Hbp derivatives are indicated.

Reference

Supplementary Materials and Methods

Plasmid construction

To create pEH3-Hbp, the *hbp* gene was amplified by PCR using pACYC-Hbp (van Dooren *et al.*, 2001) as a template. The primers used were pEH-XbaI-Hbp-fw (5’-taacctttctagattacaacaatctggaaggggttattctgagatc3’; XbaI site in boldface, pEH3 Shine-Dalgarno sequence underlined, and *hbp* initiation codon in italics) and Hbp-EcoRI-rv (5’-tgcaagaattctcagaatgtaaagatattgag-3’; EcoRI site in boldface). Subsequently, the amplified product was cloned into the XbaI/EcoRI sites of a modified version of pEH3 (Hashemzadeh-Bonehi *et al.*, 1998) that contains an XbaI recognition sequence 24 bp upstream of the NcoI recognition sequence, resulting in pEH3-Hbp.

To generate the cysteine mutants pEH3-Hbp110C, pEH3-Hbp348C, pEH3-Hbp110C/348C and pEH3-Hbp707C/712C, plasmid pEH3-Hbp was mutated using nested PCR, essentially as described (Scotti *et al.*, 2000). For introduction of Cys110, the primers used were HbpL110C-fw (5’-ggtcggattacaggtgaagcgag3’; Cys110 codon underlined) and HbpL110C_rv (5’-ccctctgctacaagctggaatccag-3’; Cys110 codon underlined). For introduction of Cys348, the primers used were HbpG348C-fw (5’-ggtcggattacaggtgaagcgag3’; Cys348 codon underlined) and HbpG348C_rv (5’-ccctctgctacaagctggaatccag-3’; Cys348 codon underlined). Mutations to introduce Cys707 and Cys712 were incorporated in one single primer pair: Hbp707C/712C-fw (5’-gcacatctgtttgctacgaggtgtcttc3’; Cys707 codon underlined, Cys712 codon in boldface) and Hbp707C/712C-rv (5’-gaagacacttttcgatttcagatggatgagc-3’; Cys707 codon underlined, Cys712 codon in boldface).

Plasmid pEH3-Hbp(Adom2) was created by substitution of the Hbp-domain-2-coding sequence for a *XhoI*-SacI-HindIII-NcoI linker sequence via nested PCR using pEH3-Hbp as a template and HbpGDELPoly-fw (5’-ggtcggattacaggtgaagcgag3’; linker sequence underlined) and HbpGDELPoly-rv (5’-ccctctgctacaagctggaatccag-3’; linker sequence undelined) as mutagenesis primers. Subsequently, pEH3-Hbp(Calm) was constructed as follows. First, a PCR fragment was generated encoding human calmodulin 3 without its stop-codon, flanked by Pro-Gly-Gly spacers and restriction sites. In this reaction, plasmid pASKInt100-Cal (Adams *et al.*, 2005) served as a template and the primers used were XhoI/SacI/PGG-Calm-fw (5’-ggtcggattacaggtgaagcgag3’; SacI site underlined, pro-gly-gly spacer in italics) and NcoI/HindIII-PGG-Calm-rv (5’-ggtcggattacaggtgaagcgag3’; HindIII site underlined, pro-gly-gly spacer in italics). This fragment was cloned into the SacI/HindIII sites of pEH3-Hbp(Adom2), giving pEH3-Hbp(Calm).

Plasmid pEH3-Hbp(Δβ-cleav) was generated via nested PCR replacing residues Asn1100 and Asn1101 (calculated from Meth1 of the pre-proHbp), constituting the cleavage site between the Hbp passenger and b-domain, by a Gly and Ser residue respectively. In this reaction pEH3-Hbp served as the template and primers used were Hbp-delβcleav-fw (5’-ggtcggattacaggtgaagcgag3’; Gly-Ser codons underlined) and Hbp-delβcleav-rv (5’-ggtcggattacaggtgaagcgag3’; Gly-Ser codons underlined).

Plasmid pEH3-Hbp(Pass) expressing a truncated version of Hbp lacking the β-domain was constructed as follows: First, to introduce a stop-codon and HindIII restriction site downstream of the Hbp passenger coding sequence, a PCR fragment was generated using pEH3-Hbp as a template and the primers Hbp2734-2751-fw (5’-cagatgtgtgatcctg-3’) and HindIII-
Hbp	extsubscript{rv} (5’-ctagaagctcaagttaactcagtgatgaagttg-3’, HindIII site underlined, stop-codon in boldface). Subsequently, the fragment was cloned into a modified version of pEH3-Hbp carrying a HindIII site downstream of hbp, using the KpnI/HindIII restriction sites, thereby removing the Hbp β-domain coding sequence from pEH3-Hbp. Nucleotide sequences were all confirmed by semi-automated DNA sequencing.

References

