Chapter 7

A Few Notes on Extensions

7.1 Extensions of Effective \(t \)-Motifs

7.1.1. Let \(0 \rightarrow M_2 \rightarrow M \rightarrow M_1 \rightarrow 0 \) be an exact sequence of \(K[t, \sigma] \)-modules. If \(M_1 \) and \(M_2 \) are effective \(t \)-motifs, then so is \(M \). We say that \(M \) is an extension of the effective \(t \)-motif \(M_1 \) by \(M_2 \). The set of isomorphism classes of extensions forms an abelian group \(\text{Ext}_{t,M_{\text{eff}}}(M_1, M_2) \) under the Baer sum\(^{(1)}\) and this group is naturally a \(k[t] \)-module.

7.1.2. This module can be given a more explicit description. Put \(H \overset{\text{def}}{=} \text{Hom}_{K[t]}(M_1, M_2) \), the space of linear maps of \(M_1 \) to \(M_2 \), and write \(H' \) for the space of semi-linear maps of \(M_1 \) to \(M_2 \). The \(K[t] \)-modules \(H \) and \(H' \) are isomorphic, since both are free of rank \(\text{rk}(M_1) \text{rk}(M_2) \), but there is no natural isomorphism (unless \(K = k \)). Consider the \(k[t] \)-linear map

\[
\delta : H \rightarrow H' : f \mapsto \sigma_2 \circ f - f \circ \sigma_1.
\]

Note that \(\ker(\delta) = \text{Hom}(M_1, M_2) \). We contend that

\[
\text{coker}(\delta) = \text{Ext}_{t,M_{\text{eff}}}(M_1, M_2).
\]

(7.1)

In fact, if \(M \) is an extension of \(M_1 \) by \(M_2 \) then as \(K[t] \)-modules \(M \approx M_1 \oplus M_2 \) and \(\sigma(m_1, m_2) = (\sigma_1(m_1), \sigma_2(m_2) + \gamma(m_1)) \) with \(\gamma \in H' \). This

\(^{(1)}\)See [BAER 1934] or Chapter XIV of [CARTAN AND EILENBERG 1956].
extension splits if and only if there exists a linear \(f : M_1 \to M_2 \) such that \(\gamma = \delta(f) \).

7.1.3. The \(k[t] \)-module \(\text{Ext} \) is almost a divisible module:

Proposition. If \(K = K^2 \) and \(\lambda \in k[t] \) has an invertible image under \(k[t] \to K \) then multiplication with \(\lambda \) is surjective on \(\text{Ext}_{tM_{\text{eff}}}(M_1, M_2) \).

Proof of the proposition. Consider the commutative diagram

\[
\begin{array}{ccccccc}
0 & \longrightarrow & H & \overset{\lambda}{\longrightarrow} & H & \longrightarrow & H/\lambda H & \longrightarrow & 0 \\
\downarrow{\delta} & & \downarrow{\delta} & & \downarrow{\delta} & & \\
0 & \longrightarrow & H' & \overset{\lambda}{\longrightarrow} & H' & \longrightarrow & H'/\lambda H' & \longrightarrow & 0
\end{array}
\]

with exact rows. This gives an exact sequence of cokernels

\[
\cdots \to \text{Ext}(M_1, M_2) \overset{\lambda}{\longrightarrow} \text{Ext}(M_1, M_2) \to \text{coker}(\bar{\delta}) \to 0.
\]

It remains to show that \(\text{coker}(\bar{\delta}) = 0 \), that is, that \(\bar{\delta} \) is surjective. The vector space \(H/\lambda H \) is of finite dimension over \(K \). Since \(t - \theta \) is invertible in \(K[t]/\lambda K[t] \) (here the condition on \(\lambda \) is needed), the map \(\bar{\delta} \) is the sum of a non-degenerate semi-linear map \((\sigma_2 \circ f) \) and a linear isomorphism \((f \circ \sigma_1) \). It follows from Corollary b.2.2 that \(\bar{\delta} \) is surjective.

7.2. Ext\((1,1)\)

7.2.1. As was already indicated in §5.2, knowledge about the group of extensions \(\text{Ext}(1,1) \) in some Tannakian category leads to information on the underlying fundamental group. We have calculated \(\text{Ext}(1,1) \) in the category of constant \(t \)-motifs (essentially 5.2.2) and deduced from it the Artin-Schreier Theorem on degree \(p \) extensions in characteristic \(p \). Similarly we calculated \(\text{Ext}(1,1) \) in the category of interior \(t \)-motifs (5.2.3), to find that the abelianisation of the affine group scheme involved is of multiplicative type. In this section we will repeat the exercise and calculate \(\text{Ext}(1,1) \) in the categories of \(t \)-motifs.
7.2.2. One should realise that a t-motif that is an extension of two effective t-motifs need not be effective. In fact, it follows from the definition of the category $t\mathcal{M}$ that for every pair M_1, M_2 of t-motifs

$$\text{Ext}_{t\mathcal{M}}(M_1, M_2) = \lim_{\rightarrow n} \text{Ext}_{t\mathcal{M}_{\text{eff}}}(M_1 \otimes C^n, M_2 \otimes C^n)$$

where the limit is for increasing n, starting at a sufficiently large value for the right-hand-side to make sense.

7.2.3. For $\text{Ext}(1, 1)$ in $t\mathcal{M}^\circ$ we have:

Proposition. If $K = K^\circ$ then

$$\text{Ext}_{t\mathcal{M}^\circ}(1, 1) = \begin{cases} \bigcup_{n \geq 0} (t - \theta)^{-n} K[t]/K[t] & \text{if } k[t] \rightarrow K \text{ is injective} \\ 0 & \text{otherwise} \end{cases}$$

Proof. By 7.1.2, the group of effective extensions of C^n by C^n is the cokernel of the map

$$\delta : K[t] \rightarrow K[t] : f \mapsto (t - \theta)^n (\sigma(f) - f)).$$

By the Artin-Schreier Theorem (K is separably closed), the image of δ is $(t - \theta)^n K[t]$, hence in the category $t\mathcal{M}$ we have

$$\text{Ext}_{t\mathcal{M}}(1, 1) = \bigcup_{n \geq 0} (t - \theta)^{-n} K[t]/K[t].$$

From this the Ext in the category $t\mathcal{M}^\circ$ of t-motifs up to isogeny can be calculated: use that

$$\text{Ext}_{t\mathcal{M}^\circ}(-,-) = \text{Ext}_{t\mathcal{M}}(-,-) \otimes_{k[t]} k(t)$$

to obtain the modules as stated in the Proposition.

7.2.4. If $k[t] \rightarrow K$ is injective then the above calculation also yields the $\text{Ext}(1, 1)$ in the Tannakian category $t\mathcal{M}^\circ_{\text{a.a.}}$. In fact,

Lemma. Every extension of an analytically trivial t-motif by an analytically trivial t-motif is itself analytically trivial.
and therefore
\[\text{Hom}(\Gamma, G_{a,k(t)}) = \text{Ext}_{t,M^\circ} (\mathbf{1}, \mathbf{1}) \]
\[= \text{Ext}_{t,M^\circ} (\mathbf{1}, \mathbf{1}). \]

This gives a description of the ‘additive part’ of the abelianisation of the affine group scheme \(\Gamma \).

Proof of the Lemma. Let \(E \) be an extension of \(M_2 \) by \(M_1 \), where both \(M_i \) are analytically trivial. This yields an exact sequence
\[0 \to M_1\{t\} \to E\{t\} \to M_2\{t\} \to 0. \]

Both \(M_1\{t\} \) and \(M_2\{t\} \) have a \(\sigma \)-invariant basis, and these define a basis for \(E\{t\} \) on which \(\sigma \) acts by an upper triangular block matrix. To show that \(E\{t\} \) is analytically trivial (has an invariant basis) it hence suffices to show that the map
\[K^\dagger\{t\} \to K^\dagger\{t\} : \sum_i a_i t_i \mapsto \sum_i (a^q_i - a_i) t^i \]
is surjective. This is immediate from the observation that if \(b \in K^\dagger \) with \(\|b\| \leq 1 \) then the equation
\[x^q - x = b \]
has a (in fact, unique) solution with \(\|x\| = \|b\|. \)

7.3 \(t \)-Motifs over Finite Fields

7.3.1. The situation is quite a bit simpler when \(K \) is a finite field.

Proposition. Let \(K \) be a finite field and \(M_1 \) and \(M_2 \) be two effective \(t \)-motifs over \(K \). Then \(\text{Ext}_{t,M^\text{eff}} (M_1, M_2) \) is a finitely generated \(k[t] \)-module and
\[\text{rk}_{k[t]} \text{Hom}(M_1, M_2) = \text{rk}_{k[t]} \text{Ext}_{t,M^\text{eff}} (M_1, M_2). \]

Note that while in \(tM^\circ \) the \(k(t) \)-space \(\text{Ext}(\mathbf{1}, \mathbf{1}) \) is one-dimensional when \(K \) is a finite field, it vanishes when \(K \) is the algebraic closure of a finite field (7.2.3).
Proof of the Proposition. Take H, H' and δ as in 7.1.2. Then

$$0 \to \text{Hom}(M_1, M_2) \to H \xrightarrow{\delta} H' \to \text{Ext}(M_1, M_2) \to 0$$

is an exact sequence of $k[t]$-modules. Since K is finite over k, the modules H and H' are free and of the same finite rank over $k[t]$, whence the claims of the Proposition.

7.3.2. In particular, when M_1 and M_2 are pure of different weights, the module of homomorphisms is trivial (6.2.2) and therefore $\text{Ext}(M_1, M_2)$ is torsion. This is in line with Algebraic Geometry, where it is expected that every mixed motif over a finite field and with \mathbb{Q}-coefficients decomposes as a direct sum of pure motifs.\(^{(2)}\) Only, here we have to deal with the pathology that there exist t-motifs that do not have a filtration with pure quotients. We shall proceed immediately to exhibit an example.

7.3.3. Let $\theta = 0$, that is, K has ‘characteristic t’. Consider the effective t-motif

$$M = K[t]e_1 \oplus K[t]e_2 \text{ with } \begin{cases} \sigma(e_1) = te_1 + e_2 \\ \sigma(e_2) = te_1 \end{cases}$$

Proposition. M has weights 0 and 1, yet M_K has no proper pure sub-t-motifs.

Sketch of proof. On the given basis, the characteristic polynomial of σ is $f(X) = X^2 - tX - t$. Using the Newton polygon, one verifies that the valuations of zeroes of f are 0 and -1, whence the weights are 0 and 1.

If M contains pure sub-t-motif then it is either isomorphic to 1 or to C. In other words, M must contain a vector $v = ae_1 + be_2$ such that either $\sigma(v) = v$ or $\sigma(v) = tv$. The former can be excluded by an argument on the degrees of a and b, the latter by a calculation modulo t.

\(\square\)

7.4 Higher Ext

7.4.1. If an abelian category has sufficient injectives or projectives then functors $\text{Ext}^i(-, -)$ can be defined using resolutions. By [YONEDA 1954]

\(^{(2)}\)See Theorem 2.49 in [MILNE 1994], where this is credited to GROTHENDIECK.
these functors have a definition independent of the existence of resolutions, valid on any abelian category. This generalises the identification of Ext^1 with the group of extensions under Baer sum.

7.4.2. On the abelian category $t\mathcal{M}^\circ$ they vanish:

Theorem. $\text{Ext}^i_{t\mathcal{M}^\circ}(-,-) = 0$, for all $i > 1$.

Corollary. $\text{Ext}^i_{t\mathcal{M}^\circ_{\text{eff}}}(−,−) = 0$, for all $i > 1$.

Proof of the Theorem. Clearly it suffices to show that the higher Ext are trivial on $t\mathcal{M}^\circ_{\text{eff}}$. Denote by \mathcal{C} the category of left modules over the ring $K[t,\sigma] \otimes k[t]$.

The functor

$$M \mapsto M \otimes_{k[t]} k(t)$$

defines a fully faithful embedding of $t\mathcal{M}^\circ_{\text{eff}}$ into \mathcal{C}. This induces for every pair M_1, M_2 of effective t-motifs natural maps

$$\phi^i : \text{Ext}^i_{t\mathcal{M}^\circ_{\text{eff}}}(M_1, M_2) \to \text{Ext}^i_{\mathcal{C}}(M_1, M_2).$$

The category \mathcal{C} has sufficient projectives and hence the target groups can be calculated using resolutions. In fact, using a $K[t]$-basis of an effective t-motif M as a set of generators in \mathcal{C} one sees that every effective t-motif M has a free resolution of length at most 1 in \mathcal{C}: the free set of relations expresses the action of σ on the basis. Thus for $i > 1$ the target groups of ϕ^i vanish.

Proposition 3.3 of [OORT 1964] asserts that if for some i and all M_1 and M_2 the map ϕ^i is bijective, then (for all M_1 and M_2) the map ϕ^{i+1} is injective. Thus the Theorem will be shown as soon as ϕ^1 is bijective.

This is indeed the case:

$$\text{Ext}^1_{t\mathcal{M}^\circ_{\text{eff}}}(M_1, M_2) = \text{coker}(H \xrightarrow{\delta} H') \otimes_{k[t]} k(t)$$

$$= \text{coker}(H \otimes k(t) \xrightarrow{\delta \otimes k(t)} H' \otimes k(t))$$

$$= \text{Ext}^1_{\mathcal{C}}(M_1 \otimes k(t), M_2 \otimes k(t)),$$

using the flatness of the $k[t]$-module $k(t)$.

\[\square\]