On t-Motifs
Taelman, Lenny

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Chapter 7

A Few Notes on Extensions

7.1 Extensions of Effective t-Motifs

7.1.1. Let $0 \to M_2 \to M \to M_1 \to 0$ be an exact sequence of $K[t, \sigma]$-modules. If M_1 and M_2 are effective t-motifs, then so is M. We say that M is an extension of the effective t-motif M_1 by M_2. The set of isomorphism classes of extensions forms an abelian group $\text{Ext}_{t,M_{\text{eff}}}(M_1, M_2)$ under the Baer sum\(^{(1)}\) and this group is naturally a $k[t]$-module.

7.1.2. This module can be given a more explicit description. Put $H \overset{\text{def}}{=} \text{Hom}_{K[t]}(M_1, M_2)$, the space of linear maps of M_1 to M_2, and write H' for the space of semi-linear maps of M_1 to M_2. The $K[t]$-modules H and H' are isomorphic, since both are free of rank $\text{rk}(M_1) \text{rk}(M_2)$, but there is no natural isomorphism (unless $K = k$). Consider the $k[t]$-linear map

$$\delta : H \to H' : f \mapsto \sigma_2 \circ f - f \circ \sigma_1.$$

Note that $\text{ker}(\delta) = \text{Hom}(M_1, M_2)$. We contend that

$$\text{coker}(\delta) = \text{Ext}_{t,M_{\text{eff}}}(M_1, M_2). \quad (7.1)$$

In fact, if M is an extension of M_1 by M_2 then as $K[t]$-modules $M \cong M_1 \oplus M_2$ and $\sigma(m_1, m_2) = (\sigma_1(m_1), \sigma_2(m_2) + \gamma(m_1))$ with $\gamma \in H'$. This

\(^{(1)}\text{See [Baer 1934] or Chapter XIV of [Cartan and Eilenberg 1956].}\)
extension splits if and only if there exists a linear \(f : M_1 \to M_2 \) such that \(\gamma = \delta(f) \).

7.1.3. The \(k[t] \)-module \(\text{Ext} \) is almost a divisible module:

Proposition. If \(K = \mathbb{K}^2 \) and \(\lambda \in k[t] \) has an invertible image under \(k[t] \to K \) then multiplication with \(\lambda \) is surjective on \(\text{Ext}_{\text{eff}}(M_1, M_2) \).

Proof of the proposition. Consider the commutative diagram

\[
\begin{array}{c}
0 \to H \xrightarrow{\lambda} H \to H/\lambda H \to 0 \\
\downarrow \delta \downarrow \delta \downarrow \delta \\
0 \to H' \xrightarrow{\lambda} H' \to H'/\lambda H' \to 0
\end{array}
\]

with exact rows. This gives an exact sequence of cokernels

\[
\cdots \to \text{Ext}(M_1, M_2) \xrightarrow{\lambda} \text{Ext}(M_1, M_2) \to \text{coker}(\delta) \to 0.
\]

It remains to show that \(\text{coker}(\delta) = 0 \), that is, that \(\delta \) is surjective. The vector space \(H/\lambda H \) is of finite dimension over \(K \). Since \(t - \theta \) is invertible in \(K[t]/\lambda K[t] \) (here the condition on \(\lambda \) is needed), the map \(\tilde{\delta} \) is the sum of a non-degenerate semi-linear map (\(\sigma_2 \circ f' \)) and a linear isomorphism (\(f \circ \sigma_1' \)). It follows from Corollary b.2.2 that \(\tilde{\delta} \) is surjective.

\[\Box\]

7.2 \(\text{Ext}(1,1) \)

7.2.1. As was already indicated in §5.2, knowledge about the group of extensions \(\text{Ext}(1,1) \) in some Tannakian category leads to information on the underlying fundamental group. We have calculated \(\text{Ext}(1,1) \) in the category of constant \(t \)-motifs (essentially 5.2.2) and deduced from it the Artin-Schreier Theorem on degree \(p \) extensions in characteristic \(p \). Similarly we calculated \(\text{Ext}(1,1) \) in the category of interior \(t \)-motifs (5.2.3), to find that the abelianisation of the affine group scheme involved is of multiplicative type. In this section we will repeat the exercise and calculate \(\text{Ext}(1,1) \) in the categories of \(t \)-motifs.
7.2.2. One should realise that a t-motif that is an extension of two effective t-motifs need not be effective. In fact, it follows from the definition of the category $t\mathcal{M}$ that for every pair M_1, M_2 of t-motifs

$$\text{Ext}_{t\mathcal{M}}(M_1, M_2) = \lim_{\rightarrow n} \text{Ext}_{t\mathcal{M}_{\text{eff}}}(M_1 \otimes C^n, M_2 \otimes C^n)$$

where the limit is for increasing n, starting at a sufficiently large value for the right-hand-side to make sense.

7.2.3. For $\text{Ext}(1, 1)$ in $t\mathcal{M}^\circ$ we have:

Proposition. If $K = K^\circ$ then

$$\text{Ext}_{t\mathcal{M}^\circ}(1, 1) = \begin{cases} \bigcup_{n \geq 0} (t - \theta)^{-n}K[t]/K[t] & \text{if } k[t] \to K \text{ is injective} \\ 0 & \text{otherwise} \end{cases}$$

Proof. By 7.1.2, the group of effective extensions of C^n by C^n is the cokernel of the map

$$\delta : K[t] \to K[t] : f \mapsto (t - \theta)^n(\sigma(f) - f)).$$

By the Artin-Schreier Theorem (K is separably closed), the image of δ is $(t - \theta)^nK[t]$, hence in the category $t\mathcal{M}$ we have

$$\text{Ext}_{t\mathcal{M}}(1, 1) = \bigcup_{n \geq 0} (t - \theta)^{-n}K[t]/K[t].$$

From this the Ext in the category $t\mathcal{M}^\circ$ of t-motifs up to isogeny can be calculated: use that

$$\text{Ext}_{t\mathcal{M}^\circ}(-, -) = \text{Ext}_{t\mathcal{M}}(-, -) \otimes_{k[t]} k(t)$$

to obtain the modules as stated in the Proposition. \hfill \square

7.2.4. If $k[t] \to K$ is injective then the above calculation also yields the $\text{Ext}(1, 1)$ in the Tannakian category $t\mathcal{M}_{a.a}^\circ$. In fact,

Lemma. Every extension of an analytically trivial t-motif by an analytically trivial t-motif is itself analytically trivial.
and therefore
\[
\text{Hom}(\Gamma, \mathbb{G}_{a,k(t)}) = \text{Ext}_{t,M^\circ}^1(1,1) \\
= \text{Ext}_{t,M^\circ}^1(1,1).
\]
This gives a description of the ‘additive part’ of the abelianisation of the affine group scheme \(\Gamma \).

Proof of the Lemma. Let \(E \) be an extension of \(M_2 \) by \(M_1 \), where both \(M_i \) are analytically trivial. This yields an exact sequence

\[
0 \rightarrow M_1 \{t\} \rightarrow E \{t\} \rightarrow M_2 \{t\} \rightarrow 0.
\]

Both \(M_1 \{t\} \) and \(M_2 \{t\} \) have a \(\sigma \)-invariant basis, and these define a basis for \(E \{t\} \) on which \(\sigma \) acts by an upper triangular block matrix. To show that \(E \{t\} \) is analytically trivial (has an invariant basis) it hence suffices to show that the map

\[
K^\dagger \{t\} \rightarrow K^\dagger \{t\} : \sum a_i t^i \mapsto \sum (a_i^q - a_i) t^i
\]

is surjective. This is immediate from the observation that if \(b \in K^\dagger \) with \(\|b\| \leq 1 \) then the equation

\[
x^q - x = b
\]

has a (in fact, unique) solution with \(\|x\| = \|b\| \).

7.3 \(t \)-Motifs over Finite Fields

7.3.1. The situation is quite a bit simpler when \(K \) is a finite field.

Proposition. Let \(K \) be a finite field and \(M_1 \) and \(M_2 \) be two effective \(t \)-motifs over \(K \). Then \(\text{Ext}_{t,M^\circ}^1(M_1, M_2) \) is a finitely generated \(k[t] \)-module and

\[
\text{rk}_{k[t]} \text{Hom}(M_1, M_2) = \text{rk}_{k[t]} \text{Ext}_{t,M^\circ}^1(M_1, M_2).
\]

Note that while in \(t,M^\circ \) the \(k(t) \)-space \(\text{Ext}(1,1) \) is one-dimensional when \(K \) is a finite field, it vanishes when \(K \) is the algebraic closure of a finite field (7.2.3).
Proof of the Proposition. Take \(H, H' \) and \(\delta \) as in 7.1.2. Then

\[
0 \rightarrow \text{Hom}(M_1, M_2) \rightarrow H \overset{\delta}{\rightarrow} H' \rightarrow \text{Ext}(M_1, M_2) \rightarrow 0
\]

is an exact sequence of \(k[t] \)-modules. Since \(K \) is finite over \(k \), the modules \(H \) and \(H' \) are free and of the same finite rank over \(k[t] \), whence the claims of the Proposition. \(\square \)

7.3.2. In particular, when \(M_1 \) and \(M_2 \) are pure of different weights, the module of homomorphisms is trivial (6.2.2) and therefore \(\text{Ext}(M_1, M_2) \) is torsion. This is in line with Algebraic Geometry, where it is expected that every mixed motif over a finite field and with \(\mathbb{Q} \)-coefficients decomposes as a direct sum of pure motifs.\(^{(2)}\) Only, here we have to deal with the pathology that there exist \(t \)-motifs that do not have a filtration with pure quotients. We shall proceed immediately to exhibit an example.

7.3.3. Let \(\theta = 0 \), that is, \(K \) has ‘characteristic \(t' \). Consider the effective \(t \)-motif

\[
M = K[t]e_1 \oplus K[t]e_2 \quad \text{with} \quad \begin{cases}
\sigma(e_1) = te_1 + e_2 \\
\sigma(e_2) = te_1
\end{cases}
\]

Proposition. \(M \) has weights 0 and 1, yet \(M_K \) has no proper pure sub-\(t \)-motifs.

Sketch of proof. On the given basis, the characteristic polynomial of \(\sigma \) is \(f(X) = X^2 - tX - t \). Using the Newton polygon, one verifies that the valuations of zeroes of \(f \) are 0 and \(-1\), whence the weights are 0 and 1.

If \(M \) contains pure sub-\(t \)-motif then it is either isomorphic to \(1 \) or to \(C \). In other words, \(M \) must contain a vector \(v = ae_1 + be_2 \) such that either \(\sigma(v) = v \) or \(\sigma(v) = tv \). The former can be excluded by an argument on the degrees of \(a \) and \(b \), the latter by a calculation modulo \(t \). \(\square \)

7.4 Higher \(\text{Ext} \)

7.4.1. If an abelian category has sufficient injectives or projectives then functors \(\text{Ext}^j(-, -) \) can be defined using resolutions. By [YONEDA 1954]

\(^{(2)} \)See Theorem 2.49 in [MILNE 1994], where this is credited to GROTHENDIECK.

59
these functors have a definition independent of the existence of resolutions, valid on any abelian category. This generalises the identification of Ext\(^1\) with the group of extensions under Baer sum.

7.42. On the abelian category \(tM^\circ\) they vanish:

Theorem. \(\text{Ext}^i_{tM^\circ}(\cdot,\cdot) = 0\), for all \(i > 1\).

Corollary. \(\text{Ext}^i_{tM^\circ_{\text{eff}}}(\cdot,\cdot) = 0\), for all \(i > 1\).

Proof of the Theorem. Clearly it suffices to show that the higher Ext are trivial on \(tM^\circ_{\text{eff}}\). Denote by \(\mathcal{C}\) the category of left modules over the ring

\[
K[t, \sigma] \otimes_{k[t]} k(t).
\]

The functor

\[
M \mapsto M \otimes_{k[t]} k(t)
\]

defines a fully faithful embedding of \(tM^\circ_{\text{eff}}\) into \(\mathcal{C}\). This induces for every pair \(M_1, M_2\) of effective \(t\)-motifs natural maps

\[
\phi^i : \text{Ext}^i_{tM^\circ_{\text{eff}}}(M_1, M_2) \to \text{Ext}^i_{\mathcal{C}}(M_1, M_2).
\]

The category \(\mathcal{C}\) has sufficient projectives and hence the target groups can be calculated using resolutions. In fact, using a \(K[t]\)-basis of an effective \(t\)-motif \(M\) as a set of generators in \(\mathcal{C}\) one sees that every effective \(t\)-motif \(M\) has a free resolution of length at most 1 in \(\mathcal{C}\): the free set of relations expresses the action of \(\sigma\) on the basis. Thus for \(i > 1\) the target groups of \(\phi^i\) vanish.

Proposition 3.3 of [OORT 1964] asserts that if for some \(i\) and all \(M_1\) and \(M_2\) the map \(\phi^i\) is bijective, then (for all \(M_1\) and \(M_2\)) the map \(\phi^{i+1}\) is injective. Thus the Theorem will be shown as soon as \(\phi^1\) is bijective.

This is indeed the case:

\[
\begin{align*}
\text{Ext}^1_{tM^\circ_{\text{eff}}}(M_1, M_2) &= \text{coker}(H \to H') \otimes_{k[t]} k(t) \\
&= \text{coker}(H \otimes k(t) \xrightarrow{\delta \otimes k(t)} H' \otimes k(t)) \\
&= \text{Ext}^1_{\mathcal{C}}(M_1 \otimes k(t), M_2 \otimes k(t)),
\end{align*}
\]

using the flatness of the \(k[t]\)-module \(k(t)\). \(\square\)