Chapter 6

Weights and Purity

6.1 Dieudonné t-Modules

6.1.1. Let k and K be as usual. Denote by τ the continuous endomorphism of the field of Laurent series $K((t^{-1}))$ that fixes t^{-1} and that restricts to the q-th power map on K.

Definition. A Dieudonné t-module$^{(1)}$ over K is a pair (V, σ) of

- a finite-dimensional $K((t^{-1}))$-vector space V and
- an additive map $\sigma : V \to V$ satisfying $\sigma(fv) = \tau(f)\sigma(v)$ for all $f \in K((t^{-1}))$ and all $v \in V$,

such that $K\sigma(V) = V$.

A morphism of Dieudonné t-modules is of course a $K((t^{-1}))$-linear map commuting with σ.

6.1.2. Dieudonné t-modules are easily classified, at least over a separably closed field. The main ‘building blocks’ are the following modules:

Definition. Let $\lambda = s/r$ be a rational number with $(r, s) = 1$ and $r > 0$. The Dieudonné t-module V_λ is defined to be the pair (V_λ, σ) with

- $V_\lambda \overset{\text{def}}{=} K((t^{-1}))e_1 \oplus \ldots \oplus K((t^{-1}))e_r$

$^{(1)}$This the equal characteristic analogue of the p-adic object that is commonly called a Dieudonné module.
\(\sigma(e_i) \overset{\text{def}}{=} e_{i+1} \quad (i < r) \) and \(\sigma(e_r) \overset{\text{def}}{=} t^se_1 \)

The classification states:

Proposition. If \(V \) is a Dieudonné t-module over a separably closed field \(K \) then there exist rational numbers \(\lambda_1, \ldots, \lambda_n \) such that

- \(V \approx V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_n} \), and,
- the \(t^{-1} \)-adic valuations of the roots of the characteristic polynomial of \(\sigma \) expressed on any \(K((t^{-1})) \)-basis are \(\{-\lambda_i\}_{i} \), each counted with multiplicity \(\dim V_{\lambda_i} \).

If \(\lambda \neq \mu \) then \(\text{Hom}(V_{\lambda}, V_{\mu}) = 0 \). For all \(\lambda \), the ring \(\text{End}(V_{\lambda}) \) is a division algebra over \(k((t^{-1})) \). Its Brauer class is \(\lambda + \mathbb{Z} \in \mathbb{Q}/\mathbb{Z} = \text{Br}(k((t^{-1}))). \)

Note that this classification is formally identical to the classification of the classical (\(p \)-adic) Dieudonné modules.\(^{(2)}\)

Proof. This is shown in Appendix B of [Laumon 1996]. Although the statements therein are made only for a particular field \(K \), nowhere do the proofs make use of anything stronger then the separably closedness of \(K \). \(\square \)

6.1.3. The following characterisation of \(V_{\lambda} \) is useful.

Proposition. Let \(V \) be a Dieudonné t-module over a separably closed field \(K \) and \(\lambda \) a rational number. The following are equivalent:

- \(V \approx V_{\lambda} \oplus V_{\lambda} \oplus \cdots \oplus V_{\lambda} \);
- there exists a lattice \(\Lambda \subset V \) such that \(\sigma^r(\Lambda) = t^s\Lambda \) where \(r \) and \(s \) are coprime integers with \(\lambda = s/r \).

Proof. One \(\Rightarrow \) Two. If \(V = V_{\lambda} \) and \((e_i) \) the basis that occurs in its definition (6.1.2) then the lattice generated by the same basis \((e_i) \) has the required property. For \(V = V_{\lambda} \oplus \cdots \oplus V_{\lambda} \) it thus suffices to take the lattice \(\Lambda \oplus \cdots \oplus \Lambda \).

\(^{(2)}\) See [Dieudonné 1957].
Two ⇒ One. The operator $t^{-s} \sigma^r$ transforms a $K[[t^{-1}]]$-basis of Λ into a new $K[[t^{-1}]]$-basis of Λ and therefore has eigenvalues of valuation 0. □

6.2 Pure t-Motifs

6.2.1. Let K be separably closed. Let M be an effective t-motif over K. Then

$$M((t^{-1})) \overset{\text{def}}{=} M \otimes_{K[[t]]} K((t^{-1})) = M(t) \otimes_{K(t)} K((t^{-1}))$$

is a Dieudonné t-module. The displayed equality shows that it only depends on the isogeny class of M. By the classification of Dieudonné t-modules (6.1.2) there exist rational numbers $\lambda_1, \ldots, \lambda_n$ such that

$$M((t^{-1})) \approx V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_n}.$$

We call these rational numbers the weights of M. If K is not separably closed than we define the weights of an effective t-motif M to be the weights of $M_{K'}$. This clearly does not depend on the choice of a separable closure.

We say that M is pure of weight λ if the only weight occurring is λ. By Proposition 6.1.3, this coincides with the definition as given in [Anderson 1986].

6.2.2. We now collect a number of facts related to the notions of weights and purity. They are either immediate consequences of the definitions or well-known facts established in the literature.

Proposition. We have the following:

- If M is pure of weight λ then every subquotient of M is pure of weight λ;
- If M has a filtration in which all successive quotients are pure of weight λ, then M is pure of weight λ;
- If the sets of weights of M_1 and M_2 are disjoint then $\text{Hom}(M_1, M_2) = 0$;
- Drinfeld modules of rank r are pure of weight $1/r$ (in particular: C is pure of weight 1);
• The weights of $M_1 \otimes M_2$ are the sums of weights of M_1 with those of M_2.
• The weight of a pure effective t-motif M is non-negative.

Proofs. One. If M' is a subquotient of M then $M'((t^{-1}))$ is a subquotient of $M((t^{-1}))$ and the claimed statement follows at once from the Classification 6.1.2.

Two. A normal series of M induces a normal series of $M((t^{-1}))$ and again the contention follows from 6.1.2.

Three. $\text{Hom}(M_1, M_2)$ is a submodule of $\text{Hom}(M_1((t^{-1})), M_2((t^{-1})))$, which is zero by 6.1.2.

Four. See Proposition 4.1.1. of [Anderson 1986].

Five. Immediate since the zeroes of the characteristic polynomials are multiplied.

Six. Clear for rank one M, for a general M take the top exterior power. \square

6.2.3. If M is an effective t-motif and

$$M((t^{-1})) \approx V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_n}$$

then by the Proposition

$$(M \otimes C)((t^{-1})) \approx V_{\lambda_{1}+1} \oplus \cdots \oplus V_{\lambda_{n}+1}.$$

It is thus natural to define the weights of a t-motif (M, i) to be the set of $\lambda + i$ where λ runs through the weights of M. To be consistent, a t-motif (M, i) is then said to be pure of weight λ if and only if M is pure of weight $\lambda - i$.

6.3 A Digression on Brauer Groups

6.3.1. Let M be a t-motif that is pure of weight λ. Thus $M((t^{-1})) \approx nV_\lambda$ and by Proposition 6.1.2 the endomorphism ring $\text{End}(M((t^{-1})))$ is a central simple algebra whose class in the Brauer group of $k((t^{-1}))$ is $\lambda + \mathbb{Z}$. Thus, the map

$$\{\text{weights}\} = \mathbb{Q} \rightarrow \mathbb{Q}/\mathbb{Z} = \text{Br}(k((t^{-1})))$$

52
has some kind of interpretation in terms of Dieudonné t-modules of pure t-motifs.

6.3.2. Classical motifs also have weights, and these weights form an infinite cyclic group. If we normalise things so that the Lefschetz motif has weight 1, then the weight group is $\frac{1}{2}\mathbb{Z}$. A piece of the degree i cohomology $h^i(X)$ then has weight $i/2$. All this seems to harmonise easily with the fact that the Brauer group of \mathbb{R} is cyclic of order two—it suggests that the map

$$\{\text{weights}\} = \frac{1}{2}\mathbb{Z} \rightarrow \frac{1}{2}\mathbb{Z}/\mathbb{Z} = \text{Br}(\mathbb{R}),$$

can be interpreted in a fashion similar to the above.

6.3.3. We shall sketch one possible such interpretation, albeit a somewhat *ad hoc* one. Let X be a smooth and projective variety over \mathbb{C}. Put $V = H^i(X(\mathbb{C}), \mathbb{C})$. The complex vector space V comes equipped with a Hodge decomposition

$$V = \bigoplus_{p+q=i} H^{p,q}.$$

Let α be the anti-linear automorphism of the complexified co-tangent bundle of X that is the composition of the linear automorphism ‘multiplication with i’ followed by complex conjugation. Then α induces an anti-linear automorphism α^* of V. On the Hodge decomposition it restricts to

$$\alpha^*: H^{p,q} \rightarrow H^{q,p}: c \mapsto i^{q-p} \overline{c}.$$ (6.1)

The endomorphisms of V that commute with α^* form an \mathbb{R}-algebra denoted $\text{End}(V, \alpha^*)$. Starting from (6.1) an easy calculation yields

$$\text{End}(V, \alpha^*) \approx \begin{cases} M(n, \mathbb{R}) & \text{if } i \text{ even}, \\ M(n/2, \mathbb{H}) & \text{if } i \text{ odd}, \end{cases}$$

where n stands for the dimension of V and \mathbb{H} for the algebra of Hamilton quaternions. We conclude that the two elements of the Brauer group of \mathbb{R} correspond to the two weight classes modulo \mathbb{Z}.

Footnote: This is *not* the customary normalisation—one usually assigns the weight 2 to the Lefschetz motif.