On t-Motifs
Taelman, Lenny

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Chapter 6

Weights and Purity

6.1 Dieudonné t-Modules

6.1.1. Let k and K be as usual. Denote by τ the continuous endomorphism of the field of Laurent series $K((t^{-1}))$ that fixes t^{-1} and that restricts to the q-th power map on K.

Definition. A Dieudonné t-module\(^{(1)}\) over K is a pair (V, σ) of

- a finite-dimensional $K((t^{-1}))$-vector space V and
- an additive map $\sigma : V \to V$ satisfying $\sigma(fv) = \tau(f)\sigma(v)$ for all $f \in K((t^{-1}))$ and all $v \in V$,

such that $K\sigma(V) = V$.

A morphism of Dieudonné t-modules is of course a $K((t^{-1}))$-linear map commuting with σ.

6.1.2. Dieudonné t-modules are easily classified, at least over a separably closed field. The main ‘building blocks’ are the following modules:

Definition. Let $\lambda = s/r$ be a rational number with $(r, s) = 1$ and $r > 0$. The Dieudonné t-module V_λ is defined to be the pair (V_λ, σ) with

- $V_\lambda \overset{\text{def}}{=} K((t^{-1}))e_1 \oplus \ldots \oplus K((t^{-1}))e_r$

\(^{(1)}\)This the equal characteristic analogue of the p-adic object that is commonly called a Dieudonné module.
• \(\sigma(e_i) \overset{\text{def}}{=} e_{i+1} \) (\(i < r \)) and \(\sigma(e_r) \overset{\text{def}}{=} t^s e_1 \)

The classification states:

Proposition. If \(V \) is a Dieudonné \(t \)-module over a separably closed field \(K \) then there exist rational numbers \(\lambda_1, \ldots, \lambda_n \) such that

- \(V \approx V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_n} \), and,
- the \(t^{-1} \)-adic valuations of the roots of the characteristic polynomial of \(\sigma \) expressed on any \(K((t^{-1})) \)-basis are \(\{-\lambda_i\}_i \), each counted with multiplicity \(\dim V_{\lambda_i} \).

If \(\lambda \neq \mu \) then \(\text{Hom}(V_{\lambda}, V_{\mu}) = 0 \). For all \(\lambda \), the ring \(\text{End}(V_{\lambda}) \) is a division algebra over \(k((t^{-1})) \). Its Brauer class is \(\lambda + \mathbb{Z} \in \mathbb{Q}/\mathbb{Z} = \text{Br}(k((t^{-1}))) \).

Note that this classification is formally identical to the classification of the classical \((p\text{-adic})\) Dieudonné modules.\(^{(2)}\)

Proof. This is shown in Appendix B of [Laumon 1996]. Although the statements therein are made only for a particular field \(K \), nowhere do the proofs make use of anything stronger than the separably closedness of \(K \). \(\square \)

6.1.3. The following characterisation of \(V_{\lambda} \) is useful.

Proposition. Let \(V \) be a Dieudonné \(t \)-module over a separably closed field \(K \) and \(\lambda \) a rational number. The following are equivalent:

- \(V \approx V_{\lambda} \oplus \cdots \oplus V_{\lambda} \),
- there exists a lattice \(\Lambda \subset V \) such that \(\sigma^r(\Lambda) = t^s \Lambda \) where \(r \) and \(s \) are coprime integers with \(\lambda = s/r \).

Proof. One \(\Rightarrow \) Two. If \(V = V_{\lambda} \) and \((e_i) \) the basis that occurs in its definition (6.1.2) then the lattice generated by the same basis \((e_i) \) has the required property. For \(V = V_{\lambda} \oplus \cdots \oplus V_{\lambda} \) it thus suffices to take the lattice \(\Lambda \oplus \cdots \oplus \Lambda \).

\(^{(2)}\)See [Dieudonné 1957].
Two ⇒ One. The operator $t^{-s} \sigma^r$ transforms a $K[[t^{-1}]]$-basis of Λ into a new $K[[t^{-1}]]$-basis of Λ and therefore has eigenvalues of valuation 0.

6.2 Pure t-Motifs

6.2.1. Let K be separably closed. Let M be an effective t-motif over K. Then

$$M((t^{-1})) \overset{\text{def}}{=} M \otimes_{K[[t]]} K((t^{-1})) = M(t) \otimes_{K(t)} K((t^{-1}))$$

is a Dieudonné t-module. The displayed equality shows that it only depends on the isogeny class of M. By the classification of Dieudonné t-modules (6.1.2) there exist rational numbers $\lambda_1, \ldots, \lambda_n$ such that

$$M((t^{-1})) \approx V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_n}.$$

We call these rational numbers the weights of M. If K is not separably closed than we define the weights of an effective t-motif M to be the weights of M_K. This clearly does not depend on the choice of a separable closure.

We say that M is pure of weight λ if the only weight occurring is λ. By Proposition 6.1.3, this coincides with the definition as given in [Anderson 1986].

6.2.2. We now collect a number of facts related to the notions of weights and purity. They are either immediate consequences of the definitions or well-known facts established in the literature.

Proposition. We have the following:

- If M is pure of weight λ then every subquotient of M is pure of weight λ;
- If M has a filtration in which all successive quotients are pure of weight λ, then M is pure of weight λ;
- If the sets of weights of M_1 and M_2 are disjoint then $\text{Hom}(M_1, M_2) = 0$;
- Drinfeld modules of rank r are pure of weight $1/r$ (in particular: C is pure of weight 1);
• The weights of $M_1 \otimes M_2$ are the sums of weights of M_1 with those of M_2;
• The weight of a pure effective t-motif M is non-negative.

Proofs. One. If M' is a subquotient of M then $M'((t^{-1}))$ is a subquotient of $M((t^{-1}))$ and the claimed statement follows at once from the Classification 6.1.2.

Two. A normal series of M induces a normal series of $M((t^{-1}))$ and again the contention follows from 6.1.2.

Three. $\text{Hom}(M_1, M_2)$ is a submodule of $\text{Hom}(M_1((t^{-1})), M_2((t^{-1})))$, which is zero by 6.1.2.

Four. See Proposition 4.1.1. of [Anderson 1986].

Five. Immediate since the zeroes of the characteristic polynomials are multiplied.

Six. Clear for rank one M, for a general M take the top exterior power. \qed

6.2.3. If M is an effective t-motif and

$$M((t^{-1})) \approx V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_n}$$

then by the Proposition

$$(M \otimes C)((t^{-1})) \approx V_{\lambda_1+1} \oplus \cdots \oplus V_{\lambda_n+1}.$$

It is thus natural to define the weights of a t-motif (M, i) to be the set of $\lambda + i$ where λ runs through the weights of M. To be consistent, a t-motif (M, i) is then said to be pure of weight λ if and only if M is pure of weight $\lambda - i$.

6.3 A Digression on Brauer Groups

6.3.1. Let M be a t-motif that is pure of weight λ. Thus $M((t^{-1})) \approx nV_{\lambda}$ and by Proposition 6.1.2 the endomorphism ring $\text{End}(M((t^{-1})))$ is a central simple algebra whose class in the Brauer group of $k((t^{-1}))$ is $\lambda + Z$. Thus, the map

$$\{\text{weights}\} = \mathbb{Q} \rightarrow \mathbb{Q}/Z = \text{Br}(k((t^{-1})))$$
has some kind of interpretation in terms of Dieudonné t-modules of pure t-motifs.

6.3.2. Classical motifs also have weights, and these weights form an infinite cyclic group. If we normalise things so that the Lefschetz motif has weight 1\(^{(3)}\) then the weight group is $\frac{1}{2}\mathbb{Z}$. A piece of the degree i cohomology $h^i(X)$ then has weight $i/2$. All this seems to harmonise easily with the fact that the Brauer group of R is cyclic of order two—it suggests that the map

$$\{\text{weights}\} = \frac{1}{2}\mathbb{Z} \rightarrow \frac{1}{2}\mathbb{Z} / \mathbb{Z} = \text{Br}(R),$$

can be interpreted in a fashion similar to the above.

6.3.3. We shall sketch one possible such interpretation, albeit a somewhat ad hoc one. Let X be a smooth and projective variety over \mathbb{C}. Put $V = H^i(X(\mathbb{C}), \mathbb{C})$. The complex vector space V comes equipped with a Hodge decomposition

$$V = \bigoplus_{p+q=i} H^{p,q}.$$

Let α be the anti-linear automorphism of the complexified co-tangent bundle of X that is the composition of the linear automorphism ‘multiplication with i’ followed by complex conjugation. Then α induces an anti-linear automorphism α^* of V. On the Hodge decomposition it restricts to

$$\alpha^* : H^{p,q} \rightarrow H^{q,p} : c \mapsto i^{q-p} \bar{c}. \quad (6.1)$$

The endomorphisms of V that commute with α^* form an R-algebra denoted $\text{End}(V, \alpha^*)$. Starting from (6.1) an easy calculation yields

$$\text{End}(V, \alpha^*) \approx \begin{cases} M(n, \mathbb{R}) & \text{if } i \text{ even}, \\ M(\frac{n}{2}, \mathbb{H}) & \text{if } i \text{ odd}, \end{cases}$$

where n stands for the dimension of V and \mathbb{H} for the algebra of Hamilton quaternions. We conclude that the two elements of the Brauer group of R correspond to the two weight classes modulo \mathbb{Z}.

\(^{(3)}\)This is not the customary normalisation—one usually assigns the weight 2 to the Lefschetz motif.