Chapter 4

Constant t-Motifs

4.1 Constant t-Motifs

4.1.1. Let us go back to the category of 1.1.2, whose objects are pairs (V, σ) of a finite dimensional K-vector space V equipped with a non-degenerate semilinear map $\sigma : V \to V$. We have seen in Theorem 1.1.2 that this category is equivalent to the category of k-linear continuous representations of $G_K = \text{Gal}(K^s/K)$, a fact that we could rephrase as: the category of pairs (V, σ) is k-linear neutral Tannakian with fundamental group G_K. Note that we abusively write G_K for both the pro-finite group and the corresponding constant affine group scheme over k (obtained as the limit of the system of finite constant group schemes corresponding to the finite quotients of the pro-finite group.) Their categories of representations on finite dimensional k-vector spaces coincide.

4.1.2. A pair (V, σ) induces an effective t-motif $M(V) \overset{\text{def}}{=} V \otimes_K K[t]$ where the action of σ is induced from the action on V.

We would like to interpret the collection of t-motifs $M(V)$ as a Tannakian subcategory of $t\mathcal{M}$, but there are of course many more morphisms $M(V_1) \to M(V_2)$ than morphisms $V_1 \to V_2$ and the kernel and cokernel of a morphism from $M(V_1)$ to $M(V_2)$ are typically not of the form $M(V)$.

Proposition. Let M be an effective t-motif over K. The following are equiva-
lent:

- M is isomorphic to a subquotient of $M(V)$ for some V,
- $M \otimes_K K^\sigma \approx n \mathbf{1}$ for some n.

An M satisfying the equivalent conditions is called a constant t-motif.

Proof of the Proposition. If M is a subquotient of $M(V)$ then M_K is a subquotient of $M(V_K) \approx m \mathbf{1}$ and therefore $M_K \approx n \mathbf{1}$.

Conversely, assume that M_K has a basis of σ-invariant vectors. There exists some finite extension K' / K inside K^σ such that this basis is already defined over K'. The natural map $K[t] \rightarrow K'[t]$ defines the structure of a $K[t]$-module on M'. Denote it by $R_{K'/K}M'$ in order to distinguish it from the $K'[t]$-module M'. It is clear that $R_{K'/K}M'$ is naturally an effective t-motif over K of rank $\text{rk}(M)[K' : K]$. (Call it the Weil restriction\(^{(1)}\) of M' from K' to K.) But, M is a submodule of $R_{K'/K}M' \otimes_K K^\sigma$ and the latter is isomorphic to $M(R_{K'/K}W)$ with W the sum of a number of copies of K' with the diagonal action of σ, whence the Proposition. \(\square\)

4.1.3. The full subcategory $t\mathcal{M}_{\text{cst}}(K)$ of $t\mathcal{M}(K)$ consisting of the constant (effective) t-motifs is rigid abelian $k(t)$-linear and has a fibre functor

$$M \rightsquigarrow (M \otimes_{K[t]} K^\sigma[t])^\sigma \otimes_{k[t]} k(t)$$

and with this fibre functor we have

Proposition. $t\mathcal{M}_{\text{cst}}(K)$ is neutral Tannakian with fundamental group G_K.

Note that it is not needed to use analytic methods to obtain a fibre functor on constant t-motifs and in particular it is not needed to demand that $k[t] \rightarrow K$ be injective.

Proof of the Proposition. The functor $M(V) \rightsquigarrow H(V) \otimes_k k(t)$ induces a fully faithful embedding of $t\mathcal{M}_{\text{cst}}(K)$ into the category of $k(t)$-linear representations of G_K. It will be essentially surjective as soon as every continuous $k(t)$-linear representation of G_K is a subquotient of $H \otimes_k k(t)$

\(^{(1)}\)After §1.3 of [Weil 1982].
for some k-linear representation H. This is indeed so, since every (algebraic, or continuous) representation of G_K factors though a finite group G and every representation of G is a subquotient of the direct sum of a number of copies of the regular representation $k(t)[G]$, which is nothing but the regular representation $k[G]$ over k, tensored with $k(t)$. □

4.1.4. Constant t-motifs are the t-counterparts of the algebro-geometric Artin motifs (named after Emil Artin.) Let $\mathbb{Z} \rightarrow K$ be any field. Consider the category of smooth and projective varieties X over K that are of dimension zero. These are the spectra of the finite étale K-algebras and by Grothendieck’s formulation of Galois theory the category of such X is equivalent to the category of finite G_K-sets. The motifs that are subquotients of the $h(X, \mathbb{Q})$ for zero-dimensional X are called Artin motifs. They form a category which is equivalent to the category of \mathbb{Q}-linear representations of G_K.\(^{(2)}\)

Thus sets have come to play the role of k-vector spaces. But then, the field of constants of \mathbb{Z} is the hypothetical field with one element and vector spaces over this folkloric field are nothing but sets.\(^{(3)}\)

4.2 The Connected Components of Γ

4.2.1. Suppose now that $k[t] \rightarrow K$ is actually injective. Choose $K^\dagger \supset K$ to be algebraically closed, complete and with $\|\theta\| > 1$. Let K^s be the separable closure of K inside K^\dagger. For a constant t-motif M we have that

$$(M \otimes_{K[t]} K^s[t])^\sigma = (M \otimes_{K[t]} K^\dagger(\{t\}))^\sigma.$$

That is to say, $t\mathcal{M}(K)^\circ_{\text{cst}}$ is a full sub-category of $t\mathcal{M}(K)^\circ_{\text{a.t.}}$ and the analytic fibre functor on the latter extends the algebraic fibre functor on the former.

Proposition. There is a short exact sequence

$$0 \rightarrow \Gamma_{K^s} \rightarrow \Gamma_K \rightarrow G_K \rightarrow 0$$

\(^{(2)}\)See §1.3 and §4.1 of [André 2004].

\(^{(3)}\)See §13 of [Tits 1957].
of affine group schemes over $k(t)$.

4.2.2. Proof. The full subcategory $t\mathcal{M}_\text{ct}^\circ(K)$ of $t\mathcal{M}_\text{at}^\circ(K)$ is Tannakian with fundamental group G_K (4.1.3) and is closed under subquotients in $t\mathcal{M}_\text{at}^\circ$ by definition. This implies the existence of a faithfully flat, and hence surjective, morphism $\Gamma_K \to G_K$ of affine group schemes.(4)

If M is an effective t-motif over K_s, then it has a model M' over a finite extension K' of K. The t-motif M is a submotif of $R_{K'/K}M' \otimes_K K^\alpha$. Thus every t-motif over K^α is a submotif of a t-motif that is already defined over K. It follows that the fully faithful functor $M \rightsquigarrow M_{K_s}$ from $t\mathcal{M}_\text{at}^\circ(K)$ to $t\mathcal{M}_\text{at}^\circ(K^\alpha)$ defines a closed immersion $\Gamma_{K_s} \to \Gamma_K$. (5)

The sequence is exact in the middle if and only if the representations of Γ_K on which Γ_{K_s} acts trivially are precisely those coming from a representation of G_K. In other words, the exactness is equivalent with the statement that a t-motif M over K satisfies $M_{K_s} \cong n1$ for some n if and only if it is a constant t-motif. This was one of the equivalent definitions of the notion of a constant t-motif (see 4.1.2). \hfill \Box

4.2.3. The following Theorem complements the Proposition.

Theorem. Γ_{K_s} has no finite quotients. In particular it is connected.

First part of the proof. Note that $\Gamma \to \pi_0(\Gamma)$ is a pro-finite étale quotient, hence the second statement indeed follows from the first.

Let G be a finite quotient of Γ_{K_s}. To this there corresponds a Tannakian subcategory C of $t\mathcal{M}_\text{at}^\circ(K^\alpha)$, equivalent to the category of representations of G. Since G is finite, C contains a t-motif M such that every t-motif in C is a subquotient of nM for some n. (It suffices to take the M corresponding to the regular representation of G.) The algebraic group G is trivial if and only if M is constant.

Write M as (M', i) with i maximal. $M \otimes M$ is a subquotient of nM for n sufficiently large. Equivalently, $M' \otimes M' \otimes C^i$ is a subquotient of nM' and since subquotients of effective t-motifs are effective, it follows that $M' \otimes M' \otimes C^i$ is effective. If i is negative, then this implies that the action

(4) See for example Proposition 2.21 (a) of [Deligne and Milne 1982].
(5) See Proposition 2.21 (b) of loc. cit.
of σ on $M' \otimes M'$ is divisible by $t - \theta$ and hence also that the action of σ on M' is divisible by $t - \theta$, contradicting the maximality of i. Therefore $i \geq 0$ and $M = (M', i)$ is effective.

Using analytic methods, it will be shown in Chapter 8 that if M is an analytically trivial effective t-motif so that $M \otimes M$ is a subquotient of nM for some n, then M is constant, hence G trivial, and the Theorem follows... (to be continued in 8.4.2)