References

2. Jaffe ES, Harris NL, Stein H et al. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. 2001;

56. Derenne S, Monia B, Dean NM et al. Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells. Blood 2002;100:194-9.

60. Quintanilla-Martinez L, Kremer M, Specht K et al. Analysis of signal transducer and activator of transcription 3 (Stat 3) pathway in multiple myeloma: Stat 3 activation and cyclin D1 dysregulation are mutually exclusive events. American Journal of Pathology 2003;162:1449-61.

65. Lacey DL, Timms E, Tan HL et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998;93:165-76.

77. Tian E. Elevated expression of WNT signaling antagonists DKK1 and FrzB by malignant plasma cells is strongly associated with lytic bone disease in myeloma. The Hematology Journal 2003;S19.

References

99. Richardson PG. A multi-center randomized phase II study to evaluate the efficacy and safety of two CC-5013 dose regimens, when used alone or in combination with dexamethasone for the treatment of relapsed or refractory multiple myeloma. Blood 2002;100:104a (abstract).

References

114. Tricot G, Spencer T, Sawyer J et al.
Predicting long-term (> or = 5 years) event-free survival in multiple myeloma patients following planned tandem autotransplants.

Single versus double autologous stem-cell transplantation for multiple myeloma.

116. Cavo M.
Single versus tandem autologous transplants in multiple myeloma: Italian experience (abstract).

117. Barlogie B.
High dose therapy versus conventional chemotherapy for newly diagnosed multiple myeloma: historical comparison of total therapy I versus standard SWOG trials and US intergroup trial SWOG 9321.
The Hematology Journal 2003;4:S57.

Molecular and clinical remissions in multiple myeloma: role of autologous and allogeneic transplantation of hematopoietic cells.

119. Libura J, Hoffmann T, Passweg J et al.
Graft-versus-myeloma after withdrawal of immunosuppression following allogeneic peripheral stem cell transplantation.
Bone Marrow Transplantation 1999;24:925-7.

120. Salama M, Nevill T, Marcellus D et al.
Donor leukocyte infusions for multiple myeloma.
Bone Marrow Transplantation 2000;26:1179-84.

121. Singhal S, Mehta J, Desikan R et al.
Antitumor activity of thalidomide in refractory multiple myeloma.

Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: identification of prognostic factors in a phase 2 study of 169 patients.

Low-dose thalidomide in combination with oral weekly cyclophosphamide and pulsed dexamethasone is a well tolerated and effective regimen in patients with relapsed and refractory multiple myeloma.

124. Hovenga S, Daenen SMGJ, de Wolf JThM et al.
Combined thalidomide and cyclophosphamide treatment for refractory or relapsed multiple myeloma patients: a prospective phase II study.

147. Vellenga E, de Wolf JThM, Beentjes JAM et al. **Divergent effects of interleukin-4 (IL-4) on the granulocyte colony-stimulating factor and IL-3-supported myeloid colony formation from normal and leukemic bone marrow cells.** Blood 1990;75:633-7.

References

193. Oakervee HE, McBride NC, Hemmaway CJ. Thalidomide combined with vincristine, adriamycin and dexamethasone (T-VAD) is effective treatment for multiple myeloma and does not prejudice successful stem cell harvesting. Blood 2002;100:402A.

197. Chung F, Palmer BD, Muller GW et al. Effect of 3-fluorothalidomide and 3-methylthalidomide enantiomers on tumor necrosis factor production and antitumor responses to the antivascular agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Oncology Research 2003;14:75-82.

References

References

References

