Mating decisions in a hybrid zone

Veen, Thor

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Sex chromosome-linked species recognition and evolution of reproductive isolation in flycatchers

Stein A. Sæther, Glenn-Peter Sætre, Thomas Borge, Chris Wiley, Nina Svedin, Gunilla Andersson, Thor Veen, Jon Haavie, Maria R. Servedio, Stanislav Bureš, Miroslav Král, Mårten B. Hjernquist, Lars Gustafsson, Johan Träff & Anna Qvarnström

Science 318, 95-97.
Abstract

Interbreeding between species (hybridization) typically produces unfit offspring. Reduced hybridization should therefore be favored by natural selection. However, this is difficult to accomplish because hybridization also sets the stage for genetic recombination to dissociate species-specific traits from the preferences for them. Here we show that this association is maintained by physical linkage (on the same chromosome) in two hybridizing *Ficedula* flycatchers. By analyzing the mating patterns of female hybrids and cross-fostered offspring, we demonstrate that species recognition is inherited on the Z chromosome, which is also the known location of species-specific male plumage traits and genes causing low hybrid fitness. Limited recombination on the Z chromosome maintains associations of Z-linked genes despite hybridization, suggesting that the sex chromosomes may be a hotspot for adaptive speciation.

Note: minor changes have been made to this chapter in comparison to the published version (headings have been added to the text).
Introduction

Reproductive isolation is traditionally viewed as an incidental by-product of genetic divergence during geographic isolation. However, many diverged populations come into contact before complete reproductive isolation has evolved. In such cases, natural selection against maladaptive interbreeding (hybridization) may complete speciation by reinforcing a tendency to mate with one's own kind (assortative mating) (Dobzhansky 1940; Servedio and Noor 2003; Coyne and Orr 2004). This process, termed reinforcement, is of potentially great evolutionary significance because it suggests that reproductive isolation itself can be an adaptive response to natural selection. However, the empirical support for reinforcement is limited, and the conditions under which it can theoretically occur are sometimes strict (Kirkpatrick and Ravigné 2002; Servedio and Noor 2003).

Selection for assortative mating favors the buildup of genetic associations between components of assortative mating (species-specific traits and the preferences for these traits) and between such pre-zygotic barriers and low hybrid fitness (post-zygotic barriers). However, DNA recombination during hybridization breaks these associations necessary for speciation (Felsenstein 1981). Using a combination of field experiments, molecular techniques, and long-term breeding data from hybrid zones of wild birds in the Czech Republic and Sweden, we tested this central problem of reinforcement: How can the traits involved in reproductive isolation remain associated in the face of gene flow?

Two solutions to this problem have been suggested. First, species recognition can occur through a "one-allele mechanism": a single allele, established in both incipient species, can cause assortative mating (Felsenstein 1981; Servedio and Noor 2003; Ortíz-Barrientos and Noor 2005). For example, sexual imprinting is a widespread phenomenon in birds (ten Cate and Vos 1999), whereby females learn the traits of their fathers and later prefer similar males as mates. An allele causing sexual imprinting would make recombination irrelevant, because it would result in opposite mate preferences in the two species (Servedio et al. in press; Irwin and Price 1999; ten Cate and Vos 1999). Second, recombination can be suppressed through, for example, physical linkage of genes (Felsenstein 1981; Trickett and Butlin 1994; Servedio 2000; Ortíz-Barrientos et al. 2002; Servedio and Noor 2003; Servedio and Sætre 2003). Recent theoretical studies have highlighted the idea that sex linkage (placement on a sex chromosome) of species-recognition genes may enhance reinforcement when, as is often the case, genes causing low hybrid fitness are also sex-linked (Servedio et al. in press; Servedio and Sætre 2003; Hall and Kirkpatrick 2006; Lemmon and Kirkpatrick 2006). We tested whether species recognition is due to sex-linked preferences, sexual imprinting, or autosomally inherited preferences in an avian system with evidence for reinforcement (Sætre et al. 1997b).
Flycatchers
Where the breeding distributions of pied flycatchers (*Ficedula hypoleuca* (pied)) and collared flycatchers (*F. albicollis* (collared)) overlap (sympatry), the populations mate assortatively with respect to species (Veen et al. 2001). However, some interbreeding occurs (2 to 5% of pairs (Veen et al. 2001)), and the resulting hybrids have reduced fitness, female hybrids being sterile (Veen et al. 2001). Despite gene flow through male hybrids (Sætre et al. 2003), both male plumage and female mate preferences have diverged furthest in sympatric areas, presumably to facilitate avoiding hybridization (Sætre et al. 1997b).

Genes causing hybrid incompatibility and genes influencing the expression of diverged male plumage traits are both located on the *Z* sex chromosome in flycatchers (Sætre et al. 2003). Genes on the *Z* chromosome are in general likely to recombine less than if they were on autosomes; for instance, because sex chromosome recombination can occur only in the homogametic sex (supporting online text). In fact, previous studies have failed to detect any interspecific recombination between the *Z* chromosomes of hybridizing flycatchers, whereas autosomes recombine between the species (Sætre et al. 2003). If genes on the *Z* also determine species recognition by females, recombination between loci that are important for reinforcement would be greatly reduced.

Mating patterns of hybrids
In birds, females inherit half of their autosomal genes from either parent, but their single *Z* chromosome solely from their father. We used this fact to distinguish between whether species recognition is inherited on autosomes or is paternally determined (by *Z* linkage or learned by sexual imprinting on fathers). If mate preferences are paternally determined, the mate choice of female hybrids should vary according to the species of their father, corresponding to that of pure females of the paternal species. To determine the paternal and maternal species of female hybrids, as well as their status as F1 hybrids, we used species-specific genetic markers at the *Z* chromosome (paternally inherited) and in the mitochondrial genome (maternally inherited) (for more information see appendix 6.1).

a) female hybrids
We found that female hybrids having a pied father predominately mated with a pied male, whereas female hybrids having a collared father predominately mated with a collared male (figure 6.1A). Only 4 out of 31 female hybrids mated with a male of the maternal species. Thus, there was a nonrandom association between the species of a female hybrid’s father and the species of her mate ($\chi^2 = 12.37$, exact $p = 0.001$, $n = 31$ hybrids); excluding matings with male hybrids (Fisher’s exact test, $p = 0.001$, $n = 29$). This pattern was present in both Czech ($p = 0.048$, $n = 9$) and Swedish ($p = 0.062$, $n = 22$) sympatric areas.
b) male hybrids

Male hybrids, on the other hand, inherit a Z chromosome from both parental species and are unaffected by sexual imprinting because male flycatchers do not discriminate against heterospecific partners (Sætre et al. 1997a). As expected, there was no association between the paternal species of male hybrids and the species of their mate (Fisher's exact test, n = 42, p = 1, figure 6.1B). This implies that the pattern observed in female hybrids is not simply some artefact of hybrids but is consistent only with paternal inheritance (through Z linkage or sexual imprinting) of species recognition; this therefore eliminates autosomal inheritance as the mechanism behind species-assortative mating.

Sexual imprinting or Z linkage?

Flycatchers provide an ideal system in which to disentangle sexual imprinting from Z linkage, because hybridizing females often engage in extrapair copulations with conspecific males (Veen et al. 2001), resulting in purebred offspring being reared by cuckolded heterospecific males. We used multi-generational breeding data to analyze the mate choices of such pure female flycatchers that had been reared by a male of the other species. If assortative mating is due to sexual imprinting, these females should prefer heterospecific males as their mates. We also experimentally cross-fostered offspring between nests of the two species and recorded the mate choice of cross-fostered females that returned to breed. Under genetic inheritance of species recognition, cross-fostered females should mate as other females of their own species, whereas under sexual imprinting, they should mate as females of the foster father's species (for more information see appendix 6.1).
Figure 6.2. Mating patterns of female flycatchers reared by heterospecific foster fathers compared to expectations based on sexual imprinting or genetic inheritance of species recognition. In each panel, the first bar shows the mating pattern of females reared by heterospecific foster fathers. The upper panels (A and B) show mating patterns of females naturally raised in mixed-species nests by cuckolded heterospecific stepfathers (natural cross-fostered), and the lower panels (C and D) show mating patterns of females experimentally transferred to heterospecific nests (experimental cross-fostered). The left panels [(A) and (C)] refer to collared flycatchers, whereas the right panels [(B) and (D)] present pied flycatchers. The expected mating patterns (specific to the population in which the focal patterns were obtained) were constructed in two ways, using either the mating pattern in the population (all pairs) or using only the mating pattern of females born in nests of known pure pairs (recruits only). P values indicate the exact binomial two-tailed probability of obtaining the observed focal mating pattern of females reared by heterospecific fathers (number of such females mating with conspecific males versus other males) under the different expected proportions. N indicates number of breeding pairs.
In contrast to prevailing views on the development of sexual preferences in birds (ten Cate and Vos 1999), figure 6.2 shows that females did not become sexually imprinted on their social father. Instead, females with a heterospecific foster father mated with conspecific males to the same extent as other females of their own species did. This conclusion applies to females of both species, using both naturally (figure 6.2, A and B) and experimentally (figure 6.2, C and D) cross-fostered offspring and regardless of whether expected mating patterns were calculated from all breeding pairs or from recruits of known parents only. Although some of the sample sizes are small because of the rarity of these events, the evidence is overwhelming that species recognition does not develop by sexual imprinting in these birds. Instead, our results imply that species-assortative mating has a genetic basis.

Discussion

Assuming Mendelian inheritance, the different mate preference of the two kinds of female hybrids is solely consistent with Z linkage. A non-Mendelian epigenetic possibility is that the preference genes are autosomally inherited, but only the paternal allele is expressed (maternal genomic imprinting). However, such parent-of-origin effects have not been found in birds (O’Neill et al. 2000). Moreover, they are not expected to occur in birds according to one predominant theory of the evolution of genomic imprinting, and genes that are imprinted in mammals show ordinary bi-allelic expression in birds (O’Neill et al. 2000). We therefore conclude that species-assortative mating preferences in flycatcher hybrid zones are mainly due to Z-linked genes.

All three major components of reproductive isolation (species recognition, species-specific male traits, and hybrid incompatibilities) being Z linked in flycatchers should facilitate an evolutionary response to natural selection against hybridization. This is because genetic associations between the male and the female components of pre-zygotic barriers to gene flow, as well as between pre-zygotic and post-zygotic barriers, can easily be maintained (for more information see appendix 6.2). Our results suggest that some organisms may be prone to speciation through reinforcement because of the mediating role of the sex chromosomes. Compared to autosomally inherited species recognition, both sex linkage and sexual imprinting may allow incipient species to avoid a collapse in assortative mating during secondary contact and be less likely to succumb to gene flow and fusion (Servedio et al. in press). However, paternal sexual imprinting requires that females be socially exposed to their father, which is not always true even in birds. Conversely, because reduced hybrid fitness is commonly caused by sex-linked incompatibilities (Coyne and Orr 2004), sex linkage of species recognition might provide a general connection between key
components of reproductive isolation, which facilitates adaptive speciation in the face of gene flow.

Sex-chromosome linkage of species-assortative female mate preferences may be widespread, but few previous studies have explicitly investigated the mechanism of species recognition in hybrid zones. Even fewer studies have provided additional information on the genetics of hybrid fitness and the preferred traits, or evidence for reinforcement (Grula and Taylor 1980; Grant and Grant 1997b; Noor et al. 2001; Iyengar et al. 2002). Nevertheless, disproportionately many genes involved in reproductive isolation seem to be located on the sex chromosomes (Kirkpatrick and Hall 2004; Kaiser and Ellegren 2006; Lemmon and Kirkpatrick 2006). In Lepidoptera, which also have heterogametic females, sex-linked traits seem to be more associated with reproductive isolation than in other insects (Ritchie and Phillips 1998), and it has been suggested that ornaments and preferences for these ornaments evolve more readily in organisms with ZW than with XY sex chromosomes (Reeve and Pfennig 2003; Kirkpatrick and Hall 2004). Although speciation would benefit from any kind of linkage (or other recombination-suppressing mechanism) that can maintain these genetic associations, traits involved in pre-zygotic isolation may simply be more likely to occur on sex chromosomes than on autosomes and possibly more likely on Z than on X chromosomes (Kaiser and Ellegren 2006). Sex chromosomes in general, and the Z in particular, may therefore be hotspots for speciation genes.

Acknowledgements

We thank T. F. Hansen, Ø. H. Holen, A. J. van Noordwijk, K. van Oers, F. Pulido, T. O. Svennungsen, and M. Visser for suggestions. The study was supported by grants from the Swedish Research Council, the Research Council of Norway, Formas, the Netherlands Organization for Scientific Research, NSF, the Czech Ministry of Education, and the Czech Science Foundation.
We tested whether the female species recognition that causes assortative mating in flycatchers is due to 1) autosomally inherited preferences, 2) sexual imprinting, or 3) sex-linked preferences. We did this in two steps, both involving testing mutually exclusive pairwise predictions that enabled us to produce a unique combination of predictions for each of the three scenarios. First, we distinguished between autosomal inheritance versus paternal determination (i.e., 1 vs. 2 or 3) by examining mate choice of hybrid females differing in their parental combination. Then, we distinguished between sexual imprinting and genetic inheritance (i.e., 2 vs. 1 or 3) by cross-fostering offspring between the two species and identifying their subsequent mate choice.

Mate choice of hybrids
The fieldwork was conducted in Northern Moravia, Czech Republic from 1985-2005, and on the islands of Öland and Gotland, closely situated in the Baltic Sea, Sweden, from 1980-2005. We caught females during incubation and males when feeding nestlings. Since female flycatcher hybrids are sterile the nests are eventually abandoned when the eggs do not hatch, and the mates of female hybrids are therefore difficult to catch. This problem was solved by temporarily introducing nestlings from a nest-box nearby so we could catch the male when feeding the foster-nestlings. The paternal and maternal species identity of female hybrids was established with DNA analysis (see below). We genotyped a total of 31 female F1 hybrids with male partners of known species identity (14 from Öland, 9 from the Czech population, and 8 from Gotland). The three areas of sympatry are qualitatively similar in many respects. In all areas the collared flycatcher outnumbers the pied flycatcher (the proportion of Collared to Pied is about 0.70 on Öland, 0.85 in the Czech study areas and 0.96 on Gotland); F1 hybrids constitute a relatively low percentage of the breeding population (about 4% on Öland, 3% in the Czech population and 2% on Gotland) and heterospecific pairing is rare compared to within-species pairing (e.g. Sætre et al. 1999a; Veen et al. 2001). Therefore, we pooled data on female hybrids from the three areas, but checked if patterns held within the Czech and the Swedish hybrid zones.

We also genetically identified the paternal species of 42 male hybrids from the same areas as the female hybrids and identified the species of their partner based on morphology and vocalizations. If assortative mating is due to paternally determined mate references, there should be a relationship between the parental combination of female hybrids and the species of their partner, but not for male hybrids. We expect absence of such a relation in male hybrids for two separate reasons. First, male birds inherit a Z chromosome from each parent,
and the parental combination of male hybrids should hence not matter if preferences were genetically inherited at the Z. Second, empirical data suggest that flycatcher males, unlike females, do not discriminate against mating with heterospecifics (Sætre et al. 1997a), and male hybrids are consequently expected to mate independently of their parental combination. Therefore, the mating pattern of male hybrids provides a nice test of whether mating of female hybrids according to their parental combination could be due to something else than paternally determined mate preferences (e.g. biased occurrence of certain hybrids in relation to the frequency of the two parental species).

Genetic identification of hybrids and their parental species combination

Females of suspected hybrid identity on basis of plumage and/or whole clutches of unhatched eggs were genotyped for species-specific markers. Since mitochondria are inherited through the female germ-line, the species identity of a hybrid’s mother was determined using a species-specific mtDNA marker. Similarly, since females are the heterogametic sex (ZW) in birds, the species identity of a hybrid female’s father was determined with a species-specific marker on the Z chromosome. In addition, F1 hybrid status was also confirmed for the majority of birds using autosomal species-informative SNPs and species-specific substitutions, altogether 34 autosomal markers from 23 different genes (Borge et al. 2005a). The two methods always agreed about F1 hybrid status.

Male hybrids are easier to identify as such based on plumage, but to be sure to exclude later generation backcrosses or aberrant individuals of either species, we identified suspected male F1 hybrids as such by autosomal species-specific substitutions and SNPs, in the same way as described above for females (Borge et al. 2005a). The species of their mother was then identified by a species-specific mtDNA marker as for female hybrids.

25 µL blood was collected from each individual by puncturing the brachial vein and the blood was suspended in 1mL Queen's lysis buffer (Seutin et al. 1991) or in ethanol. DNA was extracted from the blood samples by overnight incubation at 45°C with 50 µL of Proteinase K solution (10 mg/mL) and 50 µL of 10% SDS. Each sample was extracted with two rounds of standard phenol/chloroform treatment before DNA was recovered by ethanol precipitation, dried, and re-dissolved in 500–1000 µL TE-buffer (10 mM Tris, 1 mM EDTA, pH 7.5).

We amplified a stretch of mtDNA containing a 32 bp species-specific indel as described in (Sætre and Moum 2000). We used 10 µL PCR reactions containing 2.5 mM MgCl2, 0.2 mM of each dNTP, 0.32 µM of each primer, 1 µg of Bovine Serum Albumine (BSA), 0.3 units of HotStar DNA polymerase (Qiagen), 1X PCR Buffer (Qiagen) and 20ng DNA. On a PTC 225 (MJ Research), 35 cycles of amplification with 94°C for 30 seconds (s), 60°C for 30 s and 72°C for one minute (min) were preceded by 15 min pre-denaturation at 95°C and followed
by a prolonged 10 min extension step at 72°C. The species-specific PCR fragments were compared on a 4% agarose gel fixed in ethidium-bromide and the species identity determined based on fragment length comparisons of reference samples (see Sætre and Moum 2000 for further detail).

We used the Z-linked locus CHDZ-20 that has several nucleotide positions with a fixed difference between the species (Borge et al. 2005b). The primers CHDZ-20F: 5´-GAA GAG AGC TGA AAC TCG G-3 and CHDZ-20R: 5´-TCA TCT TCA TCC ATA TTG G-3´ were used with the same reaction mix and PCR protocol as described above except that the fragment was amplified with two amplification steps and with different annealing temperatures: first 5 cycles, then 30 cycles with annealing temperatures of 58°C and 50°C, respectively. The fragments were purified using ExoSAP-IT (Amersham Biosciences) and direct sequenced using original PCR primers with the DYEnamic cycle sequencing kit (Amersham Biosciences), and analyzed on a MegaBACE 1000 (Amersham Biosciences) instrument. Sequences from both directions were aligned and edited in Sequencher 4.1 (Gene Codes).

Mate choice of pure female recruits from mixed species pairs (naturally cross-fostered extra-pair recruits)

To separate the effects on mate choice of genetically inherited species recognition and preferences learned by sexual imprinting, we analyzed the mate choice of females reared by heterospecific foster fathers on the Swedish island of Gotland in the Baltic Sea (1980–2005). We assumed that female hybrid flycatchers are sterile, strongly supported by previous genetic studies (e.g. Gelter et al. 1992; Veen et al. 2001). Female recruits that did not show evidence of reduced fertility (i.e., had eggs that hatched) and that came from nests of mixed pairs were thus identified as offspring resulting from conspecific extra-pair copulations. In pairs with a male Pied and a female Collared, on average 56% of offspring are fathered by conspecific extra-pair males, as shown using molecular markers (Veen et al. 2001).

Cross-fostering experiment

To further test if females are sexually imprinted on heterospecific males, we conducted cross-fostering experiments (on Öland) by reciprocal transfer of half the brood between nests of the two species. Nests were matched for clutch size (±1 egg) and laying date (same date). Chicks were transferred when 3 days old, temporarily identified by toe nail clipping and later permanently identified by numbered leg rings. Since we wanted to track the origin of individual offspring, we did not transfer eggs and assumed instead that any sexual imprinting effects would be negligible before age 3 days old. This assumption is supported by the fact that flycatcher offspring do not fully open their eyes until 7 days old (Creutz 1955). In total, 361 offspring cross-fostered during 2002–2004
(from 138 experimental broods) survived to fledging. (A larger number was initially cross-fostered, but predation rates before fledging were sometimes extensive.) Data on the species of the breeding partner of females that had been cross-fostered were gathered in 2003-2005.

Null-model expectations of how preferences translate into mate choice: assortative mating of recruits from pure pairs

Because of constraints of mate availability and other factors, female flycatchers are not expected to always mate with a male of the preferred species. We assumed that a female having a preference for a certain species would have a probability of mating with a male of that species equal to the proportion of females of the preferred species that mated conspecifically. For example, if a female prefers Collared males and 95% of Collared females mate with Collared males, then we assume that she has a 95% probability of mating with a Collared male, irrespective of whether she is herself a Pied or a Collared. Male flycatchers do not seem to discriminate against heterospecific females (Sætre et al. 1997a), so the species of a female per se should not influence whether or not a female actually obtains a mate of the preferred species. The overall pattern of assortative mating in each sympatric population may thus be used as a measure of the expected mate choice under conspecific mate preference. We therefore calculated, in each population, the proportion of females of either species mated to Collared males, Pied males and hybrid males. As the expected mate choice pattern of cross-fostered Collared females under genetic inheritance of species recognition, we used the overall mating pattern of Collared females in the population (proportion of breeding females paired to Collared males).

Similarly, we used the mating pattern of females of the foster father species (proportion of Pied females paired with Pied males) as the alternative mating pattern, expected under imprinted preferences. Expected mate choice of cross-fostered Pied females was simply the reverse of the expectations for the cross-fostered Collared females.

However, the overall mating pattern in the population might provide a biased expectation of how preferences translate into mate choice due to several potential pitfalls. First, immigrants from allopatric populations could potentially have different preferences than local recruits (and non-local recruits are more common among pied than collared flycatchers). Second, in the complete data-set, some pure females may have been raised by a heterospecific foster father (due to conspecific extra-pair copulations by females in mixed pairs) and could potentially have developed preferences for heterospecific males due to sexual imprinting (although our results show that imprinting was not important). And last, misidentification of female species could occasionally occur (Pied and Collared females look very similar, and Pied females mated to males of the numerically more common Collared may in particular have been overlooked).
To avoid these potential biases in expected values, we also calculated expectations based on the mate choice of a restricted sample of local female recruits from known pure pairs (excluding cross-fostered recruits). This should provide a more precise estimate of the probability that a female with a certain preference actually obtains a mate according to the preference, but we present results from both approaches since the sample sizes were sometimes small for the females of known pedigree. Since the proportion of the two species and the overall mating patterns differed somewhat among populations, the expected mating patterns were calculated specific to the population where the particular mating pattern of females reared by heterospecific fathers was collected (Gotland for naturally cross-fostered extra-pair recruits, and Öland for experimentally cross-fostered recruits).

Appendix 6.2

Supporting text

Reduced recombination between loci located at the Z chromosome

We base our assumption that physical linkage at the Z chromosome also imply genetic linkage (reduced recombination) on four lines of evidence: 1) there are reduced interspecific recombination rates at the Z chromosome compared to autosomes for crosses between these two particular species (i.e., the Z is sheltered against gene flow). 2) There are reduced intraspecific recombination rates at the Z in one of the species and in birds in general, as predicted by theoretical arguments concerning 3) the Z chromosome in particular and 4) physical linkage in general. These facts all imply that loci situated on the Z chromosome are genetically linked in our system, and taken together the evidence for reduced recombination is very strong. We outline each of these four arguments in more detail below.

1. From genetic analyses of flycatcher hybrids and backcrosses (Sætre et al. 2003)- using species-specific markers located at the Z chromosome and autosomes - we have strong evidence that there is very little or no recombination at the Z chromosome between the two species (whereas autosomes recombine between species, and there is some recombination at the Z within species). This clearly demonstrates that species-specific alleles at loci physically linked at the Z sex chromosome will also be genetically linked because there is no (or very little) introgression of genes on the sex chromosomes between the two gene pools - in contrast to the situation for autosomes. There is no reason to believe that this is unique to flycatchers, but no information is, to our knowledge, available from other organisms with a ZW sex chromosome system.

2. Empirical results from mapping of the chicken genome shows that recombination rates at the Z is only about 25-50 % of that found on autosomes (see
e.g. Sundström et al. 2004). Pedigree-based linkage-mapping in one of our species shows that the Z chromosome has even lower recombination rates in flycatchers than in the chicken (Backström et al. 2006a), and that the Z exhibit high levels of long-range linkage disequilibrium between markers (at least up to a distance of 500kb; Backström et al. 2006b).

3. Because females only have one Z, any two loci at the Z may only recombine in males (outside the pseudo-autosomal region). From this consideration alone, two Z-linked loci will therefore be expected to have only half the recombination rate of two loci at an autosomal chromosome.

4. Unless the probability for crossover is 1 (complete non-linkage), two loci on the same chromosome will have a reduced recombination rate compared to if they were at different chromosomes.

There does not have to be complete genetic linkage (zero crossover probability) for our finding of a physical linkage between these genes to be beneficial for speciation (Felsenstein 1981). Any crossover probability less than one (partial linkage) would facilitate reinforcement (Servedio 2000). Compared to a situation where these loci are located at different chromosomes, our finding of a physical linkage therefore already suggests that there is likely to be some genetic linkage, and more probably so because we find not autosomal linkage, but Z-linkage. Moreover, genetic linkage for the particular situation we are analyzing is directly established by the finding that sex chromosomes do not recombine between the two species (Sætre et al. 2003).

Implications for the flycatcher system
Although a priori unlikely (at least in the flycatcher system), the design of our study also allowed us to exclude maternally determined species recognition (W-linked, or learned by sexual imprinting on the mother). Maternal species recognition predicts that female hybrids should mate with males belonging to the same species as their mother, opposite to what was found. We also exclude the possibility of random mating because assortative mating is very strong in the hybrid zones(see expected patterns in figure 6.2 in the main text of this study, Alatalo et al. 1990; Veen et al. 2001). Furthermore, the results support Z-linkage in both flycatcher species.

Most female hybrids mated according to the paternal species, but a few did not. This is not surprising even under strict paternal determination of partner preferences given that 2–7% of Collared females and 15-30 % of Pied females in sympathy are involved in heterospecific mating (Alatalo et al. 1982; Sætre et al. 1999a; Veen et al. 2001, this study). We have no strong evidence that flycatcher females that mate with heterospecific males actually have a preference for such males over conspecifics, since most of these females mate with conspecific males at other breeding attempts (Qvarnström et al. 2006b). Instead, mate availability,
time and available territory quality may constrain the mate choice of females. Hence, a particular preference is not expected to always translate into a particular choice of mate (see calculation of expected values above).

Regarding the cross-fostering experiment, the final sample sizes became quite small due to the low return rate of females (only 9 females returned as breeding adults of the estimated $361/2 = 180.5$ female fledglings i.e., 5%). However, the mating patterns obtained are very unlikely to have occurred under sexual imprinting on the foster father since all cross-fostered female Collared recruits ($n = 7$) mated with Collared males (compared to 16% or less on Öland expected from imprinting, binomial $p < 0.001$) and the two female Pied recruits both mated with Pied males (compared to 3% or less expected from imprinting, binomial $p < 0.001$). We would have expected the usual mating patterns to become reversed under sexual imprinting, but they were clearly not.

Our results suggest that a previously reported divergence of mate preferences in female flycatchers in sympatry compared to allopatry (Sætre et al. 1997b) has a genetic basis and is not simply an accidental side-effect of a change in male plumage followed by sexual imprinting on different-looking males. This is important to establish since there is otherwise a danger of circularity if one argues that male plumage has changed in sympatry in response to reinforced female preferences. We still do not know the ultimate reason why male plumage and female preferences have changed in sympathy, but our results are consistent with reinforcement due to selection against hybridization, facilitated by physical linkage among the genes involved in reproductive isolation.

Recent work in the collared flycatcher has found low heritability of a female preference for males with larger forehead patches and low genetic correlation between this preference and the preferred trait (Qvarnström et al. 2006a). This finding is not in contradiction to our result of a genetic determination of preferences for species-assortative mating since only within-species variation in a mate preference was considered in that study. Entirely different evolutionary dynamics may be involved in generating genetic correlations between preferences and preferred traits within as compared to among species (see also Blows 1999).