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Chapter 3

Data-Driven Visualization of Multichannel
EEG Coherence with Functional Units

Abstract

Synchronous electrical activity in different brain regions is generally assumed to imply
functional relationships between these regions. A measure for this synchrony is electroen-
cephalography (EEG) coherence, computed between pairs of signalsas a function of fre-
quency. A typical data-driven visualization of electroencephalography(EEG) coherence
is a graph layout, with vertices representing electrodes and edges representing signi�cant
coherences between electrode signals. A drawback of this layout is its visual clutter for
multichannel EEG. To reduce clutter, we de�ne a functional unit (FU) as adata-driven re-
gion of interest (ROI). An FU is a spatially connected set of electrodes recording pairwise
signi�cantly coherent signals, represented in the coherence graph bya spatially connected
clique. We present three methods to detect FUs. One is a maximal clique based (MCB)
method (time complexity O(3n=3), with n the number of vertices). Another is a more ef�-
cient watershed based (WB) method (time complexity O(n2 logn)). To reduce the potential
over-segmentation of the WB method, the improved watershed based (IWB) method (time
complexity O(n2 logn)) merges basins representing FUs during the segmentation if they are
spatially connected and if their union is a clique. The WB and IWB method both are up to a
factor of 100,000 times faster than the MCB method for a typical multichannel setting with
128 EEG channels, thus making interactive visualization of multichannel EEGcoherence
possible. Results show that, considering the MCB method as the gold standard, the differ-
ence between IWB and MCB FU maps is smaller than between WB and MCB FU maps. We
also introduce two novel group maps for data-driven group analysis as extensions of the IWB
method. First, the group mean coherence map preserves dominant features from a collec-
tion of individual FU maps. Second, the group FU size map visualizes the average FU size
per electrode across a collection of individual FU maps. Finally, we employan extensive
case study to evaluate the IWB FU map and the two new group maps for data-driven group
analysis. Results, in accordance with conventional �ndings, indicate differences in EEG
coherence between younger and older adults. However, they also suggest that an initial
selection of hypothesis-driven ROIs could be extended with additional data-driven ROIs.
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3.1 Introduction

Electroencephalography (EEG) is a method to measure the electrical activity of the brain using
electrodes attached to the scalp at multiple locations. Synchronous electrical activity in different
brain regions is generally assumed to imply functional relationships between these regions. A
measure for this synchrony is EEG coherence, calculated between pairs of electrode signals as a
function of frequency (Hallidayet al.1995, Mauritset al.2006).

Related studies of functional brain connectivity use other noninvasive neuroimaging tech-
niques, including magnetoencephalography (MEG) (Bosboomet al. 2006, Chenet al. 2003,
Srinivasanet al. 1999) and functional magnetic resonance imaging (fMRI) (Achardet al. 2006,
Cordeset al.2002, Salvadoret al.2005b, Salvadoret al.2005a). A typical visualization of EEG,
MEG, and fMRI coherence, is a two-dimensional graph layout. Vertices represent electrodes,
superconducting quantum interference devices (SQUIDS), or fMRI regions of interest (ROIs),
respectively. Edges represent signi�cant coherences between electrode signals, SQUID signals,
or fMRI-ROI time series, respectively. Vertices are commonly visualized as dots and edges as
lines. For multichannel EEG (e.g., (Kamiński et al.1997, Steinet al.1999)), MEG (e.g., (Chen
et al.2003, Srinivasanet al.1999)), and fMRI (e.g., (Achardet al.2006, Salvadoret al.2005b)),
this layout may suffer from a large number of overlapping edges, resulting in a cluttered visual-
ization.

In the case of EEG, the reorganization of vertex positions (Fruchterman and Reingold 1991)
to reduce clutter is not appropriate, because the electrodes have meaningful positions. Other so-
lutions reorganize edges or vary visual attributes of the edges (Wonget al. 2003, Hermanet al.
2000), but do not reduce the number of edges. Several methodsdivide EEG electrodes (Sarnthein
et al.1998, Gladwinet al.2006), MEG SQUIDS (Bosboomet al.2006), or fMRI voxels (Salvador
et al.2005a) into disjoint hypothesis-driven ROIs and study coherences within or between ROIs.
Other methods set out ROIs representing EEG electrodes (Kamiński et al. 1997, Franaszczuk
et al. 1994), MEG SQUIDS (Srinivasanet al. 1999), or fMRI-ROIs (Achardet al. 2006) along
rows and columns, thus obtaining a square contingency table. By arranging ROIs along rows and
columns of a matrix, the spatial relations are lost.

Visualization of multichannel EEG (at least 64 electrodes)is not always managed well (ten
Caatet al. 2005, ten Caatet al. 2007c, ten Caatet al. 2007d). Researchers often employ a
hypothesis-driven de�nition of certain ROIs in which all electrodes are assumed to record similar
signals because of volume conduction effects (Lachauxet al. 1999). As an alternative for the
hypothesis-driven approach, we introduce three methods todetect data-driven ROIs referred to
as functional units (FUs) (ten Caatet al. 2007d). An FU is represented in the coherence graph
by a spatially connected clique. A clique is a vertex set in which every two-element subset is
connected by an edge. A cliqueC is maximalwhen it is not contained in any larger clique
(`larger' meaning having more vertices). Within one FU, each pair of vertices represents two
signi�cantly coherent electrode signals. In any group of vertices other than a clique, there are
two vertices representing two electrode signals which are not signi�cantly coherent. Because
larger ROIs are assumed to correspond to stronger source signals, larger FUs are considered
to be more interesting. Therefore, we focus on maximal cliques, with vertex sets as large as
possible.
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Our �rst FU detection method is a maximal clique based (MCB) method (ten Caatet al.
2007d). Our second method is a watershed based (WB) method that detects spatially con-
nected cliques in a greedy way (ten Caatet al. 2007e). However, it suffers from potential
over-segmentation problems. A third method is an improved watershed based (IWB) method
for FU detection. It merges FUs if they are spatially connected and if their union is a clique, thus
reducing over-segmentation obtained with the WB method. A functional unit map shows the FU
distribution for individual datasets. Each FU is a collection of Voronoi cells with identical gray
value, with different gray values for adjacent FUs. FUs are connected by a line if the average
coherence between FUs is signi�cant.

In addition to individual dataset analysis, we introduce two new group maps for data-driven
group analysis of multichannel EEG coherence as extensionsof the IWB method. They serve
as a data-driven alternative for the common hypothesis-driven selection of coherences for group
analysis (Mauritset al.2006, Gladwinet al.2006, Knyazevaet al.2006). First, the group mean
coherence map preserves dominant features from a collection of individual FU maps. Second, the
group FU size map visualizes the average FU size per electrode across a collection of individual
FU maps. Results are reported for an extensive case study.

3.2 EEG Coherence

EEG can be recorded using currently up to 512 electrodes, labeled uniquely by a combination
of letters and digits (e.g., F3, Cz, P4, as in Fig. 3.1, right).A conductive gel is applied between
skin and electrodes to reduce impedance. The electrical potential is measured at all electrodes
simultaneously. The measured signals are ampli�ed, resulting in one recording channel for every
electrode. If there are many electrodes, the term `multichannel' or `high-density' EEG is used.
As a result of volume conduction (Lachauxet al. 1999), multiple electrodes can record a signal
from a single source in the brain. Therefore, nearby electrodes usually record similar signals.
Because sources of activity at different locations may be synchronous, electrodes far apart can
also record similar signals. A measure for this synchrony iscoherence, calculated between pairs
of signals as a function of frequency. The coherencecl as a function of frequencyl for two
continuous time signalsx andy is de�ned as the absolute square of the cross-spectrumfxy nor-
malized by the autospectrafxx and fyy (Halliday et al.1995), having values in the interval[0;1]:

cl (x;y) = j fxy(l )j2

fxx(l ) fyy(l ) . The cross-spectrum and auto-spectrum can be interpreted as covariance
and variance as a function of frequency, respectively. An event-related potential (ERP) is an
EEG recording of the brain response to a sensory stimulus. Tocalculate the coherence for an
event-related potential (ERP) withL repetitive stimuli, the EEG data can be segmented intoL
segments, each containing one brain response. A signi�cance thresholdf for the estimated co-
herence is then given by (Hallidayet al.1995)

f = 1� p1=(L� 1); (3.1)

wherep is a probability value associated with a con�dence levela (p = 1� a). For an overview
of other common linear (and nonlinear) measures of synchrony, see (Peredaet al.2005).
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Figure 3.1. Left: Layout of a coherence graph (EEG frequency band 1-3Hz). Vertices rep-
resent electrodes, edges represent signi�cant coherences between electrode signals, where the
signi�cance threshold equals0:22 (corresponding top = 0:01). Edges are visualized as gray
lines, vertices as black dots. An edge is light gray if its value is in the range0:22< cl < 0:37,
medium gray if its value is in the top 10% of the coherences (0:37� cl < 0:91), and dark gray
if its value is in the top 1% (cl � 0:91). This corresponds to a common existing data-driven
visualization, showing cluttered edges.Middle: Histogram of the corresponding coherences
to illustrate the coherence distribution. Vertical lines (dash, solid, dot) indicate signi�cance
thresholds associated with three probability levels (p = 0:10;0:05;0:01, respectively).Right:
Voronoi diagram with electrode labels in the corresponding cells. The convex hull of all elec-
trodes is shown as a boundary. To improve the readability, the Voronoi diagram is stretched
horizontally. Because the coherence computation is independent of distance, distances between
electrodes do not need to be preserved. However, spatial relationships between electrodes are
maintained.

3.3 Related Work

We discuss visualizations of functional brain connectivity obtained using the noninvasive neu-
roimaging techniques EEG, MEG, and fMRI. MEG commonly uses upto 512 SQUIDs to mea-
sure magnetic �elds induced by electrical brain activity. Similar to EEG coherence, MEG coher-
ence is calculated between pairs of SQUID signals. fMRI measures time series of changes in
cerebral blood oxygenation levels in the brain. Often, fMRI researchers compute coherence (or
other similarity) values between mean time series for different ROIs which are commonly single
voxels or connected sets of voxels (Cordeset al.2002).

Although a comparison of the results obtained with different neuroimaging methods should
be made carefully (Horwitz 2003), the common underlying data representation for the differ-
ent types of connectivity is a graph. Therefore, we restrictthe comparison for the different
neuroimaging techniques to their graph visualizations andfocus on hypothesis-driven and data-
driven aspects. First, we consider EEG and MEG with typically up to 512 vertices, whose spatial
relations can be represented by a planar graph. Later, we consider fMRI with vertices commonly
representing thousands of voxels (Cordeset al.2002). The overview also includes general graph
drawing solutions.
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3.3.1 EEG and MEG

EEG and MEG coherence graphs have vertices representing electrodes and SQUIDS, respec-
tively. Most of the visualizations of EEG are applicable to MEG, and vice versa. For a two-
dimensional visualization of the vertices, often planar projections are used of the three-dimension-
al electrode or SQUID locations on the surface of a head, usually mapping vertices to a top view
of a head (e.g., Fig. 3.1, right), or sometimes to two separate side views of the left and right
hemisphere (Steinet al. 1999, Sarntheinet al. 1998). Such visualizations may suffer from a
large number of overlapping edges representing signi�cantcoherences, resulting in a cluttered
visualization for multichannel EEG (e.g., (Kamińskiet al.1997, Steinet al.1999); Fig. 3.1, left)
or MEG (e.g., (Chenet al. 2003, Srinivasanet al. 1999, Tononi and Edelman 1998)). Exist-
ing solutions for the reduction of clutter involve an adapted visualization of the vertices and the
edges.

The layout of the vertices can be changed, e.g., by a force-directed placement (Fruchterman
and Reingold 1991). However, for EEG applications we prefer to maintain the spatial relation-
ship between the vertices representing electrodes, because electrodes have meaningful positions.
A different method uses an area dependent visualization of vertices of variable size (Archambault
et al.2006), but also does not preserve vertex positions. Other solutions vary (combinations of)
visual attributes of vertices and edges, e.g., transparency (Wong et al. 2003), color (Chenet
al. 2003, Srinivasanet al. 1999, Achardet al. 2006, Salvadoret al. 2005b), saturation (Herman
et al. 2000), line width (Salvadoret al. 2005a, Hermanet al. 2000), and line style (Salvadoret
al. 2005a). Nevertheless, the presence of many overlapping edges maystill obscure other visual-
ization elements, or the superposition of differently colored lines might result in an undesired mix
of colors. Also the layout of the edges can be manipulated, e.g., by interactively curving away
edges from the focus of attention (Wonget al. 2003). This has the undesirable side-effect that,
in an already crowded �eld of view, the area which is out of focus will be even more crowded.
Moreover, to get a complete overview of the graph, every vertex (out of up to 512 vertices for
EEG coherence) has to be selected individually. Alternatively, elements (such as edges) can be
left out selectively (Chiricotaet al. 2003). Nevertheless, cluttered visualizations are even ob-
tained for restrictions to the top 5% coherences for only 66 MEG SQUIDS (Chenet al. 2003),
or the top 10% for 119 EEG electrodes (Fig. 3.1, left).

Existing analyses of multichannel EEG or MEG are hypothesis-driven. One method chooses
a regularly distributed subset of electrodes (Mauritset al. 2006), ignoring the majority of the
electrode signals. An MEG method divides channels into disjoint hypothesis-driven ROIs and
maps the average coherence within a ROI to a color (Bosboomet al.2006), ignoring coherences
between ROIs. A similar EEG method divides electrodes into four disjoint ROIs and studies
anterior-posterior connections between those ROIs (Sarntheinet al.1998). Another EEG method
divides (the majority of the available) electrodes into disjoint hypothesis-driven ROIs and studies
coherences between these ROIs across datasets (Gladwinet al. 2006), but it does not simulta-
neously visualize which electrodes are part of which ROI. However, the main disadvantage of
all these methods is the hypothesis-driven selection of thenumber and the positions of the ROIs
instead of a data-driven selection.

An existing EEG approach which is data-driven sets out up to 21 electrodes along both the
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rows and columns of a matrix as a tiled display (Kamiński et al.1997, Franaszczuket al.1994).
The result is a square contingency table showing coherence values for all possible electrode pairs.
Each table entry is a square in which coherence is displayed between the two corresponding
electrode signals as a function of frequency. By arranging the electrodes along the rows and
the columns of the matrix, the spatial relations are lost. Asa result, consecutive entries in the
table do not need to imply coherence between pairs of signalsrecorded at adjacent electrodes on
the scalp. Similarly, a square contingency table is createdfor 78 MEG SQUIDS sorted into four
hypothesis-driven ROIs (Srinivasanet al.1999) (left/right, anterior/posterior). Each table entryis
square with the coherence of the corresponding signals mapped to a color. A different data-driven
EEG approach �rst localizes dipoles corresponding to maximally independent components in
the data, and then calculates and visualizes coherence between dipole activities (Delormeet
al. 2002, Makeiget al.2004, De Vico Fallaniet al.2007). However, dipole source solutions are
not unique (Srinivasan 1999).

Another approach is restricted to local EEG coherence, which is de�ned as the coherence
between two spatially neighboring electrodes (Rappelsberger and Petsche 1988, Schacket al.
1999). It requires additional methods to study coherences between electrodes which are not
direct spatial neighbors. Another visualization creates amap of topographic submaps (Nolteet
al. 2004), with one submap for each electrode visualizing the coherence between itself and every
other electrode. It does not explicitly visualize coherence between electrodes by connecting lines.
As a consequence, every topographic submap (out of up to 512 submaps) needs to be studied
separately to obtain a complete overview. Another drawbackis that local coherences dominate
the visualization (Nolteet al. 2004). A subselection of two topographic submaps out of 128 is
made by Knyazevaet al. (2006), without providing a complete overview of all coherences.

3.3.2 fMRI

For fMRI coherence, usually a limited number of so-called seed (or reference) voxels is selected
on the basis of prior anatomical or functional information.However, the anatomy may be ab-
normal, and the choice of seed points may affect the results (Cordeset al. 2002). Nonetheless,
an individual seed point or a spatially connected set of voxels including a seed point is con-
sidered as a ROI having a (mean) time series. Vertices represent ROIs and can be visualized
three-dimensionally (Worsleyet al. 2005) or two-dimensionally. A two-dimensional visualiza-
tion uses, e.g., a planar projection of three-dimensional ROI positions or an approximation of
functional distances by graphical distances using metric multidimensional scaling (Salvadoret
al. 2005a). An edge represents a signi�cant similarity between two ROI time series. The visual-
ization of edges as lines may lead to clutter (Achardet al.2006, Salvadoret al.2005b, Salvador
et al.2005a, Worsleyet al.2005).

Filtering edges may still lead to cluttered visualizations(Achardet al.2006). Other visualiza-
tions set out ROIs along the rows and columns, thus obtaininga square contingency table. Each
table entry is a square with a similarity value between the two corresponding signals mapped
to a color (Srinivasanet al. 1999, Achardet al. 2006). Existing data-driven graph clustering
algorithms include hierarchical cluster analysis (Cordeset al.2002) and independent component
analysis (ICA) (Delormeet al. 2002, Makeiget al. 2004, van de Venet al. 2004). The result of
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hierarchical cluster analysis can be visualized as a dendrogram (Salvadoret al.2005a), showing
the ROIs as leaves of a binary tree, thus losing the spatial relations between the ROIs. Also, ROIs
can be visualized as colored volumes of interest (van de Venet al.2004) which may occlude each
other. For the same reason, we do not favor three-dimensional EEG visualizations. Alternatively,
ROIs can be visualized on anatomical slices (Cordeset al. 2002, Salvadoret al. 2005a, Sunet
al. 2004). However, a large number of two-dimensional slices isrequired to obtain a complete
overview of a three-dimensional volume. Sometimes, instead of an explicit visualization of the
connection between ROIs (e.g., with a line), all ROIs in one cluster are colored identically, with
different colors and/or separate slices for different clusters (Salvadoret al.2005a).

3.3.3 Conclusion

The overview of related work has concentrated on the requirements we posed on an EEG coher-
ence visualization: it should be (1) data-driven, (2) preserve electrode locations, (3) minimize
visual clutter, and (4) present an overview. Many of the discussed methods still suffer from vi-
sual clutter or relocate vertices and edges and therefore donot meet requirement (2) or (3). On
the other hand, existing methods which do meet requirements(2,3) are hypothesis-driven, thus
failing to meet our requirement (1). In summary, the method proposed in this chapter combines
a number of features which no single technique currently provides.

3.4 Data Representation

3.4.1 Experimental Setup

Here, brain responses from two groups of �ve younger (34� 10 years, mean� standard devi-
ation) and �ve older (62� 8 years) adults are studied, which were recorded using an EEGcap
with 119 scalp electrodes. During a so-called P300 experiment, each participant was instructed
to count target tones of 2000Hz (probability 0:15), alternated with standard tones of 1000Hz
(probability 0:85) which were to be ignored. After the experiment, the participant had to report
the number of perceived target tones. For each dataset, brain responses to 20 target tones were
recorded inL = 20 segments of 1s. EEG coherence is in�uenced by the choice ofreference. We
chose to use an average reference, which is a close-to-optimal approximation to a reference-free
recording in the case of 128 electrodes (Mauritset al.2006, Nunezet al.1997).s

A procedure from Neurospec was adopted to compute the coherence (www.neurospec.
org ). We �rst averaged over segments and then over adjacent spectral lines in prede�ned fre-
quency bands. Frequencies between 1 and 30Hz are typically studied clinically. We calculated
the average coherence within �ve EEG frequency bands (1-3, 4-7, 8-12, 13-20, and 21-30Hz),
because EEG synchrony varies with frequency (Mauritset al.2006, Nunezet al.1997). For 119
electrodes, in total 7021 coherence values were computed per frequency band. If the conduc-
tive gel accidentally connected two adjacent electrodes, very high coherences were measured.
Coherences higher than 0.99 were therefore ignored. Typically, this threshold value eliminates
approximately 0.01% of the coherences. Note also that usingEqn. 3.1 for determining signif-

www.neurospec.org
www.neurospec.org
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icance levels is a coarse approximation, since it does not take the number of spectral lines per
band into account. However, this approximation only overestimates the signi�cance level, and
does not in�uence the visualization method itself.

3.4.2 EEG Coherence Graph

The data are represented by acoherence graphwith vertices representing electrodes. Coher-
ences above the signi�cance threshold (Eqn. 3.1) are represented by edges, coherences below
the threshold are ignored. To determine spatial relationships between electrodes, a Voronoi dia-
gram is employed which partitions the plane into regions of points with the same nearest vertex
(Voronoi 1908). For EEG data, the vertex set equals the set ofelectrode positions (Fig. 3.1, right).
The vertices are referred to as (Voronoi) centers, the region boundaries as (Voronoi) polygons.
The area enclosed by a polygon is called a (Voronoi) cell. We call two cellsVoronoi neighbors
if they have a boundary in common. A collection of cellsC is calledVoronoi-connectedif for a
pair f 0; f n 2 C there is a sequencef 0; f 1; :::; f n of cells inC with each pairf i� 1; f i consisting of
Voronoi neighbors. Cells, vertices, and electrodes are interchangeable for the use with the terms
“Voronoi neighbor” and “Voronoi-connected”.

3.5 FU Detection

Whereas there are many unsupervised graph clustering methods, e.g., hierarchical clustering and
ICA (see Section 3.3), our choice is motivated by the type of cluster we desire. As a result
of volume conduction (Lachauxet al. 1999), multiple electrodes can record a signal from a
single source. Consequently, a spatially connected set of electrodes recording similar signals is
considered as a data-driven ROI (a cluster). Such a ROI is referred to as functional unit (FU) and
is represented in the EEG coherence graph by a clique consisting of a set of spatially connected
vertices.

Recall that larger ROIs are assumed to correspond to strongersource signals and are consid-
ered to be more interesting. Therefore, our �rst method for FU detection is primarily based on
the detection of maximal cliques (Bron and Kerbosch 1973, Tomita et al. 2006). We adapt this
method to detect spatially connected sets of vertices (ten Caatet al.2007d). Our second method
for FU detection is based on watersheds, an ef�cient method for detecting spatially connected
segments (Roerdink and Meijster 2000). We adapt this method to detected cliques in a greedy
way (ten Caatet al. 2007e). However, it does not avoid the oversegmentation problem well-
known for watersheds. A third method, also based on watersheds, reduces over-segmentation.

3.5.1 Maximal Clique Based (MCB) Method

Maximal Cliques

Bron and Kerbosch (B&K) (Bron and Kerbosch 1973) developed a method to detect all maximal
cliques in a graph. It �rst branches the problem, and bounds unsuccessful branches. Its recursive
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procedure maintains three dynamic vertex sets:

� the setcompsubcontains an increasing or decreasing clique;

� the setcandidatescontains vertices that are connected to all vertices incompsuband that
can be added tocompsub;

� the setnot contains vertices that are connected to all vertices incompsuband that were
added tocompsubpreviously.

At each call of the procedure, the �rst vertexv from the setcandidatesis selected, and
is added tocompsuband removed fromcandidates. Next, newcandidatesis the intersection
of candidatesand the neighborhood ofv. Similarly, newnotis the intersection ofnot and the
neighborhood ofv. If both newcandidatesandnewnotare empty, thencompsubis a maximal
clique. This procedure is repeated recursively with local setsnewcandidatesandnewnot, until
the candidate set is empty. In case the procedure is not repeated withnewcandidatesandnewnot,
the vertex most recently added tocompsub(vertexv) is removed fromcompsuband added to
not. If any vertex innewnotis connected to all vertices innewcandidates, then it is known that
this vertex will never be removed fromnot and this branch is bounded.

An alternative selection of vertexv is more ef�cient if there is a large number of overlapping
cliques (Bron and Kerbosch 1973). From the setcandidates, the vertexv� is selected that has
the largest number of connections with the other vertices incandidates. If there are more such
vertices, then one of these is randomly selected. Further, it is assured thatv� is not connected to
the vertex just added tonot.

The worst-case time complexity for detecting all maximal cliques isO(3n=3), with n the num-
ber of vertices, because 3n=3 is the highest number of cliques (Tomitaet al. 2006). In practice,
performance of maximal clique detection strongly depends on graph structure (Wood 1997).

Voronoi-Connected Maximal Cliques

We extend the B&K method such that it only detects maximal cliques consisting of Voronoi-
connected vertices. The three dynamic vertex sets are maintained, but the setcandidatesis split
into a setcurrentcandand a setcomplcand.

� The setcurrentcandcontains the candidates that are Voronoi neighbor of at least one ele-
ment incompsub; only these can be added tocompsubat the current step.

� The setcomplcandis the complement ofcurrentcandin candidates.

At each call, the element fromcurrentcandwhich has the largest number of connections with
the other candidates (currentcand[ complcand) is added tocompsub. Let this element bev0.
The setnewcurrentcandis the intersection ofcurrentcandand the neighborhood ofv0 (in the
coherence graph), united with the Voronoi-neighbors ofv0 in complcand. The setnewcomplcand
is the intersection ofcomplcandand the neighborhood ofv0(in the coherence graph), minus the
Voronoi-neighbors ofv0in complcand. The set(new)notis maintained as before. This is repeated
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until newcurrentcandis empty. Ifnewnotis also empty, thencompsubis a Voronoi-connected
maximal clique.

Fig. 3.2 illustrates maximal clique detection with the B&K algorithm (A and B) and Voronoi-
connected maximal clique detection with the MCB method (C), for a graph with the adjacency
matrix shown in Table 3.1. The �rst B&K iteration has an emptynot set (A). One of the later
recursive iterations of the B&K method returns to the initialsituation with all vertices in the
candidatesset (not shown), puts the selected vertex labeledc in the not set (B1), and selects
the vertex with the highest degree in thecandidatesset (B2). Whereas the B&K method detects
maximal cliques which can consist of more than one spatial component (A5), the MCB method
detects spatially connected cliques instead (C4). (For the MCB method, the use of thenot set is
the same as for the B&K method and is therefore not explicitly illustrated.)

The following detailed description contains (row, column)references to Fig. 3.2.C5. Ver-
tex positions. Vertices are spatial neighbors if they are 4-connected (e.g., the spatial neighbors
of vertexd are verticesa, e, andg). A. Iteration of B&K maximal clique detection with empty
not set. It starts with all nine vertices in the set candidates (not illustrated).A1. Then the vertex
c with the highest degree (following Table 3.1) is �rst added to compsub; its adjacent vertices
are incandidates. (Vertices not part of any set are shown as a black dot.)A2-A4. At every
next step, the vertex with the highest degree incandidates, let us sayv, is added tocompsub.
(In the case of A3 and A4, multiple vertices have the highest degree and verticesg and f are
selected randomly, respectively.) Further, vertices not adjacent tov are removed fromcandidates
(the removed vertices are denoted byGc(v)). This continues untilcandidatesis empty. AtA2,
v = b, Gc(v) = f dg; atA3, v = g, Gc(v) = f eg; atA4, v = f , Gc(v) = f hg; atA5, v = i, Gc(v) = /0.
Now,compsub= f b;c; f ;g; ig is a maximal clique, becausecandidates= /0 (andnot= /0). B. A later
iteration for B&K maximal clique detection returns to the situation preceding A1 with all vertices
in the candidates set, and puts the �rst selected vertexc into thenot set.B1. Vertexc which was
previously selected �rst (see A1) is now in thenot set.B2-B4.Similar to A2-A4.B5. Similar to
but different from A5, this leads to a situation withcandidates= f b; f ;g; ig, andnot = f cg. This
implies that the maximal cliquef b;c; f ;g; ig has been found before.C. MCB Voronoi-connected
maximal clique detection with same starting point as A (withnot = /0). C1. The vertexc with the
highest degree is �rst added tocompsub; its adjacent vertices (see Table 3.1) are incurrentcand
if they are a spatial neighbor (f b; f g), or otherwise incomplcand. C2-C4. At every next step,
the element fromcurrentcandwhich has the largest number of connections with the other candi-
dates (currentcand[ complcand) is added tocompsub. The spatial neighbors ofv0in complcand
(denoted byL(v0)) are moved fromcomplcandto currentcand. Further, vertices not adjacent
to v0 are removed from bothcurrentcandandcomplcand(the removed vertices we denote by
Gc(v0)). This continues untilcurrentcandis empty. AtC2, v0= b, L (v0) = f eg, Gc(v0) = f dg;
at C3, v0= f , L (v0) = f ig, Gc(v0) = f hg; at C4, v0= i, L (v0) = /0, Gc(v0) = f eg. C4. comp-
sub= f b;c; f ; ig is a spatially connected maximal clique, becausecurrentcand= /0 (andnot = /0).
Remaining vertices incomplcandare in the adjacency list of all vertices incompsubbut are not
a spatial neighbor of any vertex incompsub.
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Table 3.1. Adjacency matrix for verticesa throughi in Fig. 3.2 (1 (0) means (not) connected).
Diagonal entries are zero, meaning that vertices are not self-connected.

a b c d e f g h i
a 0 0 0 1 0 0 0 0 0
b 0 0 1 0 1 1 1 1 1
c 0 1 0 1 1 1 1 1 1
d 1 0 1 0 0 0 0 0 0
e 0 1 1 0 0 1 0 0 0
f 0 1 1 0 1 0 1 0 1
g 0 1 1 0 0 1 0 1 1
h 0 1 1 0 0 0 1 0 0
i 0 1 1 0 0 1 1 0 0

1 2 3 4 5

A

B

C
a b c
d e f
g h i

compsub
candidates

not
currentcand

complcand

Figure 3.2. Illustration of maximal clique detection with the B&K algorithm for an iteration
with an emptynotset (A) and an iteration with a non-emptynotset (B), and Voronoi-connected
maximal clique detection with the MCB method (C), for a graph with adjacency matrix as in
Table 3.1. For explanation, see text.

FU Labeling

Every vertex can be part of multiple (Voronoi-connected) maximal cliques. To assign a unique
label to every vertex, a quantitytotal strength Sfor an undirected (sub)graphG= ( V;E) is de�ned
as the sum of all edge values (ten Caatet al.2007d):

S(G) = å
i; j

f c(vi ;v j ) j vi ;v j 2 V : j > ig: (3.2)

This value is not normalized for the size ofE. Consequently, if two graphs have an equal average
coherence, the graph with more vertices has a higher total strength. Next, all cliques are queued
in decreasing order by their total strength. Then the following labeling procedure is repeated,
until there are no more cliques or until all vertices are labeled. The �rst clique is removed from
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the queue, and all its vertices are assigned a unique label and are removed from the other cliques.
If necessary, the changed cliques are separated into Voronoi-connected components. For all
changed cliques, the total strength is recomputed before they are put in the appropriate position
in the sorted queue. After completion of the labeling procedure, every set of identically labeled
vertices is an FU.

3.5.2 Watershed Based (WB) Method

As an alternative to the MCB method, we present a greedy methodapproximating maximal
cliques on the basis of the watershed transform (Roerdink andMeijster 2000). In the usual
watershed algorithm, a subset of all local minima is selected as markers. Markers are labeled
and are associated with basins. Basins contain vertices withthe same label as the correspond-
ing marker and are extended as follows, using the watershed implementation based on ordered
queues (Beucher and Meyer 1993). The �rst vertexv is removed from a queue of vertices sorted
in decreasing order of priority. Every unlabeled neighborv0of v receives the same label asv and
is put into the queue with a priority depending on the value ofv0, but not higher than the priority
of v. This continues until the queue is empty.

Now we modify the usual watershed transform in order to obtain spatially connected sets
of electrodes, where all electrodes in a given set have recorded mutually signi�cantly coherent
signals. This modi�cation concerns two steps in the watershed transform: (i) choice of mark-
ers; (ii) use of an edge queue instead of a vertex queue. We explain these two points in more
detail.

First, we de�ne a marker as an electrode recording a signal that is locally maximally coherent
with signals of its spatially neighboring electrodes. Because the EEG coherence graph has edge
values instead of vertex values, we �rst assign a coherence value to each vertex by computing the
average of the edge values between this vertex and all its Voronoi neighbors. Then, we select all
vertices which are local maxima as markers to be associated with basins, because those vertices
are locally maximally similar to their spatially neighboring vertices. Note that we chooseall local
maxima as markers, instead of a small subset as is usually done when the watershed algorithm
is applied to digital images. In our case the over-segmentation problem is less severe, because
the number of electrodes is an order of magnitude smaller than the number of pixels in an image.
If the number of basins (i.e., clusters) found is still too large, we can suppress basins below a
certain size in a post-processing step.

The second point concerns the type of queue we use. Whereas theusual queue-based im-
plementation of the watershed transform applied to digitalimages uses a vertex queue sorted in
increasing order of value (Beucher and Meyer 1993), we use an edge queue sorted in decreasing
order of coherence value. (The vertex values are only used for de�ning the markers.) In case
the coherence graph has multiple identical edge values (which did not occur for our datasets), an
ordered queue consisting of queues with identically valuedelements can be used, as for digital
images which usually contain multiple identically valued vertices (Beucher and Meyer 1993).

The WB method for greedy Voronoi-connected clique detectionmaintains the following dy-
namic vertex sets.
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� bsni contains a sorted list of the vertices in basini.

� L(v) contains the basin label of vertexv.

� adjCohBsni contains a list of vertices (sorted by vertex number) which are adjacent toeach
of the vertices inbsni in the coherence graph.

� queuecontains edges in decreasing order. When vertexv receives a label, an edgee =
(v;v0) is added toqueuefor each unlabeled Voronoi neighborv0 of v, provided that the
corresponding edge value exceeds the signi�cance threshold (Eqn. 3.1).

(Step 1) The edge queue is initialized with edges (corresponding with a signi�cant coherence)
between markers and their Voronoi neighbors. The �rst edge(v;v0) in this queue corresponds
to the highest similarity (coherence) between any vertexv0 outside and a Voronoi neighboring
vertexv inside a basin. Therefore, vertexv0 is the �rst candidate to be added to a basin.

(Step 2) The main procedure consists of the following steps.Remove the �rst edge, saye=
(v;v0) from queue. In case vertexv0was also labeled between the insertion and removal ofe=
(v;v0), nothing is done and the procedure continues with a new edge.Otherwise (v0 is unla-
beled), there are two cases. (i) In casev02 adjCohBsnL(v) (ln. 19), v0 receives labelL(v) and
(ii) adjCohBsnL(v) is replaced by its intersection with the neighborhood ofv0 in the coherence
graph (ln. 21); (iii)v0 is added tobsnL(v) (ln. 22); (iv) queueis extended with the edges be-
tweenv0and its Voronoi-neighbors (ln. 23-27), provided that corresponding edge values exceed
the signi�cance threshold. In the other case, ifv0 =2 adjCohBsnL(v), v0 is not labeled (yet). This
procedure is repeated untilqueueis empty. Each basin then corresponds to an FU.

The time complexity of the WB method isO(n2 logn), with n the number of vertices (ten
Caatet al.2007e), which can be seen as follows. Step 1 consists of creating a sorted edge queue,
so has complexitynlogn, because the order of the number of edges between Voronoi neighbors is
the same as the order of the total number of edges in a planar graph (which isO(n)). In step 2, the
following steps are executedO(n) times with sorted vertex sets of at mostn vertices: (i) binary
search for the presence of a vertex in a vertex set (O(logn)); (ii) binary search for the insertion of
a vertex into a vertex set (O(logn)); (iii) intersecting two vertex sets (O(n)); (iv) insertion of at
mostn edges into the sorted queue(O(nlogn)). Step (iv) has a higher time complexity than (i)-
(iii). Therefore, the time complexity for step 2 (O(n2 logn)) is higher than for step 1 (O(nlogn)),
which makes the total time complexity of the WB method equal toO(n2 logn).

3.5.3 Improved Watershed Based (IWB) Method

Over-segmentation is a potential problem of the WB method. Toreduce over-segmentation, two
spatially neighboring FUs are merged if their union is a clique in the coherence graph. To obtain
the improved watershed based (IWB) algorithm (Alg. 1) we insert lines 11-15 and lines 29-
42 in the pseudocode of the WB algorithm (see also (ten Caatet al. 2007e)). In words, the
difference between the WB and IWB method is the following. In case vertexv0 was labeled
between the insertion and removal ofe= ( v;v0), nothing is done if the label ofv0 is equal to the
label ofv. Otherwise (L(v0) 6= L(v)), see line 29), the following steps are executed consecutively
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Figure 3.3. IWB FU map (EEG frequency band1-3Hz, dataset young 5). Top view, nose on
top. Left: A circle with a cross inside indicates the geographic center of all Voronoi centers
belonging to one FU and has the same gray value. The geographic center can be located in a
cell not belonging to the corresponding FU.Middle: The same FU map, but only with FUs
larger than5 cells. White Voronoi cells are part of smaller FUs.Right: Lines connect FU
centers if the inter-FU coherence exceeds the signi�cance threshold (Eqn. 3.1). The color of
the line depends on the inter-FU coherence (see color bar, with minimum corresponding to the
coherence thresholdf � 0:22 for p = :01). Lines are drawn in the order from low to high
inter-FU coherence values.

(for notation purposes, de�ney asL(v0)): (i) check if all vertices inbsnL(v) are inadjCohBsny ,
and vice versa (line 32). (ii) ReplacebsnL(v) by the union of itself withbsny , because their
union is a spatially connected clique in the coherence graph(line 33); (iii) all vertices inbsny
receive the labelL(v) (lines 34-36); (iv)adjCohBsnL(v) is replaced by the intersection of itself
with adjCohBsny (line 37); (v)bsny andadjCohBsny are made empty (line 38).

In the algorithm, the operationinsertEdgeSort(e(v;v0),queue)inserts edgee(v;v0) into the
appropriate position in a edge queuequeuewhich is decreasingly sorted by edge value; similarly,
insertVSort(v,vqueue)inserts vertexv into the appropriate position in vertex queuevqueuewhich
is decreasingly sorted by vertex number;dequeue(queue)returns and removes the �rst edge from
an edge queuequeue; intersect(.,.) gives the intersection of two sorted vertex sets;merge(.,.)
gives the union of two sorted vertex sets (without duplicates); setInSet(V ,V0) returns `true' if the
sorted vertex setV is a subset of the sorted vertex setV0, and `false' if not. The size of a vertex
set is denoted byj : j.

One adaptation further improves the average performance inpractice. A matrixbsnMatis
created with the basins set out along the rows and the columns, and is initialized with only
ones (lines 11-15). If two spatially neighboring basinsbi andb j together are not a clique, then
bsnMat(bi ;b j ) andbsnMat(b j ;bi) are set to zero (line 40). In that case, basinsbi andb j cannot
be merged later either, and lines 31-41 are skipped the next time thatbi andb j are candidates to
be merged.

The difference between the WB and the IWB method affects the time complexity as follows.
(i) line 32: the check to see if one sorted list is part of another has time complexityO(n). Each
of the next steps also has time complexityO(n) for sorted lists of vertices of at most length
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n: (ii) line 33: taking the union of two sorted lists, (iii) lines 34-36: labeling a list, (iv) line 37:
intersecting two sorted lists, (v) line 38: making lists empty. Steps (i)-(v) are executedO(n) times
(recall that the order of the number of edges between Voronoineighbors inqueueis O(n)). Thus,
the time complexity of the IWB adaptation isO(n2) and the time complexity for the complete
IWB algorithm is the same as for the WB method, i.e.,O(n2 logn).

3.6 FU Visualization

3.6.1 FU Map for Individual Dataset Analysis

FU Map Coloring

An FU map visualizes each FU as a set of Voronoi cells with identical gray value, with different
gray values for adjacent FUs. The problem of coloring the FUscorresponds to the coloring of a
plane graph, assigning different colors to adjacent vertices. Humans can detect one color among
a total of about �ve to seven different colors rapidly and accurately (Healey 1996), whereas there
can be more than �ve FUs. However, for any plane graph, four colors are suf�cient (Robertson
et al.1996).

To �nd a four-coloring of the FUs, the FUs are sorted by their number of neighboring FUs,
from high to low. From a set of four available colors, each FU is assigned (one by one) a
color different from its neighbors. If there are already four different colors among its neighbors,
there is an impasse. To solve the impasse, we make use of ac-d Kempe chain, which is a
connected component of a colored graph with vertices colored c or d. Interchanging the two
colors in a Kempe chain is referred to as Kempe chaining (Morgenstern and Shapiro 1991). This
is executed randomly with neighbors of the impasse FU, untilthe impasse is solved. If this
does not terminate within a certain number of attempts, thenthe FUs are sorted randomly before
restarting the coloring procedure.

Instead of four different colors, we use four different graylevels (Fig. 3.3, left, middle).
Because larger FUs are considered to be more interesting, only FUs larger than 5 cells are con-
sidered. White Voronoi cells are part of smaller FUs.

FU Map Connections

Given the FUs, we de�ne theinter-FU coherence c0at frequencyl between two functional units
W1 andW2 as the sum of the coherence values between one vertex inW1 and the other vertex in
W2, scaled by the total number of edges betweenW1 andW2 (ten Caatet al.2007d):

c0
l (W1;W2) =

å i; j f cl (vi ;v j ) j vi 2 W1;v j 2 W2g

jW1j � jW2j
: (3.3)

Here, jWi j indicates the number of vertices inWi. Note that coherences between any pair of
vertices are taken into account, to normalize for the size ofthe FUs.
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Algorithm 1 WB pseudocode with adaptations (ln. 11-15, 29-42) to obtain the IWB method.
INPUT: V is the vertex set;marker(i)= markeri; c(v;v0) = coherence(v;v0) = c(v0;v);

adjCohv = f v02 V j c(v,v0) � f g; f = sign. threshold; adjVorv = f v02 V j v02 Vor.-neighborsv & v02 adjCohvg;
f adjCohv, adjVorv are both sorted by vertex numberg

OUTPUT: bsni is basini (i.e., an FU) sorted by vertex number
INITIALIZATION :
1: queue /0 f queue of edgesg
2: for all v 2 V do
3: L(v)  0 f L(v) = label of vertexvg
4: end for
5: for i = 1 to jmarkerj do
6: bsni  marker(i); v  marker(i); L(v)  i; adjCohBsnL(v)  adjCohv
7: for all v02 adjVorv do
8: insertEdgeSort(e(v,v0),queue)
9: end for

10: end for
11: for i = 1 to jmarkerj do
12: for j = 1 to jmarkerj do
13: bsnMat(i; j)  1 f IWB modi�cationg
14: end for
15: end for
MAIN :
16: while queue6= /0 do
17: e(v;v0)  dequeue(queue)
18: if L(v0) = 0 then
19: if v02 adjCohBsnL(v) then
20: L(v0)  L(v)
21: adjCohBsnL(v)  intersect(adjCohBsnL(v) ,adjCohv0)
22: bsnL(v)  insertVSort(v0,bsnL(v))
23: for all v� 2 adjVorv0 do
24: if L(v� ) = 0 then
25: insertEdgeSort(e(v0;v� ),queue)
26: end if
27: end for
28: end if
BEGIN IWB
29: else
30: if (L(v0) 6= L(v)) and(bsnMat(L(v0);L(v)) 6= 0) then
31: y  L(v0)
32: if setInSet(bsnL(v) ,adjCohBsny ) andsetInSet(bsny ,adjCohBsnL(v)) then
33: bsnL(v)  merge(bsnL(v) ,bsny )
34: for all w02 bsny do
35: L(w0)  L(v)
36: end for
37: adjCohBsnL(v)  intersect(adjCohBsnL(v) ,adjCohBsny )
38: bsny = /0; adjCohBsny = /0
39: else
40: bsnMat(L(v);y )  0; bsnMat(y ;L(v))  0
41: end if
42: end if
END IWB
43: end if
44: end while
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A line is drawn between FU centers if the corresponding inter-FU coherence exceeds a thresh-
old (Fig 3.3, right). We consistently choose this thresholdto be equal to the signi�cance thresh-
old (Eqn. 3.1), as we already used this threshold to determine the initial graph.

3.6.2 Data-Driven Group Analysis

FU maps differ from individual to individual, making group analysis dif�cult. Therefore, we
develop a data-driven method for group coherence analysis which detects common features in
a collection of individual FU maps. Group coherence analyses are commonly based on group
means of coherences of interest. We show how our data-drivenROIs, i.e., the FUs, lead to a
data-driven selection of coherences of interest.

Group Mean Coherence Map

We de�ne agroup mean coherence graphas the graph containing the mean coherence for every
electrode pair computed across a group, with vertices representing electrodes and edges contain-
ing coherence values. To obtain a data-driven coherence visualization for a group, the group
mean coherence graph is thresholded, maintaining only the edges with a value exceeding the
coherence threshold (Eqn. 3.1). Next, an FU map is created for the group mean coherence graph,
referred to asgroup mean coherence map.

Group FU Size Map

A group FU size map visualizes the average FU size for every electrode across a group, based on
the FU maps for every individual dataset. The average FU sizesof an electrodev is computed as

s(v) = å
all datasets

fj Wj j v 2 Wg
#datasets

: (3.4)

with W the FU containingv in every FU map. The values for an electrode is mapped to the
gray value of its corresponding Voronoi cell, similar to a (gray scale) topographic map (ten Caat
et al. 2007c). Lighter gray is used for higher average FU sizes, as highervalues commonly
correspond to lighter gray in gray scale images.

Consequently, a light Voronoi cell indicates that the corresponding electrode is on average
part of large FUs.

3.7 Results

Throughout this section, we usep = 0:01. The corresponding coherence threshold isf �
0:22 (Eqn. 3.1).
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3.7.1 FU Map

For a comparison of FU maps obtained with the three differentFU detection methods, see
Fig. 3.4. FU maps for the �ve datasets in each group and each ofthe �ve frequency bands
are shown in Fig. 3.5 to 3.8 for the MCB and IWB method.

FU detection with the (non-optimized) MCB method was faster for smaller FU sizes, taking
approximately 1s for datasets with small FUs, and up to 2h forthe dataset with the largest FU.
FU detection with the (non-optimized) WB method took around 0:04� 0:02s (max. 0.14s) and
with the (non-optimized) IWB method around 0:05� 0:04s (max. 0.25s). Consequently, the WB
and IWB methods are up to a factor of 100,000 times faster than the MCB method for this typical
multichannel EEG setting with 128 channels.

Because the MCB method is assumed to obtain the most interesting FUs corresponding to the
strongest source signals (Section 3.5), it is here considered as the gold standard. We compared
the WB and the IWB method with the MCB method, and made an illustrative selection of seven
(out of �fty) cases for a detailed discussion (Fig. 3.4). Theselection includes those settings (a
combination of participant and frequency band) which result in the largest difference between the
MCB, WB, and IWB method. The order of the seven illustrations is chosen such that it facilitates
the discussion.

i. The one anterior FU detected by the MCB method is represented by two (smaller) spatially
connected anterior FUs by the WB method, whereas the IWB methodmerges two anterior
FUs. Because the WB and IWB methods both follow a greedy approach, the anterior FUs
do not correspond exactly to the anterior FU of the MCB FU map. Because the IWB
method merges FUs during segmentation (and not afterwards,such as with hierarchical
watersheds (Schultzet al.2007)), the vertices in the large anterior FU of the IWB FU map
do not correspond exactly to the vertices that are part of thesmaller anterior FUs obtained
by the WB method.

ii. Although multiple anterior FUs are obtained with the WB method, they are smaller than
the minimum size and are therefore not shown, whereas the IWB method merges smaller
FUs into an anterior FU identical to the anterior FU found with the MCB method.

iii. This is one of the occurrences of the maximal absolute difference in the number of FUs be-
tween the MCB (6 FUs) and IWB method (3 FUs). Nevertheless, the connection between
an anterior and a posterior region which is visible in the MCB FU map is preserved in the
IWB FU map.

iv. This is one of the occurrences of the maximal absolute difference in the number of FUs
between the MCB (5 FUs) and WB method (10 FUs). Whereas the WB method shows
visually cluttered edges, the IWB method gives a better overview more similar to the MCB
method.

v. The signi�cance threshold used is apparently too low, as onevery large FU is found with
the MCB method and two very large FUs are found with the IWB method. The WB
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Figure 3.4. Illustration of FU maps (top view, nose on top) obtained with the three FU
detection methods for seven (i-vii ) selected datasets and frequency bands.Left: MCB method
(see also Fig. 3.5 and Fig. 3.6).Middle: WB method with over-segmentation.Right: IWB
method with over-segmentation reduction (see also Fig. 3.7 and Fig. 3.8). Datasets:(i) young 1,
4-7Hz; (ii) young 1, 8-12Hz; (iii) young 3, 4-7Hz; (iv) young 5, 4-7Hz; (v) old 2, 1-3Hz;
(vi) old 4, 1-3Hz; (vii) old 4, 8-12Hz. For every dataset, the IWB FU map shows a number of
FUs and a number of inter-FU connections closer to the MCB FU maps than the WB FU maps.
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method, however, results in 6 FUs completely connected by 15lines and does not (directly)
make clear that the used threshold is too low.

vi. Both FUs found with the MCB and the IWB method are identical. The WBmethod has
more FUs in the same region instead.

vii. The large anterior FUs found with the MCB and the IWB method are identical. The WB
method has multiple FUs in the same region instead.

In all cases, the number of FUs and their size and locations are highly similar for the MCB
FU maps and the corresponding IWB FU maps (Fig. 3.5–3.8). The absolute difference in the
number of FUs between the WB and the MCB method is on average 1:8 with a maximum dif-
ference of �ve FUs (four occurrences). The same difference between the IWB and the MCB is
clearly smaller: 0:9 with a maximum of three FUs difference (two occurrences). Regarding the
connections between FUs, those found with the MCB method are generally also found in the
corresponding IWB FU maps. In particular, connections between a middle anterior and a middle
posterior FU are present in the MCB FU map if and only if they arepresent in the correspond-
ing IWB FU map, with one exception: for datasetold 5, 21-30Hz, the inter-FU coherence is just
above the threshold for the IWB method, contrary to the MCB method. For datasetsold 2and the
frequencies 1-3Hz, the connection between anterior and posterior regions is explicit in the IWB
FU map (Fig. 3.8) and implicit in the MCB FU map (Fig. 3.6: the fact that one large FU con-
sists of nearly all vertices implies that most anterior and most posterior vertices are completely
connected).

3.7.2 Group Analysis

Group mean coherence maps (Fig. 3.9) and group FU size maps (Fig. 3.10) were obtained as
extensions of the IWB FU detection method. They are shown for the two groups of younger and
older adults and the �ve frequency bands.

Individual FU Maps versus Group Mean Coherence Maps

The largest FUs for individual datasets of younger adults (Fig. 3.5, 3.7) are mostly located anteri-
orly and posteriorly in the middle. This feature is also preserved in the corresponding group mean
coherence maps (Fig. 3.9, left column). FU maps for older adults (Fig. 3.6, 3.8) usually show
more lateral FUs (at the sides of the head), which are preserved in the corresponding group mean
coherence maps (Fig. 3.9, right). For both younger and olderadults, the number of FUs usually
does not change much across frequency bands in the individual dataset FU maps (Fig. 3.5–3.8,
compare rows), as well as in the group mean coherence maps (Fig. 3.9, compare rows). In four
out of �ve frequency bands, inter-FU connections between a middle anterior and middle poste-
rior FU are present in the group mean coherence map (Fig. 3.9)if they are present in the majority
of the individual FU maps in the corresponding frequency bands (Figs. 3.5–3.8). The only ex-
ception is the 8-12Hz band, with anterior-posterior connections just above the threshold for a
majority of three (out of �ve) younger adults, and with anterior-posterior connections above the
























