Complexation of Nitrous Oxide by Frustrated Lewis Pairs
Otten, Edwin; Neu, Rebecca C.; Stephan, Douglas W.

Published in:
Journal of the American Chemical Society

DOI:
10.1021/ja904377v

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Anthropogenic disturbance of Earth’s atmospheric composition is a source of great environmental concern due to its contribution to global warming. Of the trace gases that have increased steadily relative to preindustrial levels, carbon dioxide has attracted the most attention because of its established relationship to human activity. Although nitrous oxide (N2O) is only a minor constituent of the atmosphere (319 ppb), it is ≈300 times more potent as a greenhouse gas than CO2.1 N2O is also a potentially strong and yet environmentally benign oxidant; however its high kinetic stability has hampered its use.2 Nonetheless, Nature uses a CuS8 cluster in nitrous oxide reductase (NOR) to convert N2O to dinitrogen and water, a process that is part of microbial denitrification.3 A synthetic NOR analogue has recently been shown to reduce N2O.4 Transition metal mediated reactivity of N2O includes O-transfer reactions to low-valent metal centers,5 insertion of the oxygen atom into M—R (R = alkyl, hydride) bonds,6 N—N bond cleavage,7 and hydrogenation to give N2 and H2O.8 In addition, (catalytic) oxidation of organic substrates using N2O has received renewed attention.9 A possible reason for its generally sluggish reactivity is the fact that N2O is a very poor ligand. Despite being comprised of N2 and NO, the Lewis acidity and basicity of N2O is significantly lower than that of nitrogen dioxide.10 None of these species have been structurally characterized although computational studies have probed the interactions of N2O with various metal systems. Perhaps the most well-studied N2O complex is [Ru(NH3)3(N2O)]2+ reported by Armor and Taube in 1969, which is thought to contain a linear Ru—NNO fragment based on spectroscopic10a,11 and computational studies.11c,12

We have recently developed the concept of “frustrated Lewis pairs” (FLPs) in which steric congestion precludes formation of classical Lewis adducts so that the unquenched acidity/basicity can be exploited for further reactivity.13 This has led to unique multinuclear metal systems capable of (reversible) H2 activation,14 hydrogenation,15 and unprecedented small-molecule reactivity.16 In this report, we demonstrate FLP binding of N2O and describe the first crystallographic characterizations of bound N2O species.

The reaction of an equimolar mixture of tBu3P and B(C6F5)3 with N2O (1 bar) in bromobenzene results in the precipitation of a white solid 1, which was isolated in 76% yield after recrystallization from CH2Cl2/hexane (Figure 1). NMR spectroscopic analysis in CD2Cl2 showed a single 31P resonance at 68.5 ppm. The observed 11B (0.4 ppm) and 19F (∆0(p,m-F) = 5.7 ppm) resonances are indicative of a four-coordinate boron center. The 15N isotopomer 1-15N was synthesized from 15N15NO. The observation of 15N NMR signals at 566.6 and 381.7 ppm which exhibit N—P coupling of 58.7 and 19.6 Hz, respectively, and JNN = 15.6 Hz establishes the presence of two inequivalent nitrogen atoms. Taken together, these spectroscopic data are consistent with the formulation of 1 as tBu3P(NNO)B(C6F5)3. Comparing the 15N NMR parameters for 1—15N to those for free N2O (218 and 135 ppm, JNN = 8.1 Hz)17 or the N2O complex cis-RuCl2(y-15N15NO)(P—N)(PPh3) (P—N = 1-Ph-P:2-Me6N6C6H4t; N, 125.8 ppm)10b suggests substantial perturbations within the N2O fragment. The infrared spectrum of 1 showed no bands that could be unambiguously assigned to N=N or N—O vibrations. However, comparison with 1-15N reveals an additional band isopropically shifted to 1410 cm−1 which was attributed to the N—N stretch. The corresponding absorption in 1 is obscured by a broad peak due to aromatic C—C vibrations. A crystal structure determination confirmed the proposed formulation, with a N2O molecule bridging the P and B fragments in a 1,3 mode (Figure 1).18 The N—N and N—O bonds in the N2O fragment (1.2570(17) and 1.3361(15) Å, respectively) are significantly elongated in comparison to free N2O (1.127 and 1.186 Å).19 For related phosphazides R3P(NNRRR') the N—N bond lengths (∼1.34 Å) are generally longer than those observed for 1.20 The P—N bond in 1 (1.7088(12) Å) is also significantly longer than the corresponding P—N bond lengths in phosphazides.21 Collectively, these metrical data indicate the bonding in 1 to be best described as P=N=N—O—B (vide infra) in which the tBu3P and OB(C6F5)3 fragments adopt a transoid disposition with respect to the N=N double bond.

Figure 1. Synthesis and X-ray-ray depictions of the molecular structures of 1 and 2. Selected bond distances (Å) and angles (deg): (1): P—N = 1.7087(12); N—N = 1.2573(17); N—O = 1.3362(15); O—B = 1.5428(18); P—N = 1.1170(10); N—N—O = 109.11(11); N—O—B = 114.43(10); (2): P—N = 1.7107(6); N—N = 1.2602(8); N—O = 1.3270(8); O—B = 1.5475(9); P—N—N = 112.85(5); N—N—O = 111.68(6); N—O—B = 111.61(5).

A dependence on the combined Lewis acidity and basicity has been previously noted in the interaction of small molecules with FLPs.13 Attempts to generate N2O complexes with less basic phosphines have so far not been successful. For example, the frustrated Lewis pair (o-tolyl)P/B(C6F5)3 does not react with N2O. On the other hand, variation of the Lewis acid shows that N2O binding using FLPs is not restricted to the very acidic borane B(C6F5)3. Treatment of tBu3P and B(C6F5)3Ph, a substantially weaker Lewis acid than B(C6F5)3,22 with N2O (1 bar) gave the product 2 in 76% yield (Figure 1). This species exhibited 31P and
$^{11}$B NMR resonances at 67.3 and 3.3 ppm respectively, suggesting a formulation similar to that of 1. This was confirmed crystallographically (Figure 1). While the general structural features of 2 are similar to those of 1, the P–N and N–N bonds are slightly longer at 1.7107(6) and 1.2602(8) Å, respectively, while the N–O bond distance is slightly shorter at 1.3270(8) Å. The O–B distance in 2 is similar to that in 1. These perturbations demonstrate that the Lewis acidity at B has a greater impact on the remote N–N and P–N interactions without a dramatic effect on the B–O bond.

Additional insight into the bonding in 1 was obtained from DFT calculations at the B3LYP/6-31G(d) level of theory. The optimized geometry $^{1}$calc is in good agreement with the crystallographically determined structure, with a somewhat longer N–N (1.273 Å) and shorter N–O bond (1.298 Å). A frequency analysis for $^{1}$calc revealed N–N and N–O infrared frequencies in the fingerprint region at 1483 and 1257 cm$^{-1}$, respectively, corroborating the experimental observation that NNO vibrations are obscured in the IR spectrum of 1. Natural Bond Orbital analysis shows the bonding within the NNO fragment to consist of a N–N double bond and a N–O single bond (Figure 2), consistent with the crystallographic data.

**Figure 2.** NBO orbitals for the N=N $\sigma$- and $\pi$-bond (left, middle) and N–O $\sigma$-bond (right).

The formation of $^{1}$calc is exothermic by 17.4 kcal/mol. However, $^{1}$calc is shown to be a kinetic product as extrusion of N$_2$ and formation of $\text{Bu}_3\text{P}=\text{O}$ and $\text{B}$(C$_6$F$_5$)$_3$ is thermodynamically favorable by 60.4 kcal/mol relative to 1. This notion was confirmed experimentally. Heating an NMR sample of 1 in CD$_2$Br$_2$ at 135 °C for 44 h resulted in the liberation of N$_2$ and formation of the Lewis acid–base adduct ($\text{Bu}_3\text{P}=\text{O}$)($\text{B}$(C$_6$F$_5$)$_3$) as the main product (>80% at 95% conversion) as evidenced by spectroscopic data and independent synthesis (Figure 3). In addition, photolysis of 1 readily afforded 3 (5 min of irradiation gives >75% at 90% conversion), but prolonged photolysis resulted in decomposition to unidentified species. These observations suggest that isomerization of 1 placing P and O cis to one another prompts loss of N$_2$. This notion is reminiscent of proposed transition states in Staudinger oxidations of phosphines.$^{23}$

**Figure 3.** Proposed mechanism of thermolysis or photolysis of 1 to 3.

In summary, frustrated Lewis pairs of a basic yet sterically encumbered phosphine with Lewis acids bind nitrous oxide to give intact PNNO linkages. The reactivity of these new N$_2$O species and the utility of FLPs in the activation of small molecules continue to be the focus of efforts in our laboratory.

Acknowledgment. D.W.S. gratefully acknowledges the financial support of NSERC of Canada and the award of a Canada Research Chair. E.O is grateful for the support of a Rubicon postdoctoral fellowship from The Netherlands Organisation for Scientific Research (NWO). R.C.N. is grateful for the award of an NSERC of Canada scholarship.

**Supporting Information Available:** Experimental and computational details, NMR spectra of 1–2N and X-ray crystallographic details of 1 and 2. This material is available free of charge via the Internet at http://pubs.acs.org.

**References**


J. AM. CHEM. SOC. • VOL. 131, NO. 29, 2009 9919