Optimization of nodule management in CT lung cancer screening

Heuvelmans, Marjolein Anne

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
A practical approach to radiological evaluation of CT lung cancer screening examinations

Xiequan Xie
Marjolein A Heuvelmans
Peter M A van Ooijen
Matthijs Oudkerk
Rozemarijn Vliegenthart

Published in Cancer Imaging
Abstract

Lung cancer is the most common cause of cancer-related death in the world. The Dutch-Belgian Randomized Lung Cancer Screening Trial (Dutch acronym: NELSON) was launched to investigate whether screening for lung cancer by low-dose multi-detector computed tomography (CT) in high-risk subjects will lead to a decrease in lung cancer mortality. The NELSON lung nodule management is based on nodule volumetry and volume-doubling time assessment. Evaluation of CT examinations in lung cancer screening can also include assessment of coronary calcification, emphysema and airway wall thickness, biomarkers for major diseases that share risk factors with lung cancer. In this review, a practical approach to the radiological evaluation of CT lung cancer screening examinations is described.
Introduction

Lung cancer is the primary cancer in males and the second in females, comprising 18% of the total number of deaths [1]. Despite advances in treatment, the 5-year survival rate is still only 15% or even less, as many lung cancers are found at a relative late stage [2]. Low-dose computed tomography (CT) was proposed as a promising screening method for early detection of lung cancer.

The Dutch-Belgian Randomized Lung Cancer Screening Trial (Dutch acronym: NELSON) was launched in 2003. The hypothesis of the NELSON trial is that lung cancer screening by low-dose spiral CT will reduce 10-year lung cancer mortality by 25% in a high risk population. Details on participant recruitment and CT acquisition protocol were described elsewhere [3]. In short, current or former heavy smokers between 50 and 75 years of age underwent four rounds of low-dose CT screening in year 1, 2, 4, and 6. The NELSON lung nodule management is based on volumetry and volume-doubling time assessment. Thin-slice thoracic CT images were acquired with slice thickness of 1 mm, and slice interval of 0.7 mm, allowing for volume measurements of pulmonary nodules.

Evaluation of CT examinations in lung cancer screening can also include assessment of coronary calcification, emphysema and airway wall, markers for major diseases that share risk factors with lung cancer [4]. In this review, a practical approach to the radiological evaluation of CT lung cancer screening examinations is described, including assessment of pulmonary nodules and non-nodular diseases.

Pulmonary nodule evaluation

Initial assessment

The assessment starts with evaluating whether a detected nodule has purely benign characteristics like benign calcifications or is very small (<15 mm³) (Figure 3.1). If so, the nodule can be categorized as benign, and needs no further evaluation. If the nodule cannot directly be defined as benign, the nodule is further evaluated. Next, the density of the lung nodule is assessed. A nodule can be solid, partial-solid, or non-solid.

Size-based evaluation

Evaluation of nodule size is essential to determine nodule growth. Evaluation methods for solid, partial-solid and non-solid nodules are different. Semi-automated volumetry measurements are utilized for segmentable nodules (Figure 3.2), e.g., solid nodules and the solid part of partial-solid nodules. In the NELSON study, approximately 98% of the nodules were solid, and thus could be assessed using semi-automated software [5]. In case of inappropriate segmentation, the reader is allowed to manually modify the segmentation for more accurate segmentation, which then overrules the automatically generated volumetry. Manual measurement of diameters is performed in case of non-segmentable nodules (Figure 3.3), e.g., non-solid nodules and the non-solid part of partial-solid nodules. Although
Figure 3.1: A complete calcified nodule is considered as benign on transverse thin-slice CT image in soft-tissue setting (a). A very small (14 mm³) nodule is not further evaluated (b), transverse thin-slice CT image in lung setting). The volume rendered image of this small nodule is shown in (c).

Figure 3.2: Screen capture of dedicated software to semi-automatically measure the volume of a solid nodule (LungCARE, Siemens, Forchheim, Germany). At the left top section, a thin maximum intensity projection is shown; in the yellow box the nodule of interest selected by the radiologist. The right top section shows a transverse thin-slice image. On the left bottom, a coronal thin-slice image is shown, and the right bottom reveals a volume rendered image of the selected nodule.
partial-solid and non-solid nodules constitute the minority of nodules that are detected, the frequency of malignancy is higher [6, 7].

Inter-scan variability in nodule size evaluation is inevitable. Based on validation studies with repeated low-dose CT on the same day, in which the measurement error was maximally 25%, nodule growth is defined as a change in volume of at least 25% between two subsequent examinations [8].

Figure 3.3: Semi-automated volumetry for the solid part of a partial-solid nodule (a), and manual measurement of diameter for the non-solid part of this partial-solid nodule (b). Manual measurement of diameters is performed for a non-solid nodule (c). (a) is a volume rendered image, (b) and (c) are maximum intensity projection images.

Additional non-size based evaluation

Beside nodule density, attachment type, shape, margin and location should be taken into account when evaluating a pulmonary nodule (Figure 3.4). Firstly, the attachment of nodules (peri-fissural, vessel-attached, pleural-based and intra-parenchymal) is evaluated. Although peri-fissural nodules may show growth at follow-up CT, the malignancy potential of peri-fissural nodules is low [9, 10]. In addition, a previous study showed negligible cancer risk in fast-growing vessel-attached and pleural-based nodules, one year after baseline [11]. Secondly, the shape of nodules (spherical and non-spherical) is evaluated. Non-spherical shape has been found to increase the likelihood of malignancy, rather than spherical shape [12]. Thirdly, the margin of nodules (smooth, lobulated, spiculated or other) is assessed. In a subgroup of NELSON with 469 solid intraparenchymal nodules, a lobulated or spiculated margin increased the likelihood for malignancy, in comparison to smooth margin [13]. Lastly, nodule location is defined by the pulmonary segment and according to distance to pleura: peripheral nodules are defined as <$1/3$ from total distance hilus-costal pleura, and central nodules are defined as $>2/3$ from this distance. In-between nodules are defined as between $1/3$ to $2/3$ from total distance hilus-costal pleura.

Reading

A single CT lung cancer screening evaluation by an experienced reader seems sufficient. In the first three rounds of the NELSON trial, images were evaluated twice. The second
reader was unaware of the conclusion of the first reader. In case of discrepancy, a third reader made the final decision. However, based on the results from these rounds, no statistically significant benefit was found for consensus double reading for detection of lung cancer with the use of a nodule management strategy based on semi-automated volumetry measurements [14]. Thereafter, in the fourth round, only one reading was performed by one of the two radiologists with at least 8 years of experience in thoracic imaging.

Images are interpreted on a workstation for evaluation of pulmonary nodules and non-nodular diseases (in the NELSON trial: Leonardo, Siemens, Forchheim, Germany), both at lung window and mediastinal settings. When a pulmonary nodule is identified, a dedicated software package (in the NELSON trial: LungCARE, Siemens, Forchheim, Germany) is utilized for semi-automated volumetric measurement. In case of non-segmentable nodules, the reader should manually measure the diameter of the lesion. In the LungCARE software package, previous and current images are displayed simultaneously on the same screen for comparison. Beside the evaluation of nodule size, nodule characteristics (attachment type, margin, etc.) are then also evaluated and reported.

Lung nodule decision management

Newly detected lung nodules are divided into four categories (NODCAT 1 to 4), based on nodule density and size. In subsequent screening rounds, pre-existing nodules are
defined as three categories (GROWCAT A to C), based on nodule growth in terms of volume-doubling time (Table 3.1). For newly detected nodules, the test result (negative, indeterminate and positive) is based on the highest NODCAT. For pre-existing nodules, the test result is based on highest GROWCAT. A negative result indicates that no further workup is needed. The participant is then invited to undergo the regular next-round CT. An indeterminate result requires a follow-up examination after 6 weeks (for incidence screening) to 3 months (for baseline screening). A positive result necessitates referral to a pulmonologist for work-up and diagnosis. An example of a growing nodule that turned out to be lung cancer is shown in Figure 3.5.

Table 3.1: Nodule categorization based on size and density (new nodules) and growth rate (existing nodules) in the NELSON trial.

<table>
<thead>
<tr>
<th>Category</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODCAT 1</td>
<td>A benign nodule (with fat/benign calcifications) or other benign abnormalities</td>
</tr>
<tr>
<td>NODCAT 2</td>
<td>A nodule, smaller than NODCAT 3, not belonging to NODCAT 1</td>
</tr>
<tr>
<td>NODCAT 3</td>
<td>50 \leq V \leq 500 \text{ mm}^3</td>
</tr>
<tr>
<td></td>
<td>Solid component: (d_{\text{mean}} \geq 8 \text{ mm})</td>
</tr>
<tr>
<td></td>
<td>Pleural-based: (5 \leq d_{\text{min}} \leq 10 \text{ mm})</td>
</tr>
<tr>
<td></td>
<td>Non-solid component: (d_{\text{mean}} \geq 8 \text{ mm})</td>
</tr>
<tr>
<td>NODCAT 4</td>
<td>V > 500 \text{ mm}^3</td>
</tr>
<tr>
<td></td>
<td>Solid component: (non-existing category)</td>
</tr>
<tr>
<td></td>
<td>Pleural-based: (d_{\text{min}} > 10 \text{ mm})</td>
</tr>
<tr>
<td>GROWCAT A</td>
<td>VDT > 600 days</td>
</tr>
<tr>
<td>GROWCAT B</td>
<td>400 \leq VDT \leq 600 \text{ days}</td>
</tr>
<tr>
<td>GROWCAT C</td>
<td>VDT < 400 days, or new solid component in non-solid lesion</td>
</tr>
</tbody>
</table>

\(V\), volume; \(d_{\text{min}}\), minimal diameter; \(d_{\text{mean}}\), mean diameter; VDT, volume-doubling time

NELSON management system

In the NELSON trial, evaluation results are exported into the web-based NELSON management system (Figure 3.6). Nodule characteristics, volume and diameter are recorded. Nodule volume is automatically compared to the previous data to calculate the percentage volume change and the volume-doubling time in days. Finally, the system makes a suggestion for categorization of pulmonary nodules.

Non-nodular diseases

Beside lung cancer originating from pulmonary nodules, over 14% of participants in lung cancer screening have other diseases, such as cardiovascular disease and other pulmonary disease [15]. Aging and smoking, the two major risk factors for lung cancer, are also main
Figure 3.5: New pulmonary nodule in apicoposterior segment of left superior lobe in the third round (a, b), non-spherical, lobulated and solid, with volume of 54 mm3 (NODCAT 3). In the fourth round, 3 years after the third round (c and d), the volume had increased to 249 mm3, and the volume-doubling time was 284 days (GrowCAT C). Thus, this was considered as a positive case; the participant was referred to a pulmonologist. Lung cancer was confirmed. (a) and (c) are thin maximum intensity projection images, (b) and (d) are volume rendered images.

Figure 3.6: Screen capture of the web-based NELSON management system.
 contributors to the development and progression of coronary calcification and emphysema [16, 17]. It is important to review the CT screening examination for coronary artery calcification and emphysema. These thoracic biomarkers can be evaluated quantitatively, see the description below.

A list of non-nodular findings that were initially reported in the NELSON trial is given in Table 3.2. The screening population of (ex-)smokers frequently shows findings such as pleural plaques to a certain extent, without having high clinical relevance. Thus, these were not reported to the general practitioner, to prevent unnecessary costs and patient anxiety. Some severe diseases have been detected in the NELSON screen group that led to clinical referral, e.g., abdominal aortic aneurysm and renal cancer. However, the prevalence of these other potentially significant findings in the NELSON trial is only 1%, and the benefit for systematically searching for these additional findings has been found to be negligible [18].

Coronary calcification

Coronary calcification is a frequent finding in the NELSON screening group, with a prevalence of over 70% [19]. Calcium scoring as part of low-dose CT lung cancer screening can be used as an independent predictor of cardiovascular death and events [15, 20]. For the analysis of coronary calcification, the raw data should be reconstructed into 3 mm thickness to improve inter-scan reproducibility and make the settings more comparable to the dedicated coronary calcium examination [21, 22]. Then, calcium scoring can be performed using the method developed by Agatston [23].

Table 3.2: Non-nodule radiological findings in lung cancer CT screening.

<table>
<thead>
<tr>
<th>Clinical relevance too low to report to GP*</th>
<th>Clinically significant and reported to GP*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic calcium</td>
<td>Aortic aneurysm</td>
</tr>
<tr>
<td>Adrenal lesion ≤ 10 HU</td>
<td>Adrenal lesion > 10 HU</td>
</tr>
<tr>
<td>Pleural calcifications</td>
<td>Bone destruction</td>
</tr>
<tr>
<td>Pleural plaques</td>
<td>Liver lesions</td>
</tr>
<tr>
<td>Pulmonary fibrosis</td>
<td>Mass (thyroid, breast, abdominal, etc.)</td>
</tr>
<tr>
<td>Bronchiectasis</td>
<td>Pleural fluid</td>
</tr>
<tr>
<td>Lymph node enlargement</td>
<td>Pneumonia</td>
</tr>
<tr>
<td></td>
<td>Segmental or larger atelectasis</td>
</tr>
</tbody>
</table>

*GP is general practitioner

Emphysema and airway wall

Emphysema is also a frequent finding in lung cancer screening. The two primary causes of chronic obstructive pulmonary disease (COPD) are emphysema and airway remodelling [24]. In a meta-analysis, CT-measured emphysema and airway wall thickness correlated with airflow obstruction in COPD [25]. CT examinations obtained for lung cancer screening can identify participants with COPD, with a sensitivity of 63% and a specificity of 88% [26]. Among the parameters that can be used to quantify emphysema, percentage
of lung attenuation area under -950 HU, mean lung density and 15 percentile point of lung
density are the most commonly utilized. Among the parameters to quantify airway wall
thickness, wall area percentage and wall thickness are the most commonly utilized [25].
Dedicated software is needed to obtain quantitative emphysema and airway wall measures.

<table>
<thead>
<tr>
<th>Step</th>
<th>Practical approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Evaluate the presence of nodules (new or existing)</td>
</tr>
<tr>
<td>2</td>
<td>Exclude nodules with benign calcifications and nodules <15 mm³</td>
</tr>
<tr>
<td>3</td>
<td>Determine the nodule density (solid, partial-solid, or non-solid)</td>
</tr>
<tr>
<td>4</td>
<td>Measure the nodule (volume and diameters)</td>
</tr>
<tr>
<td>5</td>
<td>Determine the nodule characteristics (morphology, margin, location, lung segment)</td>
</tr>
<tr>
<td>6</td>
<td>In case of an existing nodule: compare to the previous examination, and determine volume-doubling time</td>
</tr>
<tr>
<td>7</td>
<td>Categorize the nodule (for a new nodule based on size, for an existing nodule based on growth)</td>
</tr>
<tr>
<td>8</td>
<td>Repeat step 3-7 for each additional nodule</td>
</tr>
<tr>
<td>9</td>
<td>Review for coronary calcification, emphysema, and other findings</td>
</tr>
<tr>
<td>10</td>
<td>Derive screening result (negative, indeterminate or positive)</td>
</tr>
</tbody>
</table>

Conclusion

The NELSON trial is the first lung cancer screening trial in which nodule management is based on semi-automated volumetric measurements. High resolution images acquired in low-dose thin-slice CT result in accurate evaluation of nodule volume and volume-doubling time. Nodule volume and volume-doubling time are used to categorize a lung nodule according to risk of lung cancer, and recommend adequate nodule management. A 10-step practical approach to evaluate a CT lung cancer screening examination is provided in Table 3.3.

Cardiovascular disease and COPD share risk factors with lung cancer, such as aging and smoking. The prevalence of these diseases in a lung cancer screening population is high. Beside the evaluation of lung nodules, low-dose thoracic CT can be used to evaluate coronary calcification, emphysema and airway wall thickness, and thereby estimate the risk of cardiovascular disease and COPD. An integrated evaluation of quantitative biomarkers of these diseases can potentially enhance the benefit of CT lung cancer screening.

References

Part II

Quantitative: 2D/3D comparison, volumetry, and volume-doubling time