Synthesis and Biological Evaluation of a Chitobiose-Based Peptide N-Glycanase Inhibitor Library
Witte, Martin D.; Horst, Danielle; Wiertz, Emmanuel J.H.J.; Marel, Gijsbert A. van der; Overkleeft, Herman S.

Published in:
The Journal of Organic Chemistry

DOI:
10.1021/jo801906s

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Supporting Information

Synthesis and biological evaluation of a chitobiose based peptide \(N\)-glycanase inhibitor library

Martin D. Witte\(^a\), Daniëlle Horst\(^b\), Emmanuel J. H. J. Wiertz\(^b\), Gijs A. van der Marel\(^a\)* and Herman S. Overkleeft\(^a\)*.

\(^a\)Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands. Email: marel_g@chem.leidenuniv.nl, h.s.overkleeft@chem.leidenuniv.nl

\(^b\)Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.

Table of contents

General Procedures \hspace{1cm} S4
Synthesis of 5 \hspace{1cm} S5
Synthesis of 7 \hspace{1cm} S6
Synthesis of 26 \hspace{1cm} S6
Synthesis of 39 \hspace{1cm} S7
Synthesis of 49 \hspace{1cm} S8
Competition assay \hspace{1cm} S9
In vivo inhibition of human PNGase \hspace{1cm} S9
Copy of \(^1\)H-NMR of 5 \hspace{1cm} S11
Copy of 13C-NMR of 5
Copy of 1H-NMR of 7
Copy of 13C-NMR of 7
Copy of 1H-NMR of 10
Copy of 13C-NMR of 10
Copy of LC/MS spectrum of 10
Copy of 1H-NMR of 11
Copy of 13C-NMR of 11
Copy of LC/MS spectrum of 11
Copy of 1H-NMR of 12
Copy of 13C-NMR of 12
Copy of LC/MS spectrum of 12
Copy of 1H-NMR of 13
Copy of 13C-NMR of 13
Copy of LC/MS spectrum of 13
Copy of 1H-NMR of 14
Copy of 13C-NMR of 14
Copy of LC/MS spectrum of 14
Copy of 1H-NMR of 17
Copy of 13C-NMR of 17
Copy of LC/MS spectrum of 17
Copy of 1H-NMR of 18
Copy of 13C-NMR of 18
Copy of LC/MS spectrum of 18 S35
Copy of 1H-NMR of 19 S36
Copy of 13C-NMR of 19 S37
Copy of LC/MS spectrum of 19 S38
Copy of 1H-NMR of 20 S39
Copy of 13C-NMR of 20 S40
Copy of LC/MS spectrum of 20 S41
Copy of 1H-NMR of 21 S42
Copy of 13C-NMR of 21 S43
Copy of LC/MS spectrum of 21 S44
Copy of 1H-NMR of 24 S45
Copy of 13C-NMR of 24 S46
Copy of LC/MS spectrum of 24 S47
Copy of 1H-NMR of 25 S48
Copy of 13C-NMR of 25 S49
Copy of LC/MS spectrum of 25 S50
General Procedures:

All reagents were commercial grade and were used as received unless stated otherwise. TTBP was synthesized as described. Diethyl ether (Et₂O), ethyl acetate (EtOAc), light petroleum ether (PE) and toluene (Tol) were purchased from Riedel-de Haën. Acetonitrile (MeCN), dichloroethane, dichloromethane (CH₂Cl₂), N,N-dimethylformamide (DMF), methanol (MeOH), pyridine (pyr), tetrahydrofuran (THF) were obtained from Biosolve. THF was distilled over LiAlH₄ prior to use. Before use CH₂Cl₂ was refluxed over CaH₂ for 2h and distilled. Trace of water were removed by refluxing n-Butanol over sodium for 2h followed by distilling and storing over 3Å MS. Trifluoromethanesulfonic anhydride was distilled from P₂O₅. Molecular sieves 3Å were flame dried before use. All reactions were performed under an inert atmosphere of Argon unless stated otherwise. Solvents used for flash chromatography were of pro analysi quality. Flash chromatography was performed on Screening Devices silica gel 60 (0.04 – 0.063 mm). TLC-analysis was conducted on DC-alufolien (Merck, Kieselgel60, F254) with detection by UV-absorption (254 nm) were applicable and by spraying with 20% sulfuric acid in ethanol followed by charring at ~150°C or by spraying with a solution of (NH₄)₆Mo₇O₂₄·4H₂O (25 g/l) and (NH₄)₄Ce(SO₄)₂·2H₂O (10g/l) in 10% sulfuric acid in water followed by charring at ~150°C. ¹H and ¹³C NMR spectra were recorded on a 400 MHz, 500/125 MHz and a 600/150 MHz spectrometer. Chemical shifts (δ) are given in ppm relative to the chloroform residual solvent peak or tetramethylsilane as internal standard. Coupling constants are given in Hz. All given ¹³C spectra are proton decoupled. High resolution mass spectra were recorded by direct injection (2 µL of a 2 µM solution in water/acetonitrile; 50/50; v/v and 0.1% formic acid) on a mass...
spectrometer equipped with an electrospray ion source in positive mode (source voltage 3.5 kV, sheath gas flow 10, capillary temperature 250 °C) with resolution R = 60000 at m/z 400 (mass range m/z = 150-2000) and dioctylphthalate (m/z = 391.28428) as a “lock mass”. The high resolution mass spectrometer was calibrated prior to measurements with a calibration mixture (Thermo Finnigan). LC-MS analysis was performed on a HPLC system with a standard C$_{18}$ (4.6 mmD × 250 mmL, 5μ particle size) column (detection at 200-600 nm) in combination with buffers A: H$_2$O, B: MeCN and C: 0.5% aq. TFA and coupled to a mass spectrometer with ESI. For RP-HPLC purifications an automated HPLC system equipped with a C$_{18}$ (5μm 250×10 mm) column was used. The applied buffers were A: 0.1% TFA in H$_2$O, B: MeCN.

\[
\begin{align*}
\text{O} & \quad \text{F} \\
\text{O} & \quad \text{F}
\end{align*}
\]

Potassium fluoroacetate (5)

Ethyl fluoroacetate, was synthesized as described in literature.1 Ethyl fluoroacetate (0.107 g, 1 mmol) was dissolved in absolute EtOH, cooled to 0°C and potassium hydroxide (56.1 mg, 1 mmol) was added. The reaction was stirred overnight after which petroleum ether was added. The solution was cooled to -20°C and filtered giving title compound 5 (66%, 77 mg, 0.66 mmol) as a white solid. 1H-NMR (400 MHz, D$_2$O) δ 4.75 (d, J = 48.3, 2H). 13C-NMR (101 MHz, D$_2$O) δ ppm 79.5 (d, J = 176). FT-IR: ν_{max} (neat)/cm$^{-1}$ 3381, 1606, 1423, 1398, 1337, 1009. Mp: 189°C (start of decomposition).
2-(2,6-dimethylbenzoyloxy)acetic acid (7)

Tert-butyl bromoacetate (0.437 ml, 3 mmol), dimethylbenzoic acid (0.496 g, 3.3 mmol) and potassium fluoride (0.261 g, 4.5 mmol) were dissolved in DMF. After overnight stirring, Et₂O was added after which the solution was extracted with NaHCO₃ (sat. aq.). The organic layer was dried, concentrated _in vacuo_ and subsequently dissolved in TFA/H₂O (95/5). The solution was concentrated after 1h, coevaporated with toluene to remove residual traces of TFA and applied to silica gel chromatography (0→10% EA/Tol) giving title compound 7 (81%, 0.506 g, 2.43 mmol) as a white solid. ¹H-NMR (400 MHz, CDCl₃) δ ppm 7.22 (dd, _J_ = 15.2 Hz, 7.6 Hz, 1H), 7.05 (d, _J_ = 7.6 Hz), 4.89 (s, 2H), 2.37 (s, 6H). ¹³C-NMR (101 MHz, CDCl₃) δ ppm 173.7, 169.1, 135.7, 132.1, 129.9, 127.7, 60.4, 19.8. FT-IR: _v_ (neat)/cm⁻¹ 2955.7, 1720.7, 1597.4, 1462.9, 1424.3, 1306.1, 1281.6, 1240.1, 1165.5, 1113.7, 1082.7, 1029.1, 1003.3. Mp: 128.7-130.4°C.

3-C-(3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl) propene (26)

Known 3-C-(3-O-benzyl-4,6-O-benzylidene-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-1-propene² (0.512 g, 1 mmol) was coevaporated with toluene (3×) before being dissolved in freshly distilled CH₂Cl₂. Activated molsieves (4 Å) and triethylsilane (0.533 mL, 3.3 mmol) were added. The mixture was stirred at room temperature for 15 min, cooled to -78°C followed by the addition of
trifluoromethanesulfonic acid (0.265 mL, 3 mmol). TLC-analysis showed complete conversion after 45 min after which the reaction was quenched with MeOH/Et$_3$N, extracted with NaHCO$_3$ and concentrated. Silica gel purification (0→30% EA/PE) afforded acceptor 26 (70%, 0.359 g, 0.70 mmol) as an oil. 1H-NMR (400 MHz, CDCl$_3$) δ ppm 7.80-7.75 (m, 1H), 7.70-7.63 (m, 3H), 7.38-7.23 (m, 5H), 7.05-6.98 (m, 2H), 6.95-6.90 (m, 3H), 5.72 (dt, $J = 16.9$, 16.8, 7.0 Hz, 1H), 4.89 (d, $J = 17.2$ Hz, 1H), 4.83 (d, $J = 10.2$ Hz, 1H), 4.76 (d, $J = 12.2$ Hz, 1H), 4.64 (d, $J = 12.1$ Hz, 1H), 4.58 (d, $J = 12.1$ Hz, 1H), 4.52 (d, $J = 12.2$ Hz, 1H), 4.30-4.18 (m, 2H), 4.08 (t, $J = 10.0$, 10.0 Hz, 1H), 3.82-3.71 (m, 3H), 3.61 (td, $J = 9.1$, 4.4, 4.4 Hz, 1H), 3.04 (s, 1H), 2.27-2.13 (m, 2H). 13C-NMR (101 MHz, CDCl$_3$) δ ppm 168.1, 167.8, 138.2, 137.7, 133.8, 133.7, 133.7, 133.3, 131.5, 131.4, 128.4, 128.0, 127.70, 127.65, 127.2, 123.2, 123.1, 116.9, 79.6, 77.6, 74.4, 74.2, 73.6, 70.6, 55.3, 36.9. FT-IR: ν_{max} (neat)/cm$^{-1}$ 3473.9, 2869.8, 1774.6, 1709.7, 1383.9, 1201.4, 1076.3, 913.3. ESI/MS: m/z = 514.13 (M+H)$^+$. HRMS: (M + Na$^+$) calc. for C$_{31}$H$_{31}$NO$_6$ 536.20436, found 536.20397.

Imidate (39)

3-O-benzyl-4,6-O-benzylidene-2-deoxy-2-phthalimido-β-D-glucopyranose3 (2.88 g, 5.9 mmol) was dissolved in anhydrous CH$_2$Cl$_2$. K$_2$CO$_3$ (3.017 g, 21.83 mmol) and trichloroacetonitrile (2.97 mL, 29.5 mmol) were added. After overnight stirring, the mixture was filtered, concentrated in vacuo and purified by silicagel column chromatography. 1H-NMR (400 MHz, CDCl$_3$) δ ppm 8.58 (s, 1H), 7.78-7.66 (m, 4H),
7.55-7.51 (m, 2H), 7.44-7.37 (m, 3H), 7.03-6.99 (m, 2H), 6.95-6.86 (m, 3H), 6.50 (d, J = 8.3 Hz, 1H), 5.64 (s, 1H), 4.82 (d, J = 12.4 Hz, 1H), 4.60-4.45 (m, 4H), 3.94-3.80 (m, 3H). 13C-NMR (101 MHz, CDCl3) δ ppm 167.4, 160.8, 137.7, 137.1, 134.0, 131.4, 129.1, 128.3, 128.0, 127.4, 126.1, 123.4, 101.4, 94.3, 82.6, 74.4, 74.2, 68.5, 66.9, 54.7. FT-IR: νmax (neat)/cm⁻¹ 1776.4, 1714.1, 1677.8, 1453.7, 1383.8, 1294.2, 1112.9, 1053.4, 1023.1.

The imidate was hydrolyzed during mass-spectrometry. HRMS: (M-imidate + Na⁺) calc. for C31H31NO6 510.15232, found 510.15212.

Known epoxide² (166 mg, 0.199 mmol) was dissolved in EtOH/Dioxane (2/1 v/v, 5 mL). Pd(OH)₂ on charcoal (25 mg) was added followed by stirring under H₂ atm for 1h. The solution was filtered, concentrated, redissolved in pyridine (5 mL) and cooled to 0°C before being treated with Ac₂O (3 mL). The mixture was stirred overnight, concentrated, redissolved in CH₂Cl₂, washed with H₂O, dried (Na₂SO₄) and concentrated in vacuo. RP-HPLC (linear gradient 22 → 32% B in 10.00 min) gave title compound 49 (26%, 39.69 mg, 51.2 μmol) as a white solid. ¹H-NMR (400 MHz, CDCl₃/MeOD) δ ppm 5.27 (dd, J = 10.2, 9.5 Hz, 1H), 5.09 (dd, J = 10.5, 8.4 Hz, 1H), 5.07-4.98 (m, 2H), 4.67 (d, J = 8.3 Hz, 1H), 4.43 (dd, J = 12.1, 1.4 Hz, 1H), 4.42 (dd, J = 12.4, 4.4 Hz, 1H), 4.28 (m, 2H), 4.07 (dd, J = 11.9, 4.7 Hz, 1H), 4.05-3.98 (m, 2H), 3.78-3.69 (m, 4H), 3.62 (d, J = 1.7 Hz, 1H).
Hz, 1H), 3.48 (d, J = 1.7 Hz, 1H), 2.14 (s, 3H), 2.09 (s, 3H), 2.07 (s, 3H), 2.02 (s, 6H), 1.94 (s, 3H), 1.91 (s, 3H), 1.32 (t, J = 7.1, 7.1 Hz, 3H). 13C-NMR (101 MHz, CDCl$_3$/MeOD) δ ppm 172.3, 171.6, 171.2, 170.7, 170.6, 170.5, 169.6, 167.0, 166.7, 166.6, 100.2, 78.2, 75.2, 74.2, 72.6, 71.9, 71.2, 68.1, 62.14, 62.09, 61.5, 54.4, 52.9, 52.4, 51.8, 22.11, 22.08, 20.3, 20.2, 20.1, 20.04, 19.97, 13.5. FT-IR: v_{max} (neat)/cm$^{-1}$ 3288.1, 1738.9, 1665.5, 1541.9, 1435.1, 1372.0, 1228.2, 1046.1, 902.1, 600.8. LC/MS: R$_t$ 4.700 min; linear gradient 10→90% B in 13.5 min; ESI/MS: m/z = 776.5 (M+H)$^+$. HRMS: (M + H$^+$) calc. for C$_{32}$H$_{45}$N$_3$O$_{19}$ 776.27200, found 776.27207.

Competition assay

To 9 µL of a solution of yeast PNGase (11.1 ng/µL) in PBS (pH = 7.2, 20 mM sodium phosphate, 150 mM NaCl, BSA (1 µg/µL) was added inhibitor (1 µL) and Bodipy-VAD-Fmk (1 µL, 0.5 µM final concentration). The resulting solution was incubated at 37°C for 1h, after which it was quenched by the addition of 4 × SDS-PAGE sample buffer (4 µL) and boiling for 5 min. The proteins were separated on a 10% SDS-PAGE gel and subsequently the fluorescence was measured in the wet gel slabs by using the CY3/Tamra settings (λ_{ex} 532 λ_{em}560) on a Typhoon Variable Mode Imager (Amersham Biosciences). The remaining fluorescence was quantified with ImageQuant followed by analysis with Graphpad Prism.

In vivo inhibition of human PNGase

Control and US11-expressing U373 cells (1.5*106 cells per lane) were collected, washed with PBS and resuspended in Met$^\text{−}$/Cys$^\text{−}$ medium (2 mL) containing 10% FCS and the
inhibitors ZL3VS (1.25 μM), ZVAD-Fmk, 2, 49 (30 μM and 100 μM respectively) and NGT (50 μM) as indicated. The cells were incubated for 45 min at 37°C, pelleted by centrifugation and resuspended in 250 μL Met/Cys- medium, again in the presence of the inhibitors. [35S]-labeled Cys/Met (5 μL, 200 μCi/mL) was added and the cells were incubated for 30 minutes at 37°C. The cells were washed with PBS and subsequently lysed in 1 ml cold NP-40 buffer (0.5% NP-40, 50 mM Tris HCl pH 7.5, 5 mM MgCl₂, 10 μM leupeptin, and 1 mM 4-(2-aminoethyl)benzenesulfonyl fluoride) for 45 min at 4°C. The lysed cells were centrifuged (16,000 g, 15 min) at 4°C in order to obtain post-nuclear lysates. These lysates were precleared twice by the addition of Protein G- and Protein A-sepharose beads (7.5 μL, GE Healthcare), normal rabbit serum (1.5 μL) and normal mouse serum (1.5 μL), followed by incubation for 60 min at 4°C. Next, the class I heavy chains were immunoprecipitated. Specific antibodies (mAb HC10), Protein G- and Protein A-sepharose beads were added to the lysates and samples were incubated o/n at 4°C. Isolated immune complexes were washed thrice with NET buffer containing 0.1% SDS and denatured in reducing sample buffer (50 μL). The samples were separated by SDS-PAGE and visualized by phosphoimaging.

References

NL: 1.63E6
Base Peak F: + p
ESI Full ms [160.00-2000.00]
MS mdw656

Instrument Method: C:\Xcalibur\methods\General(TFA)\%020%B10_C=TFA_20ul_+pf 15min.meth
Processing Method: Vial: A23
Injection Volume (µl): 20.00
Sample Weight: 0.00

mdw656 #68 RT: 1.33 AV: 1 NL: 1.19E6
F: + p ESI Full ms [160.00-2000.00]
24

ppm (f1)

5.00
4.50
4.00
3.50
3.00
2.50
2.00

S45