Poor sleep quality and other symptoms affecting quality of life in patients with multiple sclerosis
Vitkova, Marianna

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Is poor sleep quality associated with greater disability in patients with multiple sclerosis?

Marianna Vitkova, Zuzana Gdovinova, Jaroslav Rosenberger, Jarmila Szilasiova, Pavol Mikula, Roy E. Stewart, Johan W. Groothoff, Jitse P. van Dijk

Submitted
Abstract

Poor sleep quality is a common complaint in patients with multiple sclerosis (MS). Research exploring the association between sleep quality and disability is scarce and does not present conclusive findings. The aim of the study is to assess whether the association between sleep quality and functional disability in MS patients controlled for age, gender and disease duration is mediated by depression, pain and physical fatigue.

We collected data from 152 consecutive patients with MS (75% women, average age 40±10 years). Patients filled out the Pittsburgh Sleep Quality Index, the Hospital Anxiety and Depression Scale, the Multidimensional Fatigue Inventory and one item of the Short Form-36 regarding pain. Mplus (v7.1) was used to test the mediation.

Sleep quality was associated with greater disability after controlling for age, gender and disease duration ($\beta=.35$, $p<0.001$) but did not contribute to disability ($\beta=.09$, $p>0.05$) after controlling for depression, pain and physical fatigue. The relationship between poor sleep quality and disability was mediated by depression ($p<0.05$), pain ($p<0.001$) and physical fatigue ($p<0.01$).

Treatment of sleep disturbances may have beneficial effects beyond improving sleep. It may reduce depressive symptoms, levels of pain and physical fatigue, which in turn may lessen disability.

Keywords: sleep quality, disability, multiple sclerosis
Introduction

Poor sleep quality is an serious burden for patients with multiple sclerosis (MS) and could have an adverse impact on patients’ health and quality of life (1,2). Research has shown that patients suffering from sleep disturbances have daytime impairment of cognition, mood, or performance that impacts on the patient and potentially on family, friends, coworkers and caretakers (3). Next, sleep disturbances may contribute to the genesis of fatigue, another debilitating symptom associated with MS (4). A few studies have even shown, that poor sleep quality in MS patients was related to greater disability (1,5). However, research on this topic is scarce with inconsistent findings (1, 5-7). The study of Neau et al. showed that disturbed night sleep was related to greater disability, estimated using EDSS, independently from depression and pain (5). Merlino et al. reported similar results, showing that a significantly higher EDSS score was found more frequently among poor sleepers than among good sleepers and that the EDSS score was associated directly with the global PSQI score (1). On the other hand, some studies have found no connection between the presence of poor sleep quality in MS patients and disability as measured by the EDSS score (6, 7). Bamer et al., exploring the role of multiple factors on sleep problems, did not find a relationship between sleep quality and disability (6), similarly to the results of Stanton et al. (7). The ambiguity of these results underlines the possible role of other factors that may influence this relationship.

Poor sleep quality in MS has been associated with a spectrum of variables. Mood disorders, pain and fatigue are the most common symptoms related to poor sleep quality in MS patients (1, 8, 9). Relationship of pain and depression with poor sleep quality have been suggested to be bidirectional, where more severe pain and depression worsen sleep quality and vice versa, while the presence of fatigue is mostly explained as a consequence of poor sleep (10,11). Depression, pain and fatigue are also known to be associated with greater functional disability in patients with MS (12,15-18). A study by Solaro et al. showed that pain led to greater disability, as measured by the Expanded Disability Status Scale (EDSS) (12). Several studies have examined the link between depression and disability with contradictory results (13-15). Some of the studies found no association (13, 14), whereas others found a strong association between these two factors (15). Other analyses exploring the association between fatigue and disability have shown the presence of fatigue to be related to greater disability (16, 17). Moreover, one longitudinal study found that a higher physical dimension of fatigue predicted increased disability after 3 years (18).

On the basis of the aforementioned studies showing links between sleep quality, depression, pain, fatigue and disability and previous
conflicting results regarding the relationship between poor sleep quality and functional disability, we aim to assess whether this relationship controlled for age, gender and disease duration is direct or indirect, mediated by depression, pain and physical fatigue. To the best of our knowledge, there is no study investigating the mediating role of depression, pain and physical fatigue on the relationship between sleep quality and disability in an MS population controlled for age, gender and disease duration. Understanding of interrelationships between these symptoms may help to find the most effective therapeutic strategies.

Methods

Sample and procedure

The participants consisted of a consecutive sample of patients with MS from the eastern part of Slovakia from our clinical MS database. The patients were recruited between September 2011 and January 2014. Exclusion criteria were cognitive dysfunction determined by a MMSE score of <24 and a history of a psychiatric or medical condition affecting the outcomes of the study. Of the 210 MS patients who were deemed eligible for the study, 58 patients refused to participate (response rate of 72%), and no patients were excluded because of the exclusion criteria. The final sample consisted of 152 patients.

The study was approved by the local Ethics Committee of the Faculty of Medicine, PJ Safarik University in Kosice in 2009. All participants signed an informed consent form prior to the study.

Data for this cross-sectional study were collected by means of mailed self-report questionnaires, a face-to face interview and a neurological examination. The invitation letter, the questionnaires, a written informed consent form and a non-response sheet were sent to the participant’s home by postal mail. After two weeks, patients were contacted by a phone call to arrange an interview, enabling clarification of the patient’s responses and completion of missing answers in the questionnaires. After this, a neurological examination was performed; the same neurologist (MV) examined all patients.

Measures

All questionnaires used in this study were translated from the original language into Slovak. A back-translation was then made to ensure that no meaning was lost in the original translation, with final changes in the translated version being made accordingly (19).

Disability assessment

The degree of functional disability was measured using the Expanded Disability Status Scale (EDSS) (20). The final EDSS score was based upon
the neurological examination of eight functional systems: pyramidal, cerebellar, brain stem, sensory, bowel and bladder, visual, cerebral (mental) and the other. Disability is graded on a continuum from 0 (normal neurological examination) to 10 (death caused by MS). EDSS scores from 1.0 to 4.5 refer to people with MS who are fully ambulatory. EDSS scores from 5.0 to 9.5 are defined as impairment to ambulation (20).

Sleep quality
The Pittsburgh Sleep Quality Index (PSQI) is a self-administered questionnaire which assesses sleep quality and disturbances over the previous 4-week period. (21). It consists of nineteen questions, resulting in seven domain scores: subjective sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbances, use of sleeping medication and daytime dysfunction. Each domain has a possible score of 0-3, where a higher score indicates poorer sleep. The global PSQI score is the sum of all the domains scores (range 0-21); a higher score means lower quality of sleep, and a score higher than 5 indicates poor sleep (21). Cronbach’s alpha was 0.87 in our sample.

Depression
The depression subscale of the self-administered Hospital Anxiety and Depression Scale (HADS) questionnaire was used to measure the level of depression (22). This questionnaire comprises 14 items. Seven of those assess the severity of depressive symptoms. Each item is rated on a 4-point scale ranging from 0 (no problem) to 3 (extreme problem), yielding the summary score of depression subscale (HADS-D), which ranges from 0-21, with a higher score meaning worse depression. A score of 7 or lower identifies non-cases, 8-10 possible cases, and ≥11 definite cases (22). In the present study Cronbach’s alpha for the depression subscale was 0.85.

Pain
To assess pain we asked participants the pain question from the SF-36 (23): “in the past months, how intense was your pain?” The score ranges from 1 (no pain) to 6 (very severe pain), with a higher score indicating more severe pain (23).

Fatigue
The Multidimensional Fatigue Inventory (MFI-20) comprises 20 items which are designed to measure fatigue in five dimensions: general fatigue, physical fatigue, reduced activity, reduced motivation and mental fatigue (24). There are 4 items in each dimension which are rated on a five-point Likert-scale; patients mark how much they agree with the given statements: 1 (“Yes, that is true”) and 5 (“No, that is not true”). The total score in each dimension ranges from 4 (no fatigue) to 20 (highest possible
fatigue) (24). Only the physical fatigue dimension was used in our study. Cronbach’s alpha for physical fatigue was 0.85.

Sociodemographic and clinical data
Sociodemographic data were obtained from medical records, including information on gender, age and disease duration.

Statistical analyses
Firstly, the characteristics of the sample (age, gender, disease duration, quality of sleep, pain, depression and physical fatigue) were described. Next, hierarchical regression analyses were performed using the enter method to explore the association between sleep quality and disability. In the first step the relationship between sleep quality and disability was analyzed, and in the second step it was controlled for age, gender and disease duration. In the third step depression, pain and physical fatigue were added to the model. Finally, bivariate correlations and multiple linear regression analyses were performed in order to calculate data for mediations. Tests of mediation (specific indirect effects for each mediator) were conducted to test our hypothesis that the effect of sleep quality on disability is mediated by the selected variables (depression, pain and physical fatigue). Statistical analyses were performed using IBM SPSS 20.0 for Windows and Mplus version 7.1 (25).

Results
The main clinical and demographic data for the sample are given in Table 7.1. The MS sample consisted of 152 patients (75% women) with an average age of 40±10 years and mean disease duration of 7.5±5.4 years. The mean EDSS score was 3.1±1.31. The mean PSQI score was 5.8±3.5.
Table 7.1 Background characteristics of the sample

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>N (%) or Mean±SD (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients, n</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>115</td>
<td>(75.7)</td>
</tr>
<tr>
<td>Disease duration</td>
<td></td>
<td>7.5±5.4 (1-28)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td>40.0±10.0 (18-61)</td>
</tr>
<tr>
<td>Clinical course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>relapse-remitting</td>
<td>122</td>
<td>(80.3)</td>
</tr>
<tr>
<td>secondary -progressive</td>
<td>30</td>
<td>(19.7)</td>
</tr>
<tr>
<td>EDSS</td>
<td>3.1±1.3</td>
<td>(1.0-8.0)</td>
</tr>
<tr>
<td>PSQI</td>
<td>5.8±3.5</td>
<td>(0-16)</td>
</tr>
<tr>
<td>HADS-depression</td>
<td>5.7±4.2</td>
<td>(0-19)</td>
</tr>
<tr>
<td>Pain (SF-36)</td>
<td>2.8±1.4</td>
<td>(1-6)</td>
</tr>
<tr>
<td>Physical fatigue (MFI-20)</td>
<td>13.5±4.9</td>
<td>(4-20)</td>
</tr>
</tbody>
</table>

EDSS - Expanded Disability Status Scale; PSQI - Pittsburgh Sleep Quality Index; HADS - Hospital Anxiety and Depression Scale; SF-36 - Short-Form Health Survey, MFI-20 - Multidimensional Fatigue Inventory-20

Factors associated with disability

Hierarchical regression analyses were carried out to find the relationship between sleep quality and disability, controlled for the other study variables. Firstly, the relationship between sleep quality and disability was controlled for age, gender and disease duration. This model explained 33% of the variance in the EDSS score and confirmed that poor sleep quality is significantly associated with greater disability ($\beta=0.31$, $p\leq0.001$) after adjustment for age, gender and disease duration. In the following step, depression, pain and physical fatigue were entered to explore whether this relationship remains significant after controlling for these variables. The final model explained 43% of the variance in the EDSS score, but the quality of sleep was no longer found to be significantly associated with disability ($\beta=0.09$, $p>0.05$). The predictors of EDSS were disease duration ($\beta=0.29$, $p\leq0.001$), depression ($\beta=0.19$, $p\leq0.01$), pain ($\beta=0.27$, $p\leq0.001$), physical fatigue ($\beta=0.17$, $p\leq0.05$) and male gender ($\beta=-0.18$, $p\leq0.05$) (Tab 7.2).
Table 7.2 Factors associated with disability (EDSS): beta (B), adjusted betas, and p-values from hierarchical regression model

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>β (p-value)</th>
<th>R²</th>
<th>Adjusted R²</th>
<th>ΔR²</th>
<th>F/sig F change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. model</td>
<td>.13</td>
<td>.12***</td>
<td>.13</td>
<td>.13</td>
<td>21.70***</td>
<td></td>
</tr>
<tr>
<td>sleep quality (PSQI)</td>
<td>.12</td>
<td>.35***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. model</td>
<td>.35</td>
<td>.33***</td>
<td>.23</td>
<td>20.07***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sleep quality (PSQI)</td>
<td>.10</td>
<td>.31***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>age</td>
<td>.03</td>
<td>.22**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gender</td>
<td>-.54</td>
<td>-.20**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>disease duration</td>
<td>.07</td>
<td>.31***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. model</td>
<td>.45</td>
<td>.43***</td>
<td>.02</td>
<td>17.02*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sleep quality (PSQI)</td>
<td>.03</td>
<td>.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>age</td>
<td>.02</td>
<td>.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gender</td>
<td>-.50</td>
<td>-.18*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>disease duration</td>
<td>.06</td>
<td>.29***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>depression (HADS-D)</td>
<td>.11</td>
<td>.19**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pain (SF-36)</td>
<td>.23</td>
<td>.27***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>physical fatigue (MFI-20)</td>
<td>.05</td>
<td>.20*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted R²: explained variance by the predictors Gender: male gender was set as the reference category; PSQI – Pittsburgh Sleep Quality Index; HADS-D – Hospital Anxiety and Depression Scale – depression subscale; SF-36 – Short-Form Health Survey; MFI-20 – Multidimensional Fatigue Inventory. *** p<0.001, ** p<0.01, *p<0.05

Mediation

Because the results of the regression analysis did not show a direct relationship between sleep quality and disability, multiple mediations were used to test the hypothesis that the effect of sleep quality on disability might be mediated by depression, pain and physical fatigue. Following the Mplus version 7.1 guidelines for mediation analyses, bivariate correlations among the study variables were completed. The results showed a significant regression coefficient between sleep quality and all potential mediators: depression (β=.23, p<.01), pain (β=.48, p<.01) and physical fatigue (β=.28, p<.01), as well as significant relationships between disability and depression (β=.19, p<.01), pain (β=.27, p<.01) and physical fatigue (β=.20, p<.01). The initial relationship between sleep quality and disability was also significant (β=.35, p<.01). Finally, the standardised indirect effects for each mediator were calculated. The results confirmed that all variables – depression (p<.05), pain (p<.001) and physical fatigue (p<.01) – carried an influence of sleep quality on disability (Figure 7.1).
Discussion

The aim of this study was to assess whether the association between sleep quality and functional disability in MS patients, controlled for age, gender and disease duration, was direct or mediated by depression, pain and physical fatigue. Our results showed that poorer sleep quality was associated with greater disability after controlling for age, gender and disease duration; however, after controlling for depression, pain and physical fatigue, the significant relationship between sleep quality and disability disappeared. The mediation model in this study indicated that poorer sleep quality is related to greater disability, but this relationship was indirect and was fully mediated by depression, pain and physical fatigue.

Research exploring the association between sleep quality and disability has thus far been scarce and has not presented any conclusive findings (1,5-8). Our results indicating that poorer sleep quality was not associated with greater disability after controlling for age, gender, disease duration, depression, pain and physical fatigue are in line with the analyses of Bamer et al. (6) and Stanton et al. (7). These studies also
provided evidence that the EDSS score was not significantly associated with sleep problems after controlling for several sociodemographic and clinical variables. On the other hand, a few studies have presented contrasting results (1,5). Specifically, a study by Merlino et al. showed that a significantly higher EDSS score was found more frequently among poor sleepers than among good sleepers, and that the EDSS score was correlated directly with the global PSQI score, although the relationship was not controlled for other variables (1). Contradictory findings of previous research (1, 5) indicate that other factors may play a role in this relationship, but none of these studies analyzed the possible mediating effect of other variables on the relationship between sleep quality and disability.

Depression is a frequent disabling neuropsychiatric symptom in MS. Our mediation model showed that poor sleep quality in MS patients may worsen depressive symptoms, which in turn may be associated with greater disability. Several studies have clearly shown that poor sleep quality and depression are closely linked (6, 8) and appear to have a bidirectional relationship, where unrestful sleep worsens depression and vice versa (10). On the other hand, research investigating whether more depressive MS patients also have higher disability did not find such consistent results. Some studies found no significant association (13-14), whereas others found a strong association between depression and disability (15, 26).

We also found that pain is closely related to poor sleep quality and disability. In general, sleep and pain represent two strictly associated clinical conditions, and their relationship is considered to be bidirectional (11, 27-28). That is, having pain disrupts the initiation and maintenance of sleep, whereas it is also possible that sleep disruption worsens pain (27). Research findings supported this by showing that sleep deprivation may interfere with pain processes that enhance pain sensitivity (11). Another study showed that a single night of sleep deprivation is able to induce generalized hyperalgesia (28). On the other hand, higher pain levels in MS patients are associated with greater disability. Several studies have confirmed this relationship (12, 29). Solaro et al. showed a correlation between pain and EDSS. Moreover, this correlation was present for both neuropathic and somatic pain (12). Cross-sectional results from a study by Ehde et al. pointed out the contribution of pain to disability measured by EDSS; however, the authors stated that more research with longitudinal data is needed to clarify the causal pathways (29).

Fatigue is a disabling MS symptom that affects up to 80% of MS patients (16, 30). Our results show that MS patients who complain of sleep disturbances have a greater level of fatigue, and those who experience greater levels of fatigue, especially its physical dimension, may then become increasingly disabled. These results are supported by previous
research showing a significant relationship between poor sleep quality and an increased level of fatigue (4, 16, 31-32). The study of Kaynak et al. showed that sleep disturbance in MS patients was a significant independent contributor to fatigue (33). We found that patients with a greater level of physical fatigue also had greater disability. This finding was confirmed in a longitudinal study by Debouverie et al., which showed that more physical fatigue predicted increased disability after 3 years (34).

The study is the first one conducted among MS patients which presents a complex model controlled for age, gender and disease duration showing that the relationship between sleep quality and disability is mediated by depression, pain and physical fatigue. Some limitations of this study should be mentioned. Most of the variables were evaluated by means of self-reported questionnaires, although these have been used in different cultural settings and properly translated. A second limitation is that the study has a cross-sectional design, which does not allow us to fully explore the causal pathways between the studied variables. It is possible that functional disability may affect depression, pain severity and fatigue, which in turn may affect sleep quality. It is likely that the relationships are bidirectional to some extent. Longitudinal research is needed to examine the inter-relationships between these variables to clarify causal associations.

The presented mediation model implies that the treatment of sleep disturbances may have beneficial effects beyond improving sleep. It may reduce depressive symptoms, levels of pain and physical fatigue, which in turn may lessen disability. Again, the importance of longitudinal studies of samples of MS patients in predicting disability over time is emphasized by the current findings.

Acknowledgements

The authors report no conflict of interest.

This work was supported by the Slovak Research and Development Agency under contract No. APVV-0220-10 (80%). Furthermore, this work was supported by the Agency of the Slovak Ministry of the Education, Science, Research and Sport of the Slovak Republic for the Structural Funds of the EU under project No. ITMS: 26220120058 (20%).

References

