Do Diophantine vectors form a Cantor bouquet?
Broer, Henk

Published in:
Journal of Difference Equations and Applications

DOI:
10.1080/10236190903203853

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Do Diophantine vectors form a Cantor bouquet?

Henk Broer*

Institute for Mathematics and Computing Science, University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

(Received 13 July 2009; final version received 23 July 2009)

Dedicated to Robert Devaney on the occasion of his 60th birthday

We introduce the set of Diophantine vectors in \mathbb{R}^n, which is a standard notion in KAM Theory. The problem is whether this set forms a Cantor bouquet.

Keywords: Diophantine vector; resonant hyperplane; Cantor set; Cantor bouquet

AMS Classification: 11J25; 11J70; 54E52; 54G05

1. Definition and elementary properties

Let $n \geq 2$ and for $\tau > 0$ and $\gamma > 0$ consider the set of (τ, γ)-Diophantine frequency vectors by

$$\mathbb{R}_{\tau, \gamma}^n = \{ \omega \in \mathbb{R}^n \mid \forall \ k \in \mathbb{Z}^n \setminus \{0\} : |\langle \omega, k \rangle| \geq \gamma |k|^{-\tau} \}.$$

Here, $\langle \omega, k \rangle = \sum_{j=1}^n \omega_j k_j$ is the usual inner product and $|k| = \sum_{j=1}^n |k_j|$ is the length of the integer vector k.

We summarize a few properties of $\mathbb{R}_{\tau, \gamma}^n$ (for details see [3,4]). First of all, the set $\mathbb{R}_{\tau, \gamma}^n$ is a union of closed half lines in the sense that for $\omega \in \mathbb{R}_{\tau, \gamma}^n$, then $s \omega \in \mathbb{R}_{\tau, \gamma}^n$ for all $s \geq 1$. Moreover, if \mathbb{S}^{n-1} denotes the unit sphere in \mathbb{R}^n, we consider the intersection $\mathbb{R}_{\tau, \gamma}^n \cap \mathbb{S}^{n-1}$. This is a closed (and hence compact) set that by the Cantor–Bendixson Theorem is the union of a perfect and a discrete set. Due to the fact that for any $k \in \mathbb{Z}$ the resonant hyperplane

$$\{ \omega \in \mathbb{R}^n | \langle \omega, k \rangle = 0 \},$$

is in its complement, the perfect set is totally disconnected and hence is a Cantor set.

For $\tau > n - 1$, the intersection $\mathbb{R}_{\tau, \gamma}^n \cap \mathbb{S}^{n-1}$ has positive measure in \mathbb{S}^{n-1} for sufficiently small $\gamma > 0$. Indeed, one even has that the measure of the complement $\mathbb{S}^{n-1} \setminus \mathbb{R}_{\tau, \gamma}^n$ is of order $O(\gamma)$ as $\gamma \downarrow 0$. For a sketch of the planar case $\mathbb{R}_{\tau, \gamma}^2 \subset \mathbb{R}^2$, see Figure 1.

For $n = 2$, by taking the ratio $\varrho = \omega_1 / \omega_2$, one finds a relationship with the Diophantine numbers $\varrho \in \mathbb{R}$ satisfying

$$|\varrho - \frac{p}{q}| \geq \gamma q^{-(\gamma+1)},$$

for all rationals $p/q \in \mathbb{Q}$, which is a subset of the Bruno numbers [7]. Compare with the horizontal line in Figure 1. Generally, for $n \geq 3$, a similar relationship is established.

*Email: h.w.broer@rug.nl

ISSN 1023-6198 print/ISSN 1563-5120 online
© 2010 Taylor & Francis
DOI: 10.1080/10236190903203853
http://www.informaworld.com
2. The problem

The problem is to show that $R^n_{\tau,\gamma}$ is a Cantor bouquet [1,5]. For this, it is needed to know more about the endpoints of the closed half lines in $R^n_{\tau,\gamma}$, in particular, one has to prove that the set of endpoints accumulates on every point of $R^n_{\tau,\gamma}$.

For $n = 2$, the answer may be related to a similar result that concerns the graph of the Bruno numbers, which uses continued fraction expansions [6]. For $n \geq 3$, the number theoretic aspects of the sets $R^n_{\tau,\gamma}$ and $R^n_{\tau,\gamma} \cap S^{n-1}$ may be a lot more involved.

References