
 

 

 University of Groningen

Managing technical debt: prioritising and quantifying architectural smells
Sas, Darius

DOI:
10.33612/diss.249298785

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Sas, D. (2022). Managing technical debt: prioritising and quantifying architectural smells. [Thesis fully
internal (DIV), University of Groningen]. University of Groningen. https://doi.org/10.33612/diss.249298785

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 19-06-2025

https://doi.org/10.33612/diss.249298785
https://research.rug.nl/en/publications/1823a036-1207-4495-8803-a35a7e057c7a
https://doi.org/10.33612/diss.249298785


Based on:

D. Sas, I. Pigazzini, P. Avgeriou and F. Arcelli F., ”The Perception of Architectural Smells in Industrial
Practice,” in IEEE Software, vol. 38, no. 6, pp. 35-41, Nov.-Dec. 2021, doi: 10.1109/MS.2021.3103664.

Chapter 3

The perception of architectural smells in
industrial practice

In a room full of top software designers, if two agree on the same
thing, that’s a majority.

— Bill Curtis

Abstract

Architectural Technical Debt (ATD) is considered as the most significant type
of TD in industrial practice. In this study, we interview 21 software engineers
and architects to investigate a specific type of ATD, namely architectural smells
(AS). Our goal is to understand the phenomenon of AS better and support
practitioners to better manage it and researchers to offer relevant support. The
findings of this study provide insights on how practitioners perceive AS and
how they introduce them, the maintenance and evolution issues they experi-
enced and associated to the presence of AS, and what practices and tools they
adopt to manage AS.

3.1 Introduction

The metaphor of Technical Debt (TD) reflects the technical compromises that soft-
ware practitioners make in order to achieve a short-term advantage at the expense
of creating a technical context that increases complexity and cost in the long-term
[Avgeriou et al., 2016]. Technical debt can be incurred throughout the entire soft-
ware development process, so multiple types of TD can be identified (e.g. require-
ments, architecture, code) [Alves et al., 2016]. Architectural technical debt (ATD)
was found to be one of the most significant types of TD, as, typically, key archi-
tectural decisions are made very early in the software lifecycle and thus have a
stronger impact [Ernst et al., 2015].



46 3. The perception of architectural smells in industrial practice

One type of ATD are architectural smells (AS): all AS instances are ATD items
but not all ATD items are AS [Verdecchia et al., 2018]. AS are defined as “commonly
(although not always intentionally) used architectural decisions that negatively im-
pact system quality” [Garcia et al., 2009]. AS manifest themselves in the system as
undesired dependencies, unbalanced distribution of responsibilities, excessive cou-
pling between components as well as in many other forms that break one or more
software design principles and good practices, ultimately affecting maintainability
and evolvability [Lippert and Roock, 2006]. We note that the presence of AS does
not always inevitably indicate that there is a problem, but it points to places in the
system’s architecture that should be further analysed [Lippert and Roock, 2006].

Despite the recent attention from the research community on the topic
[Verdecchia et al., 2018], few studies investigated how practitioners understand
AS and experience the associated maintainability issues in the real world
[Arcelli Fontana et al., 2020]. To address this shortcoming, we interviewed 21 soft-
ware developers and architects to collect their opinions and experiences from in-
dustrial practice. Specifically, we focus on how practitioners perceive AS, what
maintenance and evolution issues they associate with AS, how they introduce
them and how they deal with them in terms of adopted practices and tools. The
goal is to enrich the understanding of researchers on AS and inform practitioners
on how AS manifest themselves in a real-world scenario, ultimately supporting
better AS management.

While there exist several types of AS in the literature, we limited our scope to the
four types of AS that are detected by most of the available tools [Azadi et al., 2019]
and that are among the most important types of AS currently described in the
literature [Arcelli Fontana et al., 2020]:

Cyclic Dependency (CD) : is defined as a set of software artefacts (e.g. classes,
files, packages, components, etc.) that depend upon each other, thus creating
a circle. CD breaks the Acyclic Dependencies Principle [Martin et al., 2018]
and increases coupling.

Hublike Dependency (HL) : is defined as an artifact that has an excessive number
of incoming and outgoing dependencies, thus creating a hub. HL breaks the
modularity of the system as the hub is overloaded with responsibilities and
exacerbates the dependency structure of the system.

Unstable Dependency (UD) : is defined as a package (or any similar construct
- e.g. a component) that has too many dependencies to packages that are
less stable than itself, thus increasing its reasons to change. A package is



3.2. Study Design 47

said to be stable if it is resilient to changes in neighbouring packages. UD
breaks the Stable Dependency Principle (“Depend in the direction of stabil-
ity”) [Martin et al., 2018] because the affected package depends on packages
less stable than itself.

God Component (GC) : is defined as a package (or component) whose size (mea-
sured using LOC) is noticeably bigger than the other components in the
system [Lippert and Roock, 2006]. GC breaks system modularity and aggre-
gates too many concerns into a single package.

More details concerning the smells can be found in Section 2.3.
It is important to note that the participants in our study were asked not to limit

themselves to these four smells only and were free to mention experiences related
to different types of AS.

3.2 Study Design

3.2.1 Research questions

We performed a case study to collect experiences from industry regarding three
research questions:

RQ1 How are AS perceived by practitioners? This research question allows us
to see what types of smells practitioners know about and deem to be im-
portant for their particular case and; in general, we are interested in their
thoughts about architectural smells. This knowledge can help researchers
better understand the point of view of professional architects and developers
on architectural smells. This can also help other practitioners, which can
understand the state of the industry concerning AS.

RQ2 What are the maintainability and evolvability issues experienced by practi-
tioners that relate to the presence of AS in the system? This research question
aims at finding common maintenance/evolution issues experienced by soft-
ware practitioners that are typical symptoms of the presence of architecture
smells in their systems. This knowledge can help other practitioners re-
late their own experience to the ones reported and help them consider more
closely a tool-backed ATD management strategy, based on architectural smell
analysis.



48 3. The perception of architectural smells in industrial practice

RQ3 How do practitioners introduce and deal with AS? This research question
is a continuation of the previous one and aims at uncovering the common
practices and tools adopted to reduce the extra maintenance effort introduced
by the presence of smells. Answering this research question can provide a
list of tools and practices that can be used to manage architectural smells in
practice in order to reduce their technical debt. If tools and practices are not
used in practice, we may be able to derive requirements for such tools and
practices.

For practitioners, answering these questions can help them understand and relate to
issues experienced by other practitioners, obtain deeper knowledge about AS, and
learn about how to manage them. Researchers, on the other hand, can understand
better the real-world problems experienced by practitioners and how AS contribute
to TD exactly.

3.2.2 Data collection

We collected data by interviewing 21 practitioners from 3 companies in Europe op-
erating in two different domains (Embedded Systems and Enterprise Applications
Development) with three main programming languages (C, C++ and Java). The
first company provided 12 participants, the second 6 and the third 3.

To select the subjects that took part in the interviews we used convenience sam-
pling. After approaching the companies that showed interest in our study, we asked
the architects, managers, or team leaders, to recommend to us a number of their
colleagues that would agree to being interviewed. After receiving the list of can-
didates, we proceeded to send them emails explaining the goal of the study along
with a pager about AS and a consent letter informing them about the confidentiality
of the interview. The interview guide is available in Appendix A.

The practitioners’ background, as it can be seen from Table 3.1, varies from
a few years of activity (junior developers) up to 25 years of practice (architects).
The average size of their projects is about 50 Million Lines of Code (LOC) for the
first company, from 500,000 to 1,000,000 LOC for the second and from 250,000
to 750,000 LOC for the third (more details are reported in Table 3.2). Interviews
were semi-structured and each lasted approximately 30 minutes. We chose to use
interviews because they allow for follow-up questions and clarifications, ensuring
that participants have understood the questions.



3.3. Results 49

Table 3.1: Demographics of the participants to the interviews.

ID Company Position Experience (Years)

P1 A Product Architect 8
P2 A Design Engineer 4
P3 A Software Architect 14
P4 A Design Engineer 15
P5 A Design Engineer 8
P6 A Design Engineer 10
P7 A Software Architect 15
P8 A Software Architect 25
P9 A Software Architect 22
P10 A Software Architect 23
P11 A Design Engineer 3
P12 A Lead Design Engineer 20
P13 B Software Developer 6
P14 B Senior Software Developer 10
P15 B Software Developer 3
P16 B Software Developer 1
P17 B Software Architect 10
P18 B Software Developer 2
P19 C Software Architect 5
P20 C Senior Software Developer 16
P21 C Software Developer 5

3.3 Results

3.3.1 RQ1: perception of AS

Participants reported being the most familiar with GC among the four studied AS;
several practitioners reported personal experiences in managing this kind of smell.
GC is perceived as a common cause of maintenance issues as well as reduced
evolvability of the affected component, mainly as a result of the high level of
complexity that characterizes its instances. In particular, almost all practitioners,
except for two architects, had rather strong opinions on this AS and underlined its
importance vividly. The two architects, instead, expressed some skepticism when
discussing its importance and disregarded it as they saw no added technical value
in splitting a GC.

Opinions on CD were generally aligned, and most participants considered
CD as detrimental for maintainability, reliability, and testability. Concerns about
reliability (e.g. deadlocks) were mostly expressed by the participants working on
C/C++ projects, highlighting that even if some CD instances have not caused issues



50 3. The perception of architectural smells in industrial practice

Table 3.2: Demographics of the companies (k: thousands; M: millions)

Company Domain Size Projects characteristics

A Production of Industrial
machines and develop-
ment of software to gov-
ern those machines

Global multinational
with 28k employees and
based in the Nether-
lands.

Size: 50M LOC; Architecture:
Layered; Main language: pro-
prietary C/C++

B Development of enter-
prise applications with
focus on the banking and
insurance domains.

Global multinational
with 33k employees and
based in France.

Size: from 0.5M to 1M
LOC; Architecture: client-
server app., microservices;
Main language: Java

C Development of mo-
bile and web applica-
tions specialized in open
banking and educational
platforms.

Small-sized enterprise
operating in Italy with
18 employees.

Size: from 250K to 750K
LOC; Architecture: client-
server app., mobile apps;
Main language: Java

yet, they pose a high risk for future undertakings. On the other hand, participants
working with Java perceived it as less detrimental than other smell types like GC.
This difference in perception is probably due to the different application domains
of the companies, and not only because of the differences between Java and C/C++.

We note that, typically, architectural smells are the symptom of a bigger, and
more profound, issue in the architecture [Lippert and Roock, 2006] that needs to
be studied case-by-case. However, in cases where CD affected reliability and
testability, their very presence was considered as the problem that developers were
trying to resolve. Opinions were much more polarized when the HL smell was
discussed. Some participants mentioned that: (1) it should not be considered a
problem because it could be a result of an intentional design decision; (2) it should
not be a cause of concern as long as it is understandable; and, (3) as one participant
expressed, it is easy to solve. However, other participants (and especially the ones
working with Java) mentioned that HL is very important to avoid because it is not
easy to manage and it hinders both maintainability and evolvability by making it
hard to understand how to insert new code in the presence of a HL.

Concerning UD, participants generally perceived it as a threat to both maintain-
ability and evolvability, highlighting their concerns about the change ripple effects
associated with UD and underlining the importance of avoiding dependencies to-
wards packages that constantly evolve. Nevertheless, one developer expressed
their doubts about the importance of this AS while few more outlined that they did
not fully understand it and gave no feedback about it. From these results, it ap-
pears that, while all AS are considered detrimental, they are perceived differently



3.3. Results 51

by practitioners depending on their past experiences, educational background, and
application domain: GC and CD are perceived as the most important ones, HL is
considered “manageable”, and UD is considered detrimental but not critical. It is
important also to take into account that UD is less visible than the other smells: one
cannot tell by looking at a package that it is less stable than another one without
employing dedicated tooling.

Finally, we observed the existence of a slight correlation between the experience
of interviewees and the type of concerns expressed about an AS. Junior participants
tended to be more concerned about the short-term problems (e.g. presence of CDs
and impact deployed system), while senior participants were keener on long-term
evolvability and team-related matters (e.g. new team members making changes to
a GC).

3.3.2 RQ2: impact on maintenance and evolution

The participants discussed plenty of anecdotes and experiences about maintenance
and evolution issues that they associated with the presence of AS. Almost all anec-
dotes about GC involve the difficulty of understanding the functionality provided
by the component, mainly caused by the excessive internal entanglement of files
(or classes), the excessive amount of functionality implemented, and the way func-
tionality is scattered across the component. The relationship between GC and code
duplications was also frequently discussed. Components affected by GC do not
provide fine-grained classes that can be easily reused inside or outside the compo-
nent, but large and entangled classes. Hence, when developers need to reuse an
existing functionality, they prefer to copy the entire class and adapt it for the new
purpose, instead of extracting a small, reusable functionality. On top of creating
duplicated code, this also further enlarges the existing GC.

The experiences about CD are rather diverse and range from dealing with dead-
locks and low throughput to unclear chain of command between components and
poor separation of concerns in general. Cycles were also reported as an “inter-
twined mess” that is hard to understand; e.g. when there is a package that requests
data from another package which in turn requests it back from the initial package.
These problems resulted in a significant amount of effort required to be fixed or
dealt with along the way, and in some cases, they showed up only in production or
at the customer. Participants also mentioned problems that had a more widespread
impact; for example, a cycle prevented the creation of a microservice out of a subset
of packages, as all the packages in the cycle had to be included in the microservice
(the desired functionality could not be isolated).



52 3. The perception of architectural smells in industrial practice

Concerning HL, practitioners associated it with two types of issues: (1) difficulty
of understanding the logic in the central component and (2) change ripple effects
propagating from the components that the central component depends upon to
the components depending on it, mentioning also a possible overlap with UD.
The former was usually associated with how the central component exposes its
functionality through its interface. The latter caused changes to unexpected parts
of the system that practitioners did not expect to relate to the initial change, during
activities such as bug fixing.

The maintenance issues that associated with UD the most were change ripple
effects. In several instances, practitioners reported that functional changes to a
certain component (or package) also required several files in other components
to change as well. As reported by two participants, the possibility of changes
propagating to other components increases the difficulty of making changes: prac-
titioners are forced to only make changes compatible with the other components
in order to avoid changing and recompiling those other components.

3.3.3 RQ3: introduction and management of AS

Participants reported their experiences in how they get to introduce an AS in the
system. Some participants admitted that it often happens by design; for instance,
concerning GC, the component or the file is intended to be large. Subsequently,
as reported by other interviewees, developers tend to underestimate the severity
of the introduced GC, while the incremental changes applied to it contribute in
making it even larger.

In other cases, AS are introduced inadvertently. For example, the participants
reported that a bad separation of concerns at design time or the wrong exploitation
of class inheritance can result in CD. Another participant mentioned that they used
to create a dedicated interface to hide unstable components behind it as a “practice”
to avoid the propagation of changes; however, this is precisely the description of a
UD smell, being misinterpreted as a good practice.

In many cases, introducing AS seems unavoidable and accepted as a “necessary
evil”. For example, one participant explained that in view of an imminent deadline,
they focus on developing the new feature and having a first structure of the code,
without caring about its maintainability.

Moving on to the management of AS, we asked the participants about their
experiences with AS refactoring. Most of them had experience with the refactoring
of GC, in particular the practice of splitting the component in smaller pieces by ap-
plying incremental changes or by detaching the smallest, easiest sub-components



3.3. Results 53

first. One interviewee managed to break a CD by re-modelling the involved de-
pendencies to follow a hierarchical structure; others reported creating replacement
interfaces and slowly migrating clients to them while refactoring the existing com-
ponents. In contrast, developers do not commonly refactor HL because of the
required effort; if they can, they tend to “code around it” without removing it
when developing new features, allowing it to persist. One interesting reason men-
tioned for not refactoring AS is the absence of a comprehensive regression test
suite.

Concerning practices which support the refactoring of AS, some participants
mentioned the usage of SonarQube to keep the code readable and maintainable;
this can ease the refactoring of AS since often the poor quality of the code makes
refactoring even more difficult and time-consuming. Another indicated pair pro-
gramming and the help of senior developers as valid support. However, not all the
interviewees reported the adoption of refactoring practices. Some even pointed out
that they avoid refactoring because their clients do not pay for refactoring time and
as long as the system has no visible problems in production, they do not intervene.

Finally, we also asked whether practitioners use tools to manage architectural
smells. SonarQube was mentioned by quite a few participants, but only once in
regard to an AS (i.e. to detect cycles). Besides that, practitioners do not rely on any
specific tool to manage AS. Nonetheless, participants did mention ideal features
that they would like to have in an ideal tool that manages AS. The features are
reported in Table 3.3, and we created a mind map to summarise the results of all
three RQs in Figure 3.1.

Table 3.3: Desired features of an ideal tool to manage AS with the reported fre-
quency in parentheses.

Classification Description

Detection Highlight the problem while I am writing the code (to save time) (2)
Automatically detect HL and CD (1)
Dive deep down the layers and show the actual causes of the smell (2)
Show the files that create the dependencies of a certain package (1)

Refactoring support Refactoring suggestions (4)
What-if analysis to remove cycles (1)
Show the data or call dependencies between artefacts (1)
Support to split GC by features (1)

Prioritization Filter the components to show (2)
Heatmap of smells in the system (1)



54 3. The perception of architectural smells in industrial practice

Figure 3.1: Mind map summarising the perception, experiences, prevention, intro-
duction, and presence of architectural smells as described by the participants. In
parentheses we report the number of data points, and, if appropriate, the type of
associated AS.



3.4. Discussion and implications 55

3.4 Discussion and implications

The presented results indicate that AS clearly help incurring ATD: they have a di-
rect, architecture-level impact on the maintainability and evolvability of the affected
parts. AS make changes harder to implement by increasing the effort required to
understand the implications of a change, making it easy to underestimate the ef-
fort necessary for the change, and hard to plan ahead. Practitioners are aware
and well-informed about good design practices, but they struggle following them
diligently, often prioritizing delivering a feature over good design. Fowler calls
this reckless and deliberate TD [Fowler, 2014], because practitioners understand
the long-term implications of their decisions but still decide to incur technical debt.
By doing so, practitioners are forced, sooner rather than later, to apply refactorings
before proceeding with the implementation of new features (as mentioned by the
participants) and pay a considerable amount of TD interest every time they need
to extend the system.

As emerged from the interviews, TD is also incurred inadvertently
[Fowler, 2014], either recklessly, because of poor knowledge about the design of
the parts affected by change (e.g. a component requesting a parameter that belongs
to itself from another component), or prudently, because the optimal design solu-
tion only becomes clear after implementing the chosen solution. The introduction
of technical debt through non-optimal solutions that is then detected as AS is not
automatically controlled, as we observed a lack of adoption of tooling dedicated to
manage AS - practitioners mostly focus on code TD.

At any rate, regardless of the how, incurring TD is inevitable and inherent to the
software development process, so practitioners must adopt practices that enable
its management. Similarly to any other type of TD items, the first step in man-
aging AS is detecting them. Azadi et al. provide a recent list of tools that detect
AS [Azadi et al., 2019] for practitioners to consider. Another, even more important
step is prevention. Practitioners should pay particular attention to how they create
internal dependencies as there is a fine balance between Changeability and num-
ber of dependencies per file: too many, and files become entangled, making the
system hard to modify and giving rise to GC and CD; too few, and the system is
also hard to modify, because fewer classes are reused (tree-like dependency graph
[Lippert and Roock, 2006]) resulting in multiple classes implementing similar func-
tionality and applying the same change to all of them is repetitive. Therefore, prac-
titioners should carefully balance how these dependencies are created by devising
clear architectural rules that prevent the creation of undesired dependencies that
end up generating AS.



56 3. The perception of architectural smells in industrial practice

3.5 Conclusions

In this chapter we found that most practitioners consider smells a “necessary evil”,
that they sometime need to accept if they want to diligently meet the software
requirements. In order to better understand this aspect, we decided to study how
smells are exactly introduced within a system. In the following chapter, we set up
an empirical study to study precisely this aspect. Additionally, we also wanted
to better understand the evolution of smells from the perspective the software
practitioners that introduced and dealt with those smells.


