Dissecting yeast-dependent population differentiation and spatial segregation in Drosophila melanogaster
Wang, Xiaocui

DOI:
10.33612/diss.249063971

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
References

A

References

B

References

References

References

References

References

H

References

References

References

References

References

S

References

References

T

References

X

References

Y

Z

English Summary
Adaptation to different environments is a major mechanism in phenotypic evolution and species diversification. Among the different environmental factors, food is a key driver of local adaptation and speciation. Numerous cases of food-mediated speciation are seen in birds and insects, but how populations exploiting different food resources differentiate and become reproductively isolated from each other remain poorly understood. The research presented in this thesis aimed at dissecting how heterogeneous food resources can drive population differentiation and assortative mating between populations, using the model organism *Drosophila melanogaster* and its essential food resource – yeast.

The chemosensory system is the most ubiquitous sensory channel in animals to detect and respond to food resources. Chemosensory divergence may thus play a crucial role in food-mediated adaptation and speciation. In Chapter 2, we formulated seven key questions to explore how the chemosensory system can facilitate food-mediated ecological speciation. We used examples of insect research and integrated approaches from different scientific disciplines. We started by identifying which aspects of food resources are heterogeneous in a given environment (Question 1), as this is the starting point of divergent selection. We then discussed which aspects of food exert selection on consumers (Question 2), and explored how consumers detect (Question 3), exploit (Question 4) and adapt to these resources (Question 5) to understand how local adaptation proceeds. Finally, we discussed whether successful exploitation of new food resources is genetically inherited and/or acquired during an individual’s lifetime (Question 6) and reviewed the mechanisms that reduce gene flow between populations that specialize on alternative resources (Question 7). The formulated seven questions allowed us to find some knowledge gaps. Notably, different approaches are needed for different questions. There is rarely one model system in which all seven questions have been thoroughly answered. It is often not clear what kind of heterogeneity, or which aspect of a particular resource, will generate divergence in consumers. Because of the important roles gut microbes play in resource exploitation ability and mate choice of hosts, we proposed microbes in the gut as a promising direction for future research on food-mediated ecological speciation.

The successful exploitation of a food resource is a multifactorial phenotype that involves a range of traits. Thus, dietary specialization will be facilitated by the correlated evolution of these traits. In Chapter 3, we used *Drosophila melanogaster* and yeast to explore the scope for dietary specialization. We quantified how different *D. melanogaster* strains from around the globe respond to different yeast species, across multiple yeast-dependent life history traits including feeding, mating, egg-laying, egg development and survival. We found fly strains varied in their responses to different yeast species: some strains performed well on a specific yeast species, while other strains did not. We did not detect the trade-offs in performance on different yeast species: performance on alternative yeast species is positively correlated. Yeast-dependent trait responses were not aligned: different life-history traits were maximized on different yeast species. Our results confirmed the existing insight that *D. melanogaster* is a resource generalist: it can grow, reproduce and survive on all the yeast species we tested.
Taken together, our findings suggest that there are evolutionary constraints for these important life-history traits to adapt in concert, possibly providing a mechanistic explanation of the limited extent of dietary specialization in D. melanogaster strains across the globe.

Heterogeneity in food resources can facilitate assortative mating: when mating takes place on food resources, assortative mating can arise as a by-product of food choice. In Chapter 4 & 5, we studied the spatial coupling of food and mates, the sensory and behavioural mechanisms underlying this spatial coupling, and whether this coupling would potentially promote assortative mating. To quantify the location of foraging and sexual behaviour of individuals in a heterogeneous environment, we built a system which combined the low-cost Raspberry Pi video recording system with the fast and efficient TRex tracking software and Matlab scripts to provide an automated, fast, efficient and easy-to-use method for fly tracking in Chapter 4. By tracking the location of fruit flies in environments containing heterogeneous food patches, we observed that D. melanogaster, either alone or in pairs with the opposite sex, stayed on yeast at night, but individuals’ tendencies to be on the yeast during the day depended on several variables including sex, light conditions and presence of the other sex. To further explore the spatial coupling of food and mates and the underlying mechanism mediating the dynamics of the spatial coupling of food and mates, we tracked the mating location of both virgin and mated flies under different light conditions for 24h. We found that D. melanogaster and several of its sibling species generally chose to mate on patches containing yeast. In D. melanogaster however, virgin females primarily mated away from yeast, but previously mated females re-mated on yeast. Using experimental manipulation of the chemical composition of the yeast-containing patches and mutant flies lacking sex peptide (males; SP) and sex peptide receptor (females; SPR), we established the sensory and behavioural mechanisms underlying this spatial coupling of food and mates. We found that mating location preference involved attraction to yeast-derived chemical cues (the combination of acetic acid and protein) and was modulated by the male-derived sex peptide received by females during mating. This preference for mating on yeast-containing patches was stronger at night than during the day, and increased with the passing of time since the first mating. In choice experiments with two different yeast species, we discovered that D. melanogaster pairs exerted preferences for mating on one yeast species over another. Together, our study suggests that some level of assortative mating may result from the preference for mating on yeast, but the strength of such assortative mating will depend on several variables including the presence of multiple yeast species and timing of (re) mating with respect to light cycle.

Overall, this thesis dissects the mechanisms underlying food-mediated population differentiation and assortative mating. On one hand, we find that the inconsistency of responses between life-history traits forms a possible limitation to dietary specialization and population differentiation. On the other hand, we discover that food preference may directly lead to assortative mating through its spatial coupling with mates. Our findings highlight the importance of analyzing multiple life-history traits involved in food exploitation to explore
English summary

the scope of food-mediated population differentiation and examining several variables including mating status, the presence of multiple food resources and timing of (re)mating with respect to light cycle to assess the potential strength of assortative mating that may result from the preference for mating on food resources.
Nederlandse Samenvatting

Translation by Gerrit Potkamp
Adaptatie aan verschillende omgevingen is een belangrijk mechanisme in fenotypische evolutie en diversificatie van soorten. Voedsel is, te midden van verschillende omgevingsfactoren, een belangrijke aanjager van lokale adaptie en soortvorming. In vogels en insecten zijn tal van voorbeelden van voedsel-gemedieerde soortvorming aan te wijzen. Hoe populaties die verschillende voedselbronnen exploiteren differentiëren en reproductief geïsoleerd raken is echter niet goed begrepen. Het onderzoek gepresenteerd in dit proefschrift richtte zich op het ontleden hoe heterogene voedselbronnen populatie differentiation en assortatieve paring tussen populaties kunnen aandrijven, door gebruik te maken van het modelorganisme *Drosophila melanogaster* en zijn essentiële voedselbron – gist.

Het chemosensorisch systeem is bij dieren het belangrijkste zintuiglijk kanaal in het detecteren van en reageren op voedselbronnen. Chemosensorische divergentie zou daarom een cruciale rol kunnen spelen in voedsel-gemedieerde adaptie en soortvorming. In **Hoofdstuk 2** formuleerden we zeven sleutelvragen om te ontdekken hoe het chemosensorisch systeem voedsel-gemedieerde ecologische soortvorming kan mediëren. We begonnen met het identificeren welke aspecten van voedselbronnen heterogeen zijn in een bepaalde omgeving (Vraag 1), omdat dit het startpunt van divergente selectie is. Daarna bespraken we welke aspecten van voedsel selectie uitoefenen op consumenten (Vraag 2), en verkenden hoe consumenten deze bronnen detecteren (Vraag 3), exploiteren (Vraag 4) en zich er aan adapteren (Vraag 5) om te begrijpen hoe lokale adaptie te werk gaat. Tenslotte bespraken we of succesvolle exploitatie van nieuwe voedselbronnen genetisch is geërfd en/of verworven is gedurende het leven van een individu (Vraag 6) en bekenden we de mechanismen die genenoverdracht tussen populaties die zich op verschillende bronnen specialiseren reduceren (Vraag 7). De zeven geformuleerde vragen liet ons enkele gaten in onze kennis zien. In het bijzonder, verschillende benaderingen zijn nodig voor het beantwoorden van de verschillende vragen. Alle zeven vragen zijn maar zelden volledig beantwoord in een enkel modelsysteem. Het is vaak niet duidelijk wat voor soort heterogeniteit, of welk aspect van een bepaalde bron, divergentie in consumenten zal genereren. Vanwege de belangrijke rol die darmmicroben spelen in het vermogen bronnen te exploiteren en de partnerkeuze van gastheren wezen we deze microben in het darmstelsel aan als een veelbelovende richting voor toekomstig onderzoek naar voedsel-gemedieerde ecologische soortvorming.

De succesvolle exploitatie van een voedselbron is een fenotype met meerder facetten waar een scala aan eigenschappen bij betrokken is. Dieetspecialisatie zal daarom worden gefaciliteerd door de gecorreleerde evolutie van deze eigenschappen. In **Hoofdstuk 3** gebruikten we *Drosophila melanogaster* en gist om het domein van dieetspecialisatie te verkennen. We kwantificeerden hoe verschillende *D. melanogaster*-stammen van over de hele wereld reageren op verschillende gistsoorten, over meerdere gist-afhankelijke levensgeschiedenis-eigenschappen waaronder voeden, paren, het leggen van eitjes, de ontwikkeling van eitjes en overleving. We vonden dat vliegenstammen varieerden in hun respons op verschillende gist soorten: sommige stammen presteerden goed verschillende gistsoorten, andere stammen niet. We detecteerden geen compromis in prestatie op
verschillende gistsoorten: de prestatie op alternatieve gistsoorten is positief gecorreleerd. Gist-afhankelijke reacties waren niet afgestemd: verschillende levensgeschiedenis-eigenschappen waren gemaximaliseerd op verschillende gistsoorten. Onze resultaten bevestigden het bestaande idee dat *D. melanogaster* een generalist is: hij kan groeien, produceren en overleven op alle geteste gistsoorten. Onze bevindingen suggereren bij elkaar genomen dat er evolutieaire beperkingen voor deze belangrijke levensgeschiedenis-eigenschappen om zich gezamenlijk aan te passen bestaan, wat mogelijk een mechanistische verklaring biedt van de beperkte dieetspecialisatie van *D. melanogaster*-stammen verspreid over de wereld.

Heterogeniteit in voedselbronnen kan assortatieve paring faciliteren: wanneer paring plaatsvindt op voedselbronnen kan assortatieve paring ontstaan als een bijproduct van voedselkeuze. In *Hoofdstuk 4 & 5* bestudeerden we de ruimtelijke koppeling tussen voedsel en partners, de onderliggende sensorische en gedragsmatige mechanismen hiervan, en of deze koppeling assortatieve paring zou kunnen bevorderen. Om de locatie van voer en seksueel gedrag van individuen in een heterogene omgeving te kwantificeren hebben we in *Hoofdstuk 4* een systeem gebouwd dat een geautomatiseerde, snelle, efficiënte en gebruiksvriendelijke methode voor het volgen van vliegen biedt door het goedkope Raspberry Pi video-opnamesysteem te combineren met de snelle en efficiënte TRex tracking software en Matlab scripts. Door de locatie van fruitvliegen in omgevingen met heterogene voedselbronnen te volgen observeerden we dat *D. melanogaster*, ofwel alleen of in paren met het andere geslacht, ’s nachts op gist verbleef, maar dat de neiging van individuen zich overdag op gist te begeven afhankelijk was van verschillende variabelen, waaronder geslacht, de lichtcondities en de aanwezigheid van het andere geslacht. Om de ruimtelijke koppeling tussen voedsel en partners en de onderliggende mechanismen die de dynamiek van deze koppeling mediëren verder te onderzoeken volgden we de locatie van zowel maagdelijke als gepaarde vliegen in verschillende lichtcondities gedurende 24 uur. We vonden dat *D. melanogaster* en verschillende van zijn zustersoorten er in het algemeen voor kiezen te paren op plekken waar gist aanwezig is. In *D. melanogaster* echter paarden maagdelijke vrouwtjes voornamelijk weg van gist, terwijl eerder gepaarde vrouwtjes op gist opnieuw paarden. Door gebruik te maken van experimentele manipulatie van de chemische compositie van de plekken die gist bevatten en gemuteerde vliegen zonder geslachtspeptide (mannetjes; SP) en de receptor voor geslachtspeptide (vrouwtjes; SPR) stelden we de sensorische en gedragsmatige mechanismen die ten grondslag liggen aan de ruimtelijke koppeling van voedsel en partners vast. We vonden dat de voorkeur voor de paringslocatie te maken had met de aantrekkingskracht van chemische, van gist afgeleide, signalen (de combinatie van azijnzuur en eiwit) en werd gemoduleerd door de mannelijke geslachtspeptide die door vrouwtjes tijdens de paring wordt ontvangen. De voorkeur om te paren op plekken met gist was ’s nachts sterker dan overdag, en nam toe met de tijd na de eerste paring. In keuze-experimenten met twee verschillende soorten gist ontdekten we dat *D. melanogaster*-paren voorkeur hadden om te paren op één gistsoort in plaats van op de andere soort. Samengevoegd suggereert onze studie dat een bepaald niveau van assortatieve paring het
Nederlandse samenvatting

gevolg kan zijn van de voorkeur te paren op gist, maar dat de sterkte van deze assortatieve paring afhankelijk zal zijn van verschillende variabelen, waaronder de aanwezigheid van verschillende gistsoorten en de timing van (opnieuw) paren ten opzichte van de lichtcyclus.

Samenvattend ontleedt dit proefschrift de mechanismen die ten grondslag liggen aan voedsel-gemedieerde populatiedifferentiatie en assortatieve paring. Aan de ene kant vinden we dat de inconsistentie van reacties tussen levensgeschiedenis-eigenschappen een mogelijke beperking van dieetspecialisatie en populatiedifferentiatie vormen. Aan de andere kant ontdekken we dat voedselvoorkeur direct tot assortatieve paring zou kunnen leiden door de ruimtelijke koppeling met partners. Onze bevindingen benadrukken het belang meerdere levensgeschiedenis-eigenschappen die betrokken zijn met de exploitatie van voedsel te bestuderen om het domein van voedsel-gemedieerde populatiedifferentiatie te ontdekken, en meerdere variabelen te onderzoeken, waaronder paringsstatus, de aanwezigheid van meerder voedselbronnen en de timing van (opnieuw) paren ten opzichte van de lichtcyclus, om de potentiële sterkte van assortatieve paring die het gevolg kan zijn van de voorkeur te paren op voedsel vast te stellen.
Acknowledgements
Acknowledgements

Time flies. It was almost five years ago that I took the flight from China to the Netherlands and started my new life in a very different world. As I naively planned, everything would be fine and I could definitely get my PhD. Indeed, everything turns out fine and I will get my PhD in the coming month. Look back, I feel so grateful for many people being in my PhD life. Without the support, encouragement and help of these people, I could not make such an achievement of getting my doctorate.

First and foremost, I would like to thank my two amazing PhD supervisors: Jean-Christophe Billeter and Martine E. Maan. I was very lucky to be the “scientific kid” of you two. Thank you so much for offering me the opportunity to do the PhD with you. It is such a pleasant and enjoyable journey for me to work with you two. One of the happiest moments of my PhD was to have meetings and retreats with you two to talk about science and a bit life. Jean-Christophe, thank you for being such a passionate supervisor for me. Your excitement of my PhD projects and positive attitude of all the small achievements of my experiments definitely motivated me to go further. You took your time to sit down with me many times to discuss my projects. You were there for me when I had problems. You offered me invaluable suggestions for my projects and writings. Your guidance and support will make me a better scientist. Thank you for organizing the wonderful parties and dinners at your place. I enjoyed the food you cook and felt so happy to be in such a wonderful team. Thank you for inviting me to visit Dijon. I had a great time for the short field collection, talking with the French scientists and conversions with you about my PhD projects on the train. Thank you for sharing your passion about science and some of your experiences about life. You helped me to grow up both in science and life. You encouraged me to be a fearless person and I hope I will always be. Martine, thank you for being such a calm and patient supervisor for me. I very often came to our meetings with problems and worries. But you helped me find clear directions and possible solutions at the end of our meetings. Thank you for listening to all my problems and worries, continuously asking me why and guiding me to rethink. I benefited from your way of critical thinking. Thank you for detailed and valuable feedback on my writings, especially when you were very busy. They were very inspiring and helpful. I think I will still go back to your comments sometime to remind myself about the important tips you gave. Thank you for organizing lab retreats, team retreats and drinks. It was a pleasure to talk with you and other lab members about my PhD projects. You are always willing to offer help not only in science but also in life. Thank you for calling me and offering help when I was in a panic for the covid-related issue. You are an extraordinary scientist and supervisor I hope one day I can be. I wish you all the best for the coming next.

My PhD life would not be so wonderful without all my awesome colleagues. I would like to thank all the fly people: Gerard Overkamp, Jenke Gorter, Andrea Soto Padilla, Tiphaine Bailly, Pinar Kohlmeier, Mário Santos Mira, Philip Kohlmeier, Thomas A. Verschut, Nicolas Doubovetzky, Sanne Lamers, Adithya Sarma, Marijke Versteven. Thank you all for the discussions during our fly lab meeting, the relaxing chats, drinks and parties. Gerard, you are the super hero of our lab. Thank you for making the enormous amount of fly food
and solving all the technical problems I have. You are very practical and efficient in solving lab issues. I am amazed at the design you came up with for my tracking platform and the helpful tips you gave for my posters and my experiments. Jenke, thank you for the instructions on making crosses and the mating experiments at the beginning of my PhD and the insightful comments on my fly-yeast matrix paper at the end of my PhD. Andrea, talking with you is always enjoyable and hilarious. Tiphaine and Pinar, thank you for welcoming me and showing me around when I came to the lab. You were like the sunshine that lightened my life in the lab. I can always share my ups and downs with you. You made my PhD life much better and colourful. I enjoyed the wonderful dinners, dancing, the bubble football, the laser tag, the BBQ, the paintball and the board games we had together. I wish both of you all the best for the new life in USA. Mário, thank you for helping me with my statistics and sending your greetings when I was stuck in China during the covid time. I like your humour and it was really pleasant to talk with you. Good luck with your writing and hope you will get to the end soon. Philip, I assume you will never forget the chicken nuggets. It was so hilarious when you tell stories. Thank you for your insightful comments on my fly-yeast matrix paper and my review. I wish you all the best for your new life in USA. Thomas, thank you for writing a review with me and sharing some of your experiences for building experimental box. I am amazed that you can be so organized. Nicolas, I am very glad that you took the invitation to be my paronymph. Thank you for helping me organize the coming big day and good luck with the rest of your PhD. Sanne, Adi and Marijke, you definitely brought new energy into our fly lab. I am glad to share the lab with you at the end of my PhD and thank you for the laughs you brought to the lab.

I also would like to thank all the fish people, my office mates and the first-floor people: Shane Wright, Elodie Wilwert, Tiziana Gobbin, Gerrit Potkam, Aude Giraud, Joana Sabino Pinto, Neeraj Kumar, Asmoro Lelono, Yoran Gerritsma, Merijn Driessen, Tom Sarraude, Christina Bauch, Yuqi Wang, Flavia Berlingheri, Paolo Panizzon and the ones I may have forgotten to mention. Thank you all for the help, chats, the drinks and the fun times. Special thanks to Shane for insightful comments on my fly-yeast matrix paper and my review and Gerrit for helping me translate my thesis summary to Dutch. Thanks to EGDB expertise group for all lunch talks, the discussions and feedbacks. To my two PhD coordinators: Corine Eising and Diana Koopmans, thank you for sending the emails to inform me about the courses, events, workshops and conferences.

To my Bachelor students Koen Freerks and Maxim Juistenga: thank you for joining me for a research project and giving me chance to learn how to teach and supervise students. I enjoyed being part of your research experience and felt so proud to see you two presenting your research project. Koen, thank you for choosing to join me for your master project as well. I was very lucky to have you as a master student at the end of my PhD. Thank you for your enthusiasm for this tracking project and the data you have collected. I am looking forward to reading your report in the near future.
Acknowledgements

To the reading committee for my PhD thesis: Paul Becher (Swedish University of Agricultural Sciences), Bregje Wertheim (University of Groningen) and Martijn Egas (University of Amsterdam), thanks to each of you for reading and evaluating my thesis. Bregje, it was so nice to know you and talk with you. Thank you for the tips you gave for my postdoc application when you came to the fly lab for your fly stock.

I gratefully acknowledge the Chinese Scholarship Council (CSC) and the University of Groningen for the joint scholarship to me. I cannot pursue my study and undertake my PhD project in the Netherlands without the financial support.

I sincerely thank my master supervisors Jingfeng Chen and Yezhong Tang. Thank you for the greetings and support during my PhD.

Massive thanks to the Chinese friends I met in Groningen: Tian Xie & Mengfei Cai, Siwei Chen, Qing Chen, Minpeng Liang & Yuru Liu, Bohuan Lin, Weijia Yao & Sha Luo, Xiaobo Tian, Yanfei Li, Guangcai Xu, Feng Yan, Qi Chen, Huatang Cao, Shuai Feng, Zhiwen Wang, Yanyan Liu, Yanfang Wang, Fangfang Liu, Lisheng Zhang, Yinyu Xiang, Wenjian Li, Haibin Wen, Fan Yang, Yanmei Liu, Wei Jiang, Ming Shi, Jing Wu, Xinyu Zhou, Yafeng Song, Yifei Mao, Chongnan Ye & Yuhan Luo. Thank you all for being part of my PhD.

Special thanks to the friends who give me enormous support throughout my PhD. Tian, you are the first person I know when I was preparing to come to Groningen. It was such wonderful “yuanfen” for us to know each other. You are such an enthusiastic friend who is always eager to learn more and try out different things. I feel so lucky to know you and learn from you. Siwei, you were the first roommate I had in Groningen. Thank you for sharing all the practical information. It was so helpful to have a roommate like you at the very beginning of my PhD. Minpeng, you were my neighbour both in Plutolaan and Plantenlaan. You are such a reliable and considerate friend. I can always get very useful suggestions and help from you. I wish you and Yuru all the best for your bright future. Feng, indeed, it is hard to find words to express how grateful I feel to have you as my friend. Thank you for the uncountable support and encouragement throughout my PhD. I will never forget how you stood by me through my dark time. I have no doubt that you will be successful whatever you choose to work on since you are so determined and concentrated. I wish you all the best for your new life in the UK. Zhiwen, you are a wonderful friend who I can always rely on. It is so lucky to have you as my neighbour. Thank you for sharing some nice food to me and giving a hand whenever I need it. Thank you for coming back for my defence. Yanfei, it is so comfortable to be together with you to talk about different things. Thank you for the amazing picnic we had and all the delicious food you made. Though it is a lot of work to take care of the baby, I think you will manage as you always do. Yanmei, you are the angel for me during the stressful period of my PhD. You remind me that I should thank all the people who come to my life so that I can move on in peace. Good luck with your final part of writing and looking forward to your defence. Qi, you can always come up with some hilarious ideas. I enjoyed the moment we
spent together for dinners, laser tag, bubble football, skating and running. All the best for finishing your writing and getting to the end of your PhD soon. Bohuan, I am amazed at your sincere curiosity for research and admire your deep thoughts about science. I enjoyed all the conversations we had. Yafeng, I am very happy to meet you again in Groningen. It was so nice that we had some fun time together in Beijing and in Groningen. Talking with you is so relaxing for me. I wish you all the best for your bright future.

Finally, to my family: my Mum, Dad and Brother, thank you for being there for me no matter whatever happens. Your unconditional support empowered me to pursue any goal I dreamed about. Your constant encouragement and positivity make me a free and fearless person. Mum and Dad, you are my energy station where I always get energy for being the person I want to be. Thank you for supporting all the decisions I made, no matter how far from home. I feel so lucky to be your daughter.

Last, but certainly not least, to Xiufeng, my best friend and my love, thank you for everything you did for me. Especially thank you for leaving everything behind and coming all the way from China to the Netherlands. You continuously surprise me with your wisdom, humour, bravery, flexibility, discipline and aspiration. Thank you for accompanying me for all the ups and downs, listening to all the complaints and keeping pushing me to go further.

The PhD journey will end soon, but the remarkable memories will stay forever. Thank you all.

Delft

Xiaocui Wang

October, 2022
Publications

Manuscripts
