

University of Groningen

'Click for PET' Campbell-Verduyn, Lachlan Schuyler

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2012

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Campbell-Verduyn, L. S. (2012). 'Click for PET': click chemistry as a tool for [18F] radiolabelling. s.n.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

The work described in this thesis was carried out at the Stratingh Institute for Chemistry, University of Groningen, The Netherlands and the Department of Nuclear Medicine and Molecular Imaging, UMCG, Groningen.

The work was financially supported by: The University of Groningen and the University Medical Center Groningen.

Printed by: Ipskamp Drukkers, Enschede, The Netherlands

Cover: The Chemist by Salvador Dali Cover design: Pieter Bos

Promotores:

Prof. dr. B. L. Feringa Prof. dr. P. H. Elsinga Prof. dr. R. A. Dierckx

Beoordelingscommissie:

Prof. dr. H. Hiemstra Prof. dr. T. L. Mindt Prof. dr. ir. A. J. Minnaard

ISBN: 978-90-367-5377-7 (print) 978-90-367-5376-0 (digital)

Table of Contents

Chapter 1 'Click' for PET: The advent of 'click' chemistry and its applications in positron emission tomography.	1
1.1 'Click' Chemistry	2
1.2 Huisgen cycloaddition and its copper-catalyzed variant	3
1.3 Mechanism of the CuAAC	4
1.4 Catalytic Systems	6
1.5 Azides and triazoles	7
1.6 Applications of 'click' chemistry	8
1.6.1 Applications of 'click' chemistry in materials science	8
1.6.2 Applications of 'click' chemistry in drug discovery	10
1.6.3 Applications of 'click' chemistry in bioconjugation	12
1.7 Molecular imaging	15
1.8 Positron emission tomography	17
1.9 [¹⁸ F] for PET	19
1.10 'Click' chemistry for PET	22
1.11 Aim of this thesis	25
1.12 References and notes	26
Chapter 2 1,3-Dipolar Cycloadditions of Azides and Arynes	33
2.1 Introduction	34
2.2 Goal	36
2.3 Results and Discussion	37
2.3.1 Synthesis of Precursors	37
2.3.2 Condition Optimization for Benzyne Formation	38
2.3.3 Progress Towards a Tyrosine Precursor	42
2.4 Conclusions	48
2.5 Experimental Section	49
2.6 References and Notes	55

Chapter 3 Ligand Accelerated Copper(I)-Catalyzed Az Alkyne Cycloadditions	ude-
3.1 Introduction	6
3.2 Goal3.3 Condition Optimization3.4 System Limitations3.5 Conclusions	6
	6
	7
	7
3.6 Experimental Section	7
3.7 References and Notes	8
Chapter 4 Tandem Enantioselective Biocatalytic Epo Opening and [3+2] Azide Alkyne Cycloaddition	kide Ring
4.1 Introduction	8
4.2 Goal	8
4.3 Optimization of Reaction Conditions	8
4.4 Substrate Scope	9
4.5 β-Adrenergic receptor ligands	9
4.6 Conclusions	9
4.7 Experimental Section	9
4.8 References and Notes	10
Chapter 5 Modified [lys3]-bombesin for [¹⁸ F]-radiolabe	elling and
5.1 Introduction	11
5.2 Goal	11
5.3 Results and Discussion	11
5.3.1 Synthesis of bombesin analogues for CuAAC	11
5.3.2 Synthesis of a scaffold for multi-modal imaging	12
5.4 Conclusions and Outlook	13
5.5 Experimental Section	13
5.6 References and Notes	14

Radiolabelling of Bombesin	·]- 151
6.1 Introduction	152
6.2 Goal	156
6.3 Results and Discussion	156
6.4 Alternate attempts at copper-free cycloadditions	167
6.5 Conclusions	170
6.6 Future Perspectives	170
6.7 Experimental Section	171
6.8 References and Notes	180
Summary	183
Nederlandse Samenvatting	189
Acknowledgements	195

