Cost-effectiveness of lanthanum carbonate in the treatment of hyperphosphatemia in chronic kidney disease before and during dialysis
Vegter, S.; Tolley, K.; Keith, M.S.; Postma, M.J.

Published in:
Value in Health

DOI:
10.1016/j.jval.2011.05.005

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2011

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Cost-Effectiveness of Lanthanum Carbonate in the Treatment of Hyperphosphatemia in Chronic Kidney Disease Before and During Dialysis

Stefan Vegter, PharmD1,*, Keith Tolley, MPhil2, Michael S. Keith, PhD3, Maarten J. Postma, PhD1

1Department of Pharmacy, Unit of PharmacoEpidemiology and PharmacoEconomics (PE2), University of Groningen, Groningen, The Netherlands; 2Tolley Health Economics Ltd, Buxton, UK; 3Shire Pharmaceuticals Group, Wayne, PA, USA

ABSTRACT

Objectives: Hyperphosphatemia is a common and harmful condition in patients with chronic kidney disease (CKD). We determined the cost-effectiveness of the noncalcium-based phosphate binder lanthanum carbonate (LC) as second-line treatment of hyperphosphatemia after therapy failure with calcium-based binders (CB). Methods: Two CKD populations were modeled: 1) predialysis CKD patients and 2) incident dialysis patients. Patients not responding to CB with a serum phosphate (SP) level >5.5 mg/dl received a trial with LC. Patients not responding to LC (SP >4.6 mg/dl) returned to CB treatment. Patient-level data were obtained from clinical trials in predialysis and dialysis. Time-dependent, life-long Markov models (discounting at 3.5% annually) were used to model progression and outcomes in other model parameters; inclusion of future unrelated dialysis costs had a large influence on cost-effectiveness estimates. Conclusions: Second-line treatment with LC is associated with considerable clinical benefits and good value for money in CKD, irrespective of dialysis status. These results support Kidney Disease Outcomes Quality Initiative guidelines to treat CKD patients with hyperphosphatemia irrespective of dialysis status. Keywords: chronic kidney disease, cost-effectiveness, end-stage renal disease, hyperphosphatemia, lanthanum carbonate, phosphate binders.

Copyright © 2011, International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc.

Introduction

Hyperphosphatemia is an electrolyte disturbance characterized by an excess of serum phosphorus in the blood. It is a common and harmful condition in patients with chronic kidney disease (CKD), irrespective of dialysis status [1] CKD is a continuous process [2], and deregulation of serum phosphate (SP) levels can occur at any point in this process [3]. Increased phosphate levels are independently associated with increased morbidity and mortality in CKD patients on dialysis [4–6] and predialysis across different CKD stages [7–9]. Treatment guidelines issued by the Kidney Disease Outcomes Quality Initiative (K/DOQI) recommend that serum phosphate levels be maintained between 2.7 and 4.6 mg/dl in predialysis patients and between 3.5 and 5.5 mg/dl in dialysis patients [10]. Unfortunately, less than half of the patients actually achieve and sustain these targets [11].

The current first-line drug treatment of hyperphosphatemia in the United Kingdom (UK), as in other countries, in combination with dietary restrictions [10], consists of calcium-based phosphate binders (CBs), in particular, calcium carbonate and calcium acetate [12]. When calcium agents are ineffective or inadequate, a strategy of dose escalation may be inappropriate due to the increased risk of hypercalcemia [13], which is linked to increased mortality [5,14]. K/DOQI guidelines recommend that total daily intake of calcium, from food and drug treatments, should not exceed 2000 mg [10].

Lanthanum carbonate (LC) is a noncalcium-based phosphate binding agent licensed for hyperphosphatemic dialysis patients [15,16] and recently also for CKD patients not yet on dialysis [17,18]. Treatment with LC after therapy failure with calcium carbonate treatment (i.e., second-line LC treatment) was found to constitute good value-for-money in dialysis patients [19]. The cost-effectiveness of LC in predialysis patients, however, has not been assessed. The goal of this study was to determine the cost-effectiveness of second-line LC treatment of hyperphosphatemia in CKD patients before and after dialysis initiation, from a UK National Health Service perspective.

Methods

Cost-effectiveness analysis

The cost-effectiveness of second-line LC treatment was assessed for two CKD populations: 1) a predialysis CKD population and 2) an incident dialysis population. Incremental cost-effectiveness ratios (ICERs) were calculated as cost per life year gained and cost per Quality Adjusted Life Year (QALY) gained. In
addition, the Net monetary benefit of LC over the comparator at a decision-maker willingness-to-pay threshold of £30,000 per QALY was evaluated [20]. Outcomes were rounded to the nearest £100. The SP level upon which LC treatment is indicated for use is >5.5 mg/dl [21]; the target SP level is ≤4.6 mg/dl for predialysis patients and ≤5.5 mg/dl for dialysis patients [10]. Choice of therapy initiation and evaluation of treatment response were modeled according to these guidelines, shown in Figure 1. Second-line LC treatment was considered for nonresponders to CBs with SP levels exceeding 5.5 mg/dl. Response to LC was evaluated within an 8-week drug trial period; patients not achieving target SP levels during this drug trial were switched back to calcium agents.

Economic model
A decision analytical structure was developed and linked to a time-dependent Markov model [22]. Markovian modeling is a commonly used technique in decision analyses to handle the complexity of multiple interconnective, possible long-term consequences. The health states were predialysis, dialysis, and death; dialysis patients were not allowed to return to a predialysis state. The number of patients in each health state was determined by yearly cycles; a half-cycle correction was applied to account for the fact that events may occur at any point during the year. For the cost-effectiveness analysis irrespective of dialysis status, the model was populated with cohorts of 1000 simulated predialysis patients; for the analysis in dialysis patients, cohorts of 1000 incident dialysis patients were used. An overview of all model parameters is shown in Table 1. The model structure and parameter assumptions were discussed with two UK clinical experts who were consulted for this study.

Drug efficacy
Patient-level data were obtained from two randomized clinical trials, one in predialysis patients (n = 56 treated with LC) [17], and one in dialysis patients (n = 123 treated with LC and n = 257 treated with CBs) [23]. Because of the relatively limited data available for predialysis patients, the base-case drug efficacy for predialysis patients was based on pooled data of predialysis and dialysis patients. Only data from dialysis patients with comparable baseline SP levels as predialysis patients, however, were used to calculate drug efficacy in predialysis. The assumption that the efficacy of drug intervention in dialysis patients with SP levels comparable to those of predialysis patients is transferable was verified as reasonable and appropriate by the clinical experts consulted for this study. Long-term response to LC was modeled using patient-level data [23] with a previously reported method [19] and was assumed to be the same for predialysis and dialysis patients.

Clinical efficacy and adverse events
Mortality rates according to patients’ SP level were derived from epidemiological studies in 3490 predialysis patients [8] and 40,538 dialysis patients [5]. Baseline expected survival was estimated using long-term observational data for almost 28,000 predialysis patients [24] and more than 66,000 dialysis patients [25]. CKD progression rates were based on data for 4231 CKD stage 4 patients [26]. The baseline survival and CKD progression rates were adjusted for patients’ average SP levels before applying SP-specific relative risks [19].

In the trials used for this analysis, vomiting was significantly increased with LC compared to CB in predialysis patients (4.0%) [17] and dialysis patients (7.2%) [23]. Duration of vomiting was estimated to be 7 days [19]; during this period, patients were assumed to be prescribed an antiemetic drug (domperidone, 40 mg/day).

Costs and utilities
A third-party payer (UK National Health Service) perspective was adopted for cost estimates. Drug doses of lanthanum carbonate and calcium agents were based on the mean actual daily dose from the trials in predialysis patients [17, 27] and dialysis patients [23]. Drug costs were based on the British National Formulary [28]. The costs of dialysis were based on a weighted average [29] of UK cost estimates for hemodialysis and peritoneal dialysis [30]. Dialysis costs in added life-years as a consequence of the more effective phosphate binder strategy were classified as unrelated future costs because prolonged dialysis care is exclusively related to the extended life of treated patients and not directly to the choice of phosphate binder [31, 32]. Following previous pharmacoeconomic analyses, these future unrelated dialysis costs were excluded from the base-case analysis but included in sensitivity analysis. All costs were updated to 2009 values. Quality of life (QoL) estimates were identified
using a recent systematic review [33]. Using a weighted average of studies identified in this review, a QoL utility of 0.71 was used for predialysis patients and 0.61 for dialysis patients [34,35]. A utility decrement of 0.14 was assumed for a vomiting episode, derived from a published study [36].

Sensitivity analysis
Parameter uncertainty was handled by performing a probabilistic sensitivity analysis (PSA) [22]. In the PSA, joint parameter uncertainty was handled by specifying a probability distribution for each of the parameters [22], shown in Table 1. For parameters based on patient-level data as well as literature review, probability distributions as suggested by health economics guidebooks were used [37]. No probability distribution could be adopted for adverse event rates; therefore, a triangular distribution was used. To explore the sensitivity of the results to uncertainty in individual parameters, scenario analyses were performed using alternative literature sources and variations in structural pathway decisions. In one scenario, future unrelated dialysis costs were included.

Time horizon and discounting
A lifelong model was adopted, following all patients until death or a maximum follow-up of 40 years, with shorter time horizons explored in sensitivity analysis. Costs and health effects were discounted at an annual rate of 3.5% in line with standard UK guidance [20].

Statistics and software
Baseline characteristics were compared using the Student t test or chi-square test, where appropriate. A P value of <0.05 was considered statistically significant. The cost-effectiveness model was developed and built in Excel; the PSA to calculate 90% probability intervals (PIs) was performed with the Excel

<table>
<thead>
<tr>
<th>Table 1 – Model parameters.</th>
<th>Predialysis value (95% CI)</th>
<th>Dialysis value (95% CI)</th>
<th>PSA</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical pathways</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment initiation in mg/dl</td>
<td>>5.5</td>
<td>>5.5</td>
<td></td>
<td>[21]</td>
</tr>
<tr>
<td>Target level in mg/dl</td>
<td><4.6</td>
<td><5.5</td>
<td></td>
<td>[10]</td>
</tr>
<tr>
<td>Drug efficacy, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First-line response rate to CB</td>
<td>45.6</td>
<td>62.2</td>
<td></td>
<td>[23,27]</td>
</tr>
<tr>
<td>Second-line response rate to LC</td>
<td>18.8</td>
<td>44.6</td>
<td>Binomial</td>
<td>[17,23]</td>
</tr>
<tr>
<td>Long-term response to LC</td>
<td>λ = 0.55</td>
<td>λ = 0.55</td>
<td>Weibull</td>
<td>[17,23]</td>
</tr>
<tr>
<td></td>
<td>γ = 0.92</td>
<td>γ = 0.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality and CKD progression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline yearly mortality</td>
<td>5.6%</td>
<td>λ = 0.21</td>
<td>Normal/Weibull</td>
<td>[24,25]</td>
</tr>
<tr>
<td>RR of mortality by SP level, in mg/dl</td>
<td></td>
<td>γ = 0.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td><2.5</td>
<td>0.95</td>
<td>1.00</td>
<td>Normal</td>
<td>[5,8]</td>
</tr>
<tr>
<td>2.5–3.0</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td>[5,8]</td>
</tr>
<tr>
<td>3.0–3.5</td>
<td>1.15</td>
<td>1.00</td>
<td></td>
<td>[5,8]</td>
</tr>
<tr>
<td>3.5–4.0</td>
<td>1.32</td>
<td>1.00</td>
<td></td>
<td>[5,8]</td>
</tr>
<tr>
<td>4.0–4.5</td>
<td>1.34</td>
<td>1.00</td>
<td></td>
<td>[5,8]</td>
</tr>
<tr>
<td>4.5–5.0</td>
<td>1.83</td>
<td>1.00</td>
<td></td>
<td>[5,8]</td>
</tr>
<tr>
<td>5.0–5.5</td>
<td>1.90</td>
<td>1.07</td>
<td></td>
<td>[5,8]</td>
</tr>
<tr>
<td>5.5–6.0</td>
<td>1.90</td>
<td>1.00</td>
<td></td>
<td>[5,8]</td>
</tr>
<tr>
<td>6.0–7.0</td>
<td>1.90</td>
<td>1.25</td>
<td></td>
<td>[5,8]</td>
</tr>
<tr>
<td>7.0–8.0</td>
<td>1.90</td>
<td>1.43</td>
<td></td>
<td>[5,8]</td>
</tr>
<tr>
<td>8.0–9.0</td>
<td>1.90</td>
<td>1.67</td>
<td></td>
<td>[5,8]</td>
</tr>
<tr>
<td>>9.0</td>
<td>1.90</td>
<td>2.02</td>
<td></td>
<td>[5,8]</td>
</tr>
<tr>
<td>Baseline yearly CKD progression</td>
<td>14.3%</td>
<td>NA</td>
<td>Poisson</td>
<td>[26]</td>
</tr>
<tr>
<td>RR CKD progression (per mg/dl in SP)</td>
<td>1.19</td>
<td>NA</td>
<td>Normal</td>
<td>[26]</td>
</tr>
<tr>
<td>Quality of Life</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of life</td>
<td>0.71</td>
<td>0.61</td>
<td>Beta</td>
<td>[34,35]</td>
</tr>
<tr>
<td>Utility decrement vomiting</td>
<td>0.14</td>
<td>0.14</td>
<td>Beta</td>
<td>[36]</td>
</tr>
<tr>
<td>Adverse events</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase of vomiting for LC, %</td>
<td>4.0</td>
<td>7.2</td>
<td>Triangular</td>
<td>[17,23]</td>
</tr>
<tr>
<td>Duration of vomiting in days</td>
<td>7</td>
<td>7</td>
<td>Triangular</td>
<td>[19]</td>
</tr>
<tr>
<td>Drug costs, £</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yearly drug price of LC</td>
<td>1198</td>
<td>1540</td>
<td>Log normal</td>
<td>[28]</td>
</tr>
<tr>
<td>8-wk LC trial</td>
<td>177</td>
<td>224</td>
<td>Log normal</td>
<td>[28]</td>
</tr>
<tr>
<td>Yearly drug price of CC</td>
<td>56</td>
<td>85</td>
<td>Log normal</td>
<td>[28]</td>
</tr>
<tr>
<td>Yearly drug price of CA</td>
<td>40</td>
<td>NA</td>
<td>Log normal</td>
<td>[28]</td>
</tr>
<tr>
<td>Dialysis costs, £*</td>
<td>NA</td>
<td>34,100</td>
<td>Log normal</td>
<td>[30]</td>
</tr>
<tr>
<td>Discounting rate, %</td>
<td>3.5</td>
<td>3.5</td>
<td></td>
<td>[20]</td>
</tr>
</tbody>
</table>

CA, CC, CB, calcium-based binder; CI, confidence interval; CKD, chronic kidney disease; LC, lanthanum carbonate; NA, not applicable; PSA, probabilistic sensitivity analysis; RR, relative risk; SP, serum phosphate.

* Weighted by prevalence of dialysis modalities (hemodialysis: 24.4%, home hemodialysis: 1.1%, satellite hemodialysis: 18.6%, automated peritoneal dialysis: 3.8%, continuous ambulatory peritoneal dialysis: 5.2%) [29].
LC treatment resulted in additional life-years and QALYs in both CKD populations (Table 2). In predialysis patients, 21.3 (15.4–28.2) additional dialysis-free years were gained with second-line LC treatment due to delayed CKD progression. The total clinical benefit of second-line LC treatment was 44.1 QALYs (33.4–54.2) in the predialysis population and 55.8 QALYs (42.6–72.3) in the dialysis population.

Cost-effectiveness

For the predialysis patient population, second-line LC treatment was a dominating strategy compared to only CB treatment (i.e., second-line LC resulted in cost-savings as well as clinical benefits). Because SP levels influenced CKD progression in the model, improved SP control with second-line LC treatment resulted in considerable prevention and delay of end-stage renal disease. Indeed, the cost savings in predialysis patients were mainly due to prevented or delayed dialysis care costs. The net monetary benefit for a willingness-to-pay of £30,000 per QALY gained was £1700 (90% PI £1200–£2200). For the incident dialysis patient population, the cost-effectiveness was £5900 per QALY (90% PI £5500–£8800 per QALY), with a net monetary benefit of £1300 (90% PI £900–£17000), shown in Table 2.

Sensitivity analyses

The results were robust to plausible variations in model parameters, both in the predialysis population (Fig. 2) and in the dialysis population (Fig. 3). Using alternative discounting rates or literature sources for CKD progression [38,39] or varying the frequency of adverse events did not influence the cost-effectiveness outcome. Using an alternative source for dialysis mortality [4] increased the incremental cost-effectiveness ratio (ICER) in the dialysis population to £22,300 per QALY. Of note, not using pooled data for drug efficacy in predialysis patients (i.e., using data of predialysis patients only) had no considerable influence on the cost-effectiveness for LC in this population with an ICER of £1500 per QALY (90% PI £900–£2300). Figure 2. Including unrelated future dialysis costs, however, had a large influence on LC cost-effectiveness. When unrelated future dialysis costs were included, the ICER increased to £48,600 per QALY gained in the predialysis population and £63,000 per QALY gained in the dialysis population.

Results

Baseline characteristics

Age, sex, and baseline SP were similar between LC- and CB-treated patients, both for predialysis and dialysis patients. Age and baseline SP did not differ significantly between the predialysis patients and the subset of SP-matched dialysis patients used for pooling; there were, however, slightly more females in the predialysis population (50% vs. 36%, P = 0.04).

Drug efficacy

In predialysis patients, first-line response rate to CBs was 45.6%. Hence, in the simulated cohort of 1000 CKD predialysis patients, 544 patients (54.4%) did not achieve SP targets with first-line CB treatment. In the LC strategy, 230 of these 544 nonresponders had an SP level >5.5 mg/dl and therefore received an 8-week trial of LC treatment. Of these, 43 (18.8%) showed therapy response to LC, the remaining 187 patients returned to CB treatment. On entering the dialysis health state, the target SP treatment level recommended for dialysis patients predicted by our model turned to CB treatment. The total number of therapy responders in the two CKD populations is presented in Table 2.
Discussion

Although the efficacy of calcium and noncalcium-based phosphate binders is similar in a treat-to-target setting [40,41], calcium agents are less expensive and often prescribed as first-line therapy. Noncalcium-based phosphate binders, such as lanthanum carbonate and sevelamer, may be prescribed after therapy failure or other contraindication for calcium agents. Our model demonstrated that second-line use of LC was cost-effective irrespective of dialysis status. In a 1000-predialysis patient cohort, a total of 70 life-years and 44 QALYs were gained by second-line LC use, as well as 21 dialysis-free years. In addition, cost savings of £339 per patient were seen, resulting in second-line LC use dominating the comparator strategy. In the 1000 incident dialysis patient cohort, a total of 92 life-years and 56 QALYs were gained by second-line LC use and the ICER was £6900 per QALY, within the acceptable UK thresholds of cost-effective treatments.

One of the main cost-effectiveness drivers in our model was the rate of CKD progression in predialysis patients. Dialysis costs are high, and therefore delaying dialysis initiation can lead to large cost savings. Indeed, earlier studies have found that treatments that delay CKD progression are cost saving [42,43]. Improved SP control with second-line LC treatment [26,38,39] resulted in considerable prevention and delay of end-stage renal disease. By monetizing these clinical benefits, our model predicted overall cost savings for second-line LC treatment, despite the higher drug costs of LC compared to calcium agents. In our model, the median survival of predialysis and dialysis patients was 6.5 and 3.5 years, respectively. The external validity of our model is supported by observational data of 335 Canadian CKD predialysis patients (median survival of 6.4 years) [44] and more than 3000 Scottish incident dialysis patients (median survival of 3.2 years) [45].

The results were robust to plausible variations in model parameters, including discounting rate and data sources for CKD.
progression and mortality. Unrelated future dialysis costs, however, had a large influence on the ICER. Unrelated future costs were excluded from the base-case analysis. The inclusion or exclusion of unrelated future costs is the topic of a long-standing and as-of-yet unresolved discussion [31,32]; in fact, dialysis has been center stage in this discussion [46,47]. Our results add to this discussion by demonstrating, in sensitivity analysis, that positive cost-effectiveness outcomes were largely dependent on the exclusion of future unrelated costs.

This study, to the best of our knowledge, is the first to analyze the cost-effectiveness of phosphate binders in CKD patients before dialysis initiation. A previous cost-effectiveness analysis in dialysis patients reported an ICER of second-line LC of £25,000 per QALY [19]. The previous analysis used data from a 1998 observational study of Block et al. [4]. In contrast, our model used a larger (40,538 versus 6,407 patients), more recent (2004 vs. 1998), and with longer follow-up (2.0 years vs. 1.5 years) study by the same authors [5]. Several other model parameters were updated as well, including drug costs and QoL estimates.

Our model had some limitations. Data on LC and CB efficacy were derived from 56 and 28 predialysis patients, respectively [17,27]. Although a lack of data in predialysis also applies to other noncalcium phosphate binders [48], we tried to overcome this limitation by pooling predialysis patients with a subset of dialysis patients. Dialysis patients with an SP level comparable to that of predialysis patients were selected for pooling to reduce heterogeneity. Indeed, population characteristics between the two populations were found to be similar. Furthermore, sensitivity analysis showed that results were similar when dialysis patients were excluded from the pooled data set. Therefore, the use of pooled efficacy data enhanced the robustness of our results without biasing the cost-effectiveness outcome. Another limitation of our study was that in the predialysis population, the majority of LC-treated patients were phosphate binder naive [17], thereby not accurately modeling second-line LC treatment.

Several conservative model assumptions were made for this analysis. Patients treated with noncalcium-based binders experience fewer hypercalcemic events compared to CB-treated patients [49]. Hypercalcemia has been linked to increased mortality in dialysis [5,14] and predialysis [50,51]; a causal link between binder choice and mortality, however, was not confirmed in a recent meta-analysis [49]. Therefore, we conservatively did not model any influence of hypercalcemic events in our analysis. LC reduces pill burden compared to calcium agents, which has been associated with higher QoL and patient preference [52,53] and improved drug compliance [53]. Quantitatively useful data for model inclusion of these parameters were not available; therefore, we conservatively did not model any influence of pill burden on QoL or drug efficacy. Finally, lowering SP reduces the risk of bone disease and nonfatal cardiovascular events, reflected by a decrease in hospitalizations [5,54]. This was not included in the model due to a lack of available data.

In conclusion, the use of LC as second-line treatment for hyperphosphatemia after first-line use of CBs, results in considerable health benefits and is cost-effective, using a UK National Health Service perspective, irrespective of dialysis status. The results of this study strengthen K/DOQI recommendations to treat CKD patients with elevated serum phosphate levels irrespective of dialysis status [10]. Furthermore, our results suggest that second-line treatment with LC after therapy failure with CBs may be considered in CKD patients irrespective of dialysis status.

Acknowledgments

We acknowledge Dr. David Goldsmith, Consultant Nephrologist in the Renal Unit at Guy’s and St Thomas’ NHS Foundation Hospital, London, UK, and Professor Neil Turner, Professor of Nephrology, University of Edinburgh, Scotland, for critical discussions on model parameters and structure.

Source of financial support: This study was funded within a consultancy grant by Shire Pharmaceuticals.

REFERENCES
