interest, the higher are the chances of a large environmental perturbation, and the greater the level of system resilience needed. Safe limits may also vary between the different ecosystem services provided by species (see the figure).

Newbold et al.’s study marks an important step in our ability to quantify biodiversity loss. But further work is still needed. For example, the authors used statistical models to estimate local biodiversity changes by downscaling land cover changes and inferring the proportion of non-native species. Further data collection, especially in data-sparse countries, is essential to reduce uncertainty in these models. However, the most pressing knowledge gap now is to move from documenting biodiversity changes to understanding their effect on people’s health and well-being. Quantitative risk assessments are urgently needed to prompt commitment to potentially costly actions. For example, the UK government only committed to action in combating climate change after the likely economic impacts were quantified through meticulous analysis combining climate science and economics (9).

It may be impossible, however, to reduce the uncertainty regarding consequences of biodiversity loss to levels achieved in other sectors that deal with risk management. The challenge is to take decisions in the face of this uncertainty while factoring in other social considerations, such as the fair distribution of risks across demographic groups and generations. Furthermore, some level of natural resource exploitation, with inevitable biodiversity loss, may be essential to raise the living standards of the world’s poorest (10). Taking decisions in the face of such uncertainty is not easy. It is a tricky problem to say how much biodiversity loss is too much. However, we can be certain that inaction commits us to a future with substantial costs to human well-being (2, 11).

ACKNOWLEDGMENTS
I thank M. S. Heard, R. W. Jackson, M. D. Pagel, R. M. Sibly, and P. J. Stoett for discussion and comments.

REFERENCES AND NOTES

Ferroelectric chalcogenides—materials at the edge
Tin telluride becomes a more robust ferroelectric as an ultrathin film

By Bart J. Kooi and Beatriz Noheda

A ferroelectric material possesses an intrinsic electric dipole (polarization) whose direction can be reversed with an applied field. Applications of ferroelectrics include nonvolatile memories and sensors, but for high-density electronic devices or nanoscale devices, a limitation has been that as a ferroelectric film gets thinner, the maximum temperature for retaining the dipole—the Curie temperature T_c—decreases (often well below room temperature). On page 274 of this issue, Chang et al. (1) show that ultrathin layers of tin telluride (SnTe) can display robust, room-temperature, ferroelectric properties with higher T_c than that of the bulk material.

This unusual behavior arises because SnTe and related chalcogenide materials (materi- als based on S, Se, or Te) can accommodate characteristics that are typically “conflicting” if the phases they form are at the edge of stability. The interplay of ionic and covalent bonding can lead to structural instabilities, so that the structure can change (for example, with temperature) between a rock-salt structure (a nonpolar atomic arrangement) and a rhombohedrally distorted structure (which is polar and can form a ferroelectric phase). Materials of this family often display asymmetric weaker and stronger bonds, in which the weak interactions can become van der Waals interactions and create layered materials that can be exploited as two-dimensional (2D) materials. These changes in bonding also underlie the variety of electronic structures in these materials, which can range from metallic to insulating.

Most chalcogenides have a clear separation between the s- and p-orbitals, and only the latter are involved in the bonding. The rock-salt structure is typically associated with ionic bonding, but GeTe, which is closely akin

References

Acknowledgments
I thank M. S. Heard, R. W. Jackson, M. D. Pagel, R. M. Sibly, and P. J. Stoett for discussion and comments.
to SnTe, has a rock-salt structure dominated by covalent bonding (see the figure). Because only three p electrons are present to stabilize the six bonds, the concept of resonance bonding was introduced to explain the observed structures (2). This resonance bonding makes the material’s properties susceptible to relatively small perturbations, so potentially, many properties can be switched.

For the well-known perovskite ferroelectrics, such as PbTiO₃, BaTiO₃, or BiFeO₃, the temperature T_d at which intrinsic polarization is lost and above which the material becomes a paraelectric decreases when the film thickness is reduced. However, Chang et al. observed that in SnTe, T_d is substantially higher for thin films than for the bulk material, even surpassing room temperature for a film with a thickness of only two unit cells. Achieving stable ferroelectric macroscopic polarization at room temperature in ultrathin films is usually a great challenge because the depolarization fields increase as film thicknesses decrease. Such in-plane polarized films that are robust against depolarization fields hold great promise for memory applications. From the fundamental point of view, the results are also very important because they show a direct image of the band-bending effect induced by the presence of ferroelectric polarization, as well as the magnitude of the associated screening length.

According to Chang et al., the enhancement of T_d arises from quantum confinement effects. Although SnTe is an ionic 3D crystal, the few layers of SnTe deposited on a graphitized silicon carbide surface are only weakly bound to the substrate via van der Waals interactions and form a truly 2D crystal. Thus, these layers are very different from regular epitaxially grown ferroelectric layers of perovskite materials. The quantum confinement across the film (along the c axis of the unit cell) leads to a huge increase in the band gap from 0.8 eV (in bulk) to above 1.5 eV (in a single unit-cell layer). The greater band gap reduces the density of conduction-band charge carriers, which reduces the screening of the Coulomb dipolar interactions and stabilizes the ferroelectric phase.

This reduction of carriers with respect to the bulk material is also achieved through the increase of the Sn-vacancy formation energy in the thin films. Indeed, Sn vacancies in bulk SnTe cause it to be a heavily p-doped semiconductor. However, the density of vacancies in these as-grown ultrathin SnTe layers is four orders of magnitude lower than in bulk. Chang et al. argue that the in-plane lattice expansion (and the associated polar distortions) taking place through a well-known lattice relaxation mechanism in the surface layers of rock-salt ionic crystals also help stabilize in-plane ferroelectric distortions.

Although these factors are playing important roles, it is most likely not the whole story behind the origin of ferroelectricity in SnTe. In the related material GeTe, the rock-salt-to-rhombohedral phase transition is associated with a Peierls distortion (a lowering in energy by decreasing symmetry). The half-filled p-band, in combination with the symmetry breaking along one of the four $<111>$ directions, opens a band gap and reduces the energy (3). Thus, it might be worth investigating whether a similar transition in SnTe drives symmetry breaking. Interestingly, the ultrathin layers of SnTe form domains, which is unexpected in such thin, in-plane polarized films that are not strongly bound to the substrate. In addition, in-plane polarization along the $<110>$ directions is only compatible with the orthorhombic symmetry, which would bring 2D SnTe closer to the more ionic SnSe (see the figure).

The distinctive properties of SnTe and similar chalcogenides are governed by a fine balance between atomic interactions that can develop very different characters (ionic, covalent, and resonant bonding). These different bonding motifs not only allow ample tuning of the electronic band structure and defect energy formation but also bring these materials to the boundary between different structural instabilities (including ferroelectric phases) and to the edge between 2D and 3D behavior. Indeed, a rich physics has been theoretically predicted to arise from the coexistence of ferroelectricity and spin-orbit coupling, a key characteristic of topological insulators based on chalcogenides such as Bi₂Se₃ and Sb₂Te₃ (4, 5).

Cognition

Thinking abstractly like a duck(ling)

Ducklings, like human infants, show signs of abstract conceptual thought

By Edward A. Wasserman

In the film *O Brother, Where Art Thou?*, when one of a trio of bungling prison escapees angrily asks another, “Who elected you leader of this outfit?” his buddy smugly quips, “I figured it should be the one with the capacity for abstract thought.” Indeed, abstract conceptual thought is held to be so central to being human that the idea of someone being incapable of this kind of thinking is a subject for (sometimes rather cruel) humor. Interest in understanding the capacity for abstract thought has been a matter of serious consideration that dates back at least three centuries to the famous English philosopher John Locke. Locke confidently contended that “brutes abstract not” (1) and insisted that exhibiting abstract thought definitively divided humans from all other animals. However, no science then existed to confirm or refute Locke’s contention. On page 286 of this issue, Martinho and Kacelnik (2) put the claim that animals are incapable of abstract thought to a strong behavioral test.

Adhering to the adage that “actions speak more loudly than words,” scientists are deploying powerful behavioral tests that provide animals with nonverbal ways to reveal their intelligence to us. Although animals may not be able to speak, studying their behavior may be a suitable substitute for assaying their thoughts, and this in turn may allow us to jettison the stale canard that thought without language is impossible. Following this behavioral approach and using the familiar social learning phenomenon of imprinting, Martinho and Kacelnik report that mallard ducklings preferentially followed a novel pair of objects that conformed to the learned relation between a familiar pair of objects. Ducklings that had earlier been exposed to a pair of identical objects preferred the second pair to the familiar pair (3), leading the scientists to conclude that ducklings had abstracted a rule from a previous observation.

Ducklings, like adults, show early signs of abstract thinking. Although animals may not be able to speak, there is no reason to believe that they lack the capacity for abstract thought. The insect Vespa velutina has a well-developed brain that allows it to learn and form abstract rules by repeating certain movements (4). The parasitic wasp Encarsia formosa has been shown to abstract the fundamental principles of geometry when it infests the eggs of its host insect. Some animals, such as the chimpanzee, have been observed to abstract principles of physics. Finally, even single-celled organisms, such as the amoeba, are capable of some form of abstract thought (5). Therefore, it is clear that abstract thought is not limited to humans, and it is evident that animals can form abstract rules and understand the principles of geometry.

References

10.1126/science.aaf9081
Ferroelectric chalcogenides—materials at the edge
Bart J. Kooi, and Beatriz Noheda

Science, 353 (6296), • DOI: 10.1126/science.aaf9081

View the article online
https://www.science.org/doi/10.1126/science.aaf9081
Permissions
https://www.science.org/help/reprints-and-permissions