In Reply to Kashid et al.

To the Editor: We thank Kashid et al1 for their interest (ref Kashid et al.) in our double-blind randomized controlled trial testing parotid gland stem cell sparing (SCS) radiation therapy (RT).2

The authors suggest to consider the stem cell rich (SCR) region as a serial structure and consequently use maximum dose (Dmax) as predictor (reference Kashid et al). However, loss of parotid gland function involves effects of dose to the stem cell region on regenerative function, as well as a dose to the remainder of the parotid gland directly on salivary function. Such a situation is not captured by a serial or parallel organization of functional subunits. Practically, using Dmax has several disadvantages. Being a point dose, Dmax is very sensitive to small changes in treatment planning, as well as per-treatment anatomical changes. Accordingly, we did not find a significant association between the Dmax of the SCR regions and xerostomia (Table 1).

We agree with Kashid et al that the tissue microenvironment strongly influences the stem cell’s behavior. Although this cannot be exploited in treatment planning directly, investigating interventions modulating the microenvironment are indeed of interest and research is in progress.3,4

We are aware of the multifactorial etiology of xerostomia. We minimized potential bias from the effects of chemotherapy by stratifying randomization for systemic treatment. Moreover, further analysis of the relation between systemic treatment and xerostomia using univariable logistic regression did not reveal significant associations (Table 1).

DOI of original article: http://dx.doi.org/10.1016/j.ijrobp.2022.02.026.

Our previous study (“Parotid Gland Stem Cell Sparing Radiation Therapy for Patients With Head and Neck Cancer: A Double-Blind Randomized Controlled Trial”) was funded by the UMC, the Netherlands (CDO17.0040/2011-1/72, grant received by P.L.). One of the researchers involved in this study (M.I.R.D.) was financially supported by the Dutch Cancer Society (11350/2017-2, grant received by R.J.H.M.S.). No external parties with regard to funding were involved in this comment or the earlier performed trial.

Disclosures: R.J.H.M.S. and M.I.R.D. disclose a project grant for research related to stem cell sparing radiotherapy awarded by the Dutch Cancer Society (11350/2017-2). J.A.L. discloses several research grants from the European Union and Dutch Cancer Society, consulting fees paid to UMC Research BV from IBA; honorarium for presentations paid to UMC Research BV from IBA; participation on a data safety monitoring board or advisory board; role as chair of the Safety Monitoring Committee of the UPGRADE-trial (University Medical Center Nijmegen); role as member of the International Scientific Advisory Committee (IBA and RaySearch); role as chair (unpaid) of Netherlands Society for Radiation Oncology (NVRO); and that the department has collaborative research contracts with financial support with IBA, RaySearch, Elekta, Mirada, and Siemens. P.L. discloses support for “Parotid Gland Stem Cell Sparing Radiation Therapy for Patients With Head and Neck Cancer: A Double-Blind Randomized Controlled Trial” with a grant awarded by the local institute to fund personnel on the study (CDO17.0040/2011-1/72); and a project grant for research related to stem cell sparing radiotherapy awarded by the Dutch Cancer Society (11350/2017-2). The other authors have no conflicts of interest to disclose.

Multivariable analysis, including doses to the submandibular glands and other relevant organs at risk3-7 showed that doses to the submandibular glands and buccal mucosa were independent predictors, next to doses to the SCR regions and pretreatment xerostomia.2

Lastly, Kashid et al wondered whether SCS-RT might influence pattern of failure. Therefore, we updated the survival data. Almost 5 years after the last patient inclusion 17 patients were deceased in both study arms, indicating no difference (Fisher’s exact test \(P = .68 \)). Locoregional failure was only proven in 18 patients. Only in 7 did this occur near the parotid glands. However, in both study arms these failures were in the high-dose area, where doses were not compromised by SCS-RT.

To conclude, mean dose to the SCR region was an independent prognostic factor for radiation-induced xerostomia.2 Moreover, SCS-RT did not compromise other oncological outcomes. We intend to publish our follow-up research shortly, further elucidating the role of the SCR

Table 1 Additional univariable logistic regression analysis of xerostomia endpoints

<table>
<thead>
<tr>
<th>Univariables</th>
<th>OR (95% CI)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient-rated xerostomia*</td>
<td>M12 (n = 81, 30 events)</td>
<td></td>
</tr>
<tr>
<td>SCR region CL, Dmax</td>
<td>0.99 (0.96-1.03)</td>
<td>.68</td>
</tr>
<tr>
<td>SCR region IL, Dmax</td>
<td>1.00 (0.97-1.03)</td>
<td>.99</td>
</tr>
<tr>
<td>Systemic treatment (yes vs no)</td>
<td>1.40 (0.55-3.57)</td>
<td>.48</td>
</tr>
<tr>
<td>Daytime xerostomia</td>
<td>M12 (n = 81, 29 events)</td>
<td></td>
</tr>
<tr>
<td>SCR region CL, Dmax</td>
<td>1.01 (0.98-1.04)</td>
<td>.51</td>
</tr>
<tr>
<td>SCR region IL, Dmax</td>
<td>1.00 (0.96-1.03)</td>
<td>.86</td>
</tr>
<tr>
<td>Systemic treatment (yes vs no)</td>
<td>0.72 (0.27-1.95)</td>
<td>.52</td>
</tr>
<tr>
<td>Nighttime xerostomia</td>
<td>M12 (n = 81, 37 events)</td>
<td></td>
</tr>
<tr>
<td>SCR region CL, Dmax</td>
<td>1.00 (0.97-1.03)</td>
<td>.89</td>
</tr>
<tr>
<td>SCR region IL, Dmax</td>
<td>1.02 (0.99-1.05)</td>
<td>.27</td>
</tr>
<tr>
<td>Systemic treatment (yes vs no)</td>
<td>0.82 (0.32-2.10)</td>
<td>.68</td>
</tr>
<tr>
<td>Physician-rated xerostomia</td>
<td>M12 (n = 84, 17 events)</td>
<td></td>
</tr>
<tr>
<td>SCR region CL, Dmax</td>
<td>1.04 (1.00-1.08)</td>
<td>.07</td>
</tr>
<tr>
<td>SCR region IL, Dmax</td>
<td>1.05 (1.00-1.10)</td>
<td>.07</td>
</tr>
<tr>
<td>Systemic treatment (yes vs no)</td>
<td>0.36 (0.09-1.38)</td>
<td>.14</td>
</tr>
</tbody>
</table>

Abbreviations: CI = confidence interval; CL = contralateral; Dmax = maximum point dose; IL = contralateral; M12 = 12 months after treatment; OR = odds ratio; SCR = stem cell rich.

Xerostomia scored according to the:

* European Organization for Research and Treatment for Cancer Quality of Life Questionnaire Head and Neck.

1 Groningen Radiation Induced Xerostomia Questionnaire.

1 Common Terminology Criteria for Adverse Events.

1
region in relation to other organs at risk and how this can improve clinical practice.

Roel J.H.M. Steenbakkers, MD, PhD
Maria I. van Rijn-Dekker, MD
Monique A. Stokman, PhD
Arjen van der Schaaf, PhD
Johanna G.M. van den Hoek, MD
Hendrik P. Bijl, MD, PhD
Maria C.A. Kramer, MD, PhD
Johannes A. Langendijk, MD, PhD
Peter van Luijk, PhD
Department of Radiation Oncology
University Medical Center Groningen
Groningen, The Netherlands

Roel G.J. Kierkels, PhD
Department of Radiation Oncology
Radiotherapiegroep
Deventer, The Netherlands

Rob P. Coppes, PhD
Department of Radiation Oncology
University Medical Center Groningen
Groningen, The Netherlands

Department of Biomedical Sciences of Cell and Systems
Section Molecular Cell Biology
University Medical Center Groningen
Groningen, The Netherlands

https://doi.org/10.1016/j.ijrobp.2022.04.021

References