[18F]Sodium Fluoride PET has the potential to identify active formation of calcinosis cutis in limited cutaneous systemic sclerosis
Atzeni, I M; Hogervorst, E M; Stel, A J; de Leeuw, K; Bijl, M; Bos, R; Westra, J; van Goor, H; Bolling, M C; Slart, R H J A

Published in:
SEMINARS IN ARTHRITIS AND RHEUMATISM

DOI:
10.1016/j.semarthrit.2022.152027

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
[18F]Sodium Fluoride PET has the potential to identify active formation of calcinosis cutis in limited cutaneous systemic sclerosis

IM Atzeni a, EM Hogervorst a, AJ Stel b, K de Leeuw b, M Bijl c, R Bos d, J Westra b, H van Goor e, MC Bolling f, RHJA Slart g,h, DJ Mulder a,*

a Dept. Internal Medicine, div. Vascular Medicine, University of Groningen, University Medical Center Groningen, the Netherlands
b Dept. Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, the Netherlands
c Dept. Rheumatology, Martini hospital, Groningen, the Netherlands
d Dept. Dermatology, University of Groningen, University Medical Center Groningen, the Netherlands
e Dept. Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, the Netherlands
f Dept. Dermatology, University of Groningen, University Medical Center Groningen, the Netherlands
g Medical Imaging Center, dept. Nuclear Medicine & Molecular Imaging, University of Groningen, University Medical Center Groningen, the Netherlands
h Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands

\begin{abstract}
Objectives: Calcinosis cutis affects 20-40\% of patients with systemic sclerosis (SSc). When calcinosis cutis becomes clinically apparent, it is irreversible in most cases. Detection of active calcification formation might allow early disease-modifying interventions. We assessed the feasibility of visualizing active calcifications using [18]FSodium Fluoride ([18]FNaF) PET/low-dose CT (LDCT) in SSc patients with calcinosis cutis.

Methods: In this cross-sectional, observational pilot study patients underwent a whole body [18]FNaF PET/LDCT. All patients met the 2013 ACR/EULAR SSc criteria and had clinically detectable calcinosis cutis. (Sub)cutaneous calcifications were described by three investigators.

Results: Nine female patients were included (median age 59.0 years [IQR 51.5-70.5]). [18]FNaF uptake was mostly visible in the fingers (n=7) and knees (n=5). [18]FNaF PET showed calcifications in the fingers of 3 patients where calcifications were undetected on LDCT and in the clinic. Ninety-seven percent of [18]FNaF positive lesions was visible on LDCT. Of all lesions visible on LDCT, 70\% was also visible on [18]FNaF PET.

Conclusion: Imaging of active calcifications in SSc is feasible using [18]FNaF PET/LDCT. Seventy percent of calcifications on LDCT were [18]FNaF PET positive. Although these findings require replication, [18]FNaF PET/LDCT may detect active calcification formation, being potentially suitable for early disease-modifying interventions.
\end{abstract}

\textbf{Key messages}

- [18]FSodium Fluoride PET/low-dose CT has the potential to identify active formation of calcinosis cutis in limited cutaneous systemic sclerosis.
- This pilot underlines the importance of better characterization of calcinosis cutis to select lesions most prone to treatment response.

\textbf{Introduction}

Calcinosis cutis, characterized by subcutaneous or intracutaneous calcium salt depostions, is a difficult to treat complication of systemic sclerosis (SSc). It arises without an apparent disorder in systemic calcium-phosphate metabolism. These patients are prone to severe vasculopathy indicated by more telangiectasia, giant capillaries, and reduced capillary density compared to those without calcinosis cutis [1, 2].

The exact pathogenesis of the calcification process remains elusive, although it has been suggested that ischemia and microtrauma may play
a role [2,3]. However, this calcification process occurs not only at sites clinically recognized as calcinosis cutis, but can also be detected in skin biopsies taken at sites without overt calcinosis cutis [4]. This suggests a ubiquitous calcification process in SSc.

Macrocalcifications (≥ 50µm) in vascular disease are generally regarded as irreversible end-stage of the calcification process, which can be clearly visualized on X-rays or CT scans [5]. On the contrary, microcalcifications (< 50µm) which indicate the active formation of calcification are not detected by conventional methods such as X-rays or CT scans, but can be detected using a PET scan with the sodium fluoride tracer ([18]F)NaF which mainly binds to microcalcifications [5–9]. [18]F NaF has been routinely used to detect bone disease and metastases, but has also been shown to be a reliable tracer for visualizing skin calcifications in patients with pseudoxanthoma elasticum [10].

Currently, when calcinosis becomes clinically apparent, it is irreversible in most cases [11]. Thus, methods measuring calcinosis activity at which early interventions might be targeted are urgently needed. Detection of active calcinosis cutis formation might potentially facilitate more effective treatments with, for example, bisphosphonates or intralesional sodium thiosulfate [12]. Therefore, we assessed the feasibility of visualizing active calcification formation with [18]F NaF PET/low-dose CT (LDCT) in SSc patients with calcinosis cutis. Moreover, we compared the clinical detection of (sub)cutaneous calcifications with those detected on hybrid [18]F NaF PET/LDCT.

Materials and methods

We performed a cross-sectional, observational pilot study in 9 patients with limited cutaneous SSc (lcSSc) and calcinosis cutis, who underwent a [18]F NaF PET/LDCT. The presence of calcinosis cutis was assessed by routine clinical examination and photo documentation. Inflamed calcinosis cutis was defined as being red, warm, or swollen. Patients were recruited from the University Medical Center Groningen or after reference by collaborating hospitals in the region. All patients met the 2013 ACR/EULAR criteria for SSc with a score ≥9 [13].

Exclusion criteria were: currently pregnant or breastfeeding women, women with child bearing potential not using appropriate contraceptive measures, vascular event or chemotherapy in the preceding 3 months [14], inflammation of unknown origin, sepsis, or vasculitis [15], current active bone malignancy or in the previous 6 months [16], disorders affecting bone metabolism, e.g. hyperparathyroidism, Paget’s disease [14], and patients who had claustrophobia. Clinical and demographical data were obtained by the researcher’s assessment and patient records. The study was approved by the local Medical Ethics Committee of the University Medical Center Groningen, complied with the Declaration of Helsinki, and all participants gave written informed consent.

[18]F NaF PET/LDCT imaging technique

Patients underwent a [18]F NaF PET/LDCT on a Siemens Biograph scanner (Siemens Healthineers, Erlangen, Germany). Ninety minutes before imaging, an intravenous injection of 2.0 MBq/kg [18]F NaF was administered. Patients were instructed to consume 1 l water 1-3 hours before and 0.5 l water after injection. A continuous breathing LDCT (80-120 kV, 20-35 mA S, and 5 mm slice thickness) was performed for visualization of anatomical structures. PET acquisitions were obtained with 2-3 min per bed position in 3D setting. Images were reconstructed according to the European Association of Nuclear Medicine guidelines [17].

Image analysis

Images were reformatted into axial, coronal, and sagittal views, and reviewed by the software provided by the manufacturer (Syngo. Via 30, Siemens Healthineers). The scans were analyzed blinded to patient characteristics and clinical information. The number and location of (sub)cutaneous calcifications were described and assessed independently on [18]F NaF PET/LDCT by three researchers, reaching a consensus. Calcifications not located in the (sub)cutaneous tissue such as joints, tendons, bursae, muscles, and internal organs were excluded.

Statistical analysis

Data are presented as median with interquartile range (IQR) or number (%). The Spearman’s rank correlation and Mann-Whitney test were used as appropriate for associations between relative [18]F NaF activity and calcium phosphate metabolism, renal function, inflammation, vasculopathy, internal organ complications, and duration of SSc and calcinosis. Relative [18]F NaF activity is the percentage of [18]F NaF activity. P-values < 0.05 were considered significant.

Results

Patient characteristics are summarized in Table 1. A total of 9 lcSSc patients were included. All patients were female. The median duration of calcinosis cutis since first presentation was 14.1 years (12.0-19.4). Calcinosis cutis was detected in all patients with [18]F NaF PET/LDCT (Fig. 1 shows a representative image; Table 2). Twenty-two percent had inflamed calcinosis cutis by clinical examination. Clinically, calcinosis cutis was most often detected in the fingers (n = 5), elbows (n = 2), and knees (n = 2). Most common sites of (sub)cutaneous calcifications on [18]F NaF PET were the fingers (n = 7) and knees (n = 5). In total, 97% of NaF positive lesions were also visible on LDCT, whereas 70% of all detected lesions on CT were also positive on [18]F NaF PET.

Interestingly, [18]F NaF PET not only showed clinically apparent calcinosis cutis, but also (sub)cutaneous calcifications in the fingers of 3 out of 9 patients where calcinosis cutis was clinically undetected. On the contrary, clinically diagnosed calcinosis cutis in the fingers of 2 patients could not be detected on [18]F NaF PET/LDCT. However, it should be mentioned that moving artifacts were present on [18]F NaF PET/LDCT in these 2 patients, and, thereby, could not be assessed properly.

No associations were found between the relative [18]F NaF activity on PET/LDCT and SSc duration, calcinosis duration, a history of pitting scars (p = 0.08), gastrointestinal involvement (p = 0.07), and calcium levels (r = 0.61; p = 0.08) showed positive trends.

Discussion

This proof of concept study is the first to demonstrate the feasibility of using [18]F NaF PET/LDCT in patients with SSc and clinically apparent calcinosis cutis. Almost all clinically detected calcinosis lesions were visible on LDCT, of which 70% were considered active since [18]F NaF uptake was present. This suggests that in this long-standing calcinosis cutis population, most lesions are still active and potential targets for therapies aiming to reduce calcifications.

On the contrary, a very limited number of calcinosis lesions were detected with NaF uptake only, not being visible on LDCT. Therefore, [18]F NaF PET seemed rarely to be a suitable imaging modality to detect lesions that cannot be detected by LDCT scanning, but it could be used to detect subclinical lesions as it showed (sub)cutaneous calcinosis in fingers where clinically calcinosis was undetected. This is in line with a study by Davies et al. [4] showing the calcification process not only at sites recognized as calcinosis cutis, but also at sites without overt calcinosis cutis. At these sites, overexpression of calcification related matrix proteins such as osteonectin and matrix gamma-carboxyglutamic acid protein have been observed. Both proteins play an important role in the metabolism of calcification. While these observations were more prominent in SSc patients with overt calcinosis cutis, the fact that similar mechanisms seem to play a role subclinically, suggests that calcification may be a ubiquitous process in SSc. As a result, identification of...
duration was defined since first non-Raynaud disease-modifying therapies. Additionally, a recent study showed that lesions have a specific appearance on -developing calcinosis lesions may lead to early initiation of proximal of the MCP joints, n(%) 4 (44.4%) 3 (33.3%) 5 (55.6%) 9 (100.0%) 5 (55.6%)
Calcinoïd monocapillary microscopy, n(%) 0 (0.0%) 1 (11.1%) 7 (77.8%)
Normal 1.1 (1.0-1.2) 2.4 (2.3-2.5) 1.1 (1.0-1.2)
Nonspecific 4 (4.4%) 5 (5.56%) 4 (4.44%)
Early 1 (11.1%) 4 (44.4%) 4 (44.4%)
Late 0 (0.0%) 1 (11.1%) 0 (0.0%)
Serology, n(%) 7 (77.8%) 9 (100.0%) 9 (100.0%)
ANA-positive 8 (88.9%) 7 (77.8%) 8 (88.9%)
Anti-centromere 0 (0.0%) 0 (0.0%) 0 (0.0%)
Anti-RNA polymerase III 0 (0.0%) 0 (0.0%) 0 (0.0%)
Anti-topoisomerase I 0 (0.0%) 0 (0.0%) 0 (0.0%)
Anti-centromere 1 (11.1%) 1 (11.1%) 1 (11.1%)
Clinical diagnosed lung abnormalities, n(%) 6 (66.7%) 6 (66.7%) 6 (66.7%)
ILD 2 (22.2%) 2 (22.2%) 2 (22.2%)
No lung abnormality 1 (11.1%) 1 (11.1%) 1 (11.1%)
Clinically diagnosed gastro-intestinal abnormalities, n(%) 9 (100.0%) 9 (100.0%) 9 (100.0%)
Nailfold capillary microscopy, n(%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Score ≤ 3 4 (44.4%) 4 (44.4%) 4 (44.4%)
Score 4-7 5 (55.6%) 5 (55.6%) 5 (55.6%)
Score 8-10 1 (11.1%) 1 (11.1%) 1 (11.1%)
Clinically diagnosed kidney abnormalities, n(%) 6 (66.7%) 6 (66.7%) 6 (66.7%)
Hypertension 2 (22.2%) 2 (22.2%) 2 (22.2%)
eGFR in ml/min/1.73m², median (IQR) 83.0 (76.5-99.0) 83.0 (76.5-99.0) 83.0 (76.5-99.0)
Inflammation blood parameters, median(IQR) 18F]NaF PET scan; C: [18F]NaF PET scan; D: Fused PET/LDCT scan. The hotspots (yellow/red) show [18F]NaF uptake.

In conclusion, this study demonstrated that [18F]NaF PET/LDCT is feasible in visualizing calcinosis cutis in patients with SSc. Moreover, we showed active uptake of [18F]NaF in the majority of these calcinosis lesions on LDCT, whereas calcinosis lesions invisible on LDCT were very unusual. However, this may be due to the limitation of the PET system resolution. With the current insights, no curative treatment is available for calcinosis cutis in patients with SSc. Still, it may be of added value to know which calcifications are modifiable, and, potentially, suitable for interventions reducing calcifications. In particular, this study should encourage further studies to encounter the dynamic and interindividual heterogeneity of calcinosis cutis in SSc in order to pave the way for therapeutic solutions.
Table 2
Number of lesions on patient levels and in total.

<table>
<thead>
<tr>
<th>Patient</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CT pos, n</td>
<td>4</td>
<td>6</td>
<td>17</td>
<td>74</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>67</td>
</tr>
<tr>
<td>CT pos NaF neg, n</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>CT pos NaF pos, n</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td>51</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>43</td>
</tr>
<tr>
<td>CT pos NaF pos, %</td>
<td>75</td>
<td>50</td>
<td>71</td>
<td>69</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>69</td>
<td>64</td>
</tr>
<tr>
<td>NaF pos, n</td>
<td>3</td>
<td>3</td>
<td>13</td>
<td>51</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>43</td>
</tr>
<tr>
<td>NaF pos CT neg, n</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>NaF pos CT neg, %</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>

Pos: positive; neg: negative; IQR: interquartile range; NA: not applicable.

Compliance with ethical standards

Funding statement

The study was supported by a grant from Sanofi, the Netherlands.

Author contributions

Conceptualization and methodology, IM Atzeni and DJ Mulder; Formal Analysis, IM Atzeni, EM Hogervorst, RHJA Slart, and DJ Mulder; Investigation, IM Atzeni and EM Hogervorst; Resources, AJ stel, K de Leeuw, M Bijl, R Bos, and RHJA Slart; Data Curation, IM Atzeni; Writing – Original Draft Preparation, IM Atzeni; Writing – Review & Editing, EM Hogervorst, AJ Stel, K de Leeuw, M Bijl, R Bos, J Westra, H van Goor, MC Bolling, RHJA Slart, and DJ Mulder; Visualization, IM Atzeni; Supervision, J Westra, RHJA Slart, and DJ Mulder; Project Administration, IM Atzeni.

Data availability

All data relevant to the study are included in the article.

Conflicts of interest

DJM has received a grant from Sanofi, the Netherlands. MB has received lecture fees from Novartis Pharma, not related to this manuscript. RHJAS has received independent research grants from Siemens Healthineers, all not related to this manuscript. Other authors declare no competing interests.

References