

 University of Groningen

NLG4RE
de Brock, Bert; C., Suurmond

Published in:
Joint Proceedings of REFSQ-2022

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
de Brock, B., & C., S. (2022). NLG4RE: How NL generation can support validation in RE. In J. Fischbach,
N. Condori-Fernandez, J. Doerr, M. Ruiz, J-P. Steghöfer, L. Pasquale, A. Zisman, R. Guizzardi, J. Horkoff,
A. Perini, A. Susi, M. Daneva, A. Herrmann, K. Schneider, P. Mennig, F. Dalpiaz, D. Dell'Anna, S.
Kopczynska, L. Montgomery, A. G. Darby, ... P. Sawyer (Eds.), Joint Proceedings of REFSQ-2022:
Workshops, Doctoral Symposium, and Posters & Tools Track (Vol. 3122). CEUR Workshop Proceedings
(CEUR-WS.org).

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 31-05-2023

https://research.rug.nl/en/publications/abb6d6ae-723f-4c7b-9567-44b357306ceb

1

NLG4RE: How NL Generation Can Support Validation in RE

Bert de Brock2 and Coen Suurmond2

1 University of Groningen, PO Box 800, 9700 AV, Groningen, The Netherlands
2 Cesuur BV, Kerkstraat 7, 6883 HP, Velp, The Netherlands

Abstract
Context and motivation: All too frequently functional requirements (FRs) for a (software)

system are unclear. Written in natural language, FRs are underspecified for software

developers; when written in formal language, FRs are insufficiently comprehensible for users.

This is a well-known problem in RE. As long as this either/or dichotomy exists, FRs cannot be

a “basis for common agreement among all parties involved”, as Barry Boehm puts it.

Question/problem: On the one hand, FRs should unambiguously specify the functional

behaviour of the system to be written or adapted, and on the other hand be fully understandable

by the customer that must agree with them. What is required to achieve this goal?

Principal ideas/results: A specification must describe the Statics as well as the Dynamics. In

our approach it consists of a Conceptual Data Model (the data structure, i.e., the Statics) plus

a set of System Sequence Descriptions (SSDs) representing the processes (i.e., the Dynamics).

SSDs schematically depict the interactions between the primary actor (user), the system (as a

black box), and other actors (if any), including the messages between them.

We provide a set of rules to generate natural language expressions from both the Conceptual

Data Model and the SSDs that are understandable by the user (‘Informalisation of formal

requirements’). Generating understandable representations of a specification is relevant for

requirements validation tasks.

Contribution to validation: We introduce a form of Natural Language Generation (the NLG in

the title) by defining a grammar and mapping rules to precise and unambiguous expressions in

natural language, in order to improve understandability of the FRs and the data model by the

user community.

Keywords 2
Functional Requirement, Explainability, Conceptual Data Model, System Sequence

Description, Use Case, Grammar, Syntax-directed Mapping, Validation

1. Introduction

In his seminal article [1], Barry Boehm defined software requirements engineering as “the discipline

for developing a complete, consistent, unambiguous specification - which can serve as a basis for

common agreement among all parties concerned - describing what the software product will do (but not

how it will do it; this is to be done in the design specification)”. For our paper, the three most relevant

phrases of the definition are underlined. Firstly, the definition entails that unambiguous software

development requires a specification of the behaviour of the software that must be as precise as the

software itself, hence expressed in a formally defined language. (Please note: not all specification

languages are formally defined.) Secondly, requirements engineering is about the what (the functional

behaviour) and not about the how. Thirdly, the definition implies that the requirements must be fully

In: J. Fischbach, N. Condori-Fernández, J. Doerr, M. Ruiz, J.-P. Steghöfer, L. Pasquale, A. Zisman, R. Guizzardi, J. Horkoff, A. Perini, A.

Susi, M. Daneva, A. Herrmann, K. Schneider, P. Mennig, F. Dalpiaz, D. Dell’Anna, S. Kopczyńska, L. Montgomery, A. G. Darby, and P.
Sawyer (eds.): Joint Proceedings of REFSQ-2022 Workshops, Doctoral Symposium, and Poster & Tools Track, Birmingham, UK, 21-03-

2022.

EMAIL: e.o.de.brock@rug.nl (B. De Brock); coen@cesuur.info (C. Suurmond)
ORCID: 0000-0003-4400-0187 (B. De Brock); 0000-0001-7229-3541 (C. Suurmond)

©️ 2022 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

understandable for all parties concerned. For software development, the definition implies that for a

given specification different software designs and different implementations of those designs are not

allowed to have any impact whatsoever on the functional behaviour of the software. For representatives

of the user community (in whatever stakeholder role) the definition implies that they can fully check

and validate the behaviour of the software-to-be in their user world. Hence our starting point is that (1)

Functional Requirements (FRs) must be expressed in a formal language and (2) must be understandable

in the user community. But (and this is a major but!), in many cases domain experts from the user

community will have difficulties in reading specifications formulated in a specialized formal language.

This will hamper the understanding that is required for the common agreement about the specifications.

Hence, our paper will address the issue how formal specifications can be made understandable for the

user community, as a condition sine qua non for a proper validation by the user community.

Generally speaking, various approaches are available that map Use Case descriptions to UML

diagrams [2], goal modelling [3], BPMN [4], Petri nets [5], or other (semi-formal) concepts for

evaluation. Although those concepts and notations might be suitable for validation by our colleagues,

they are usually not really suitable for validation by end users. The reason is that those users might be

experts in their own domain, but not in fully understanding (the consequences of) what is expressed in

those notations. And even amongst colleagues such visuals models can be incomprehensible.

In [6], Allweyer analysed a small example model provided by the Object Management Group: “The

process as such may indeed be small, but the diagram is not small … It is understandable for experts –

but it is certainly not easy to understand. I would not dare to give this diagram to any business expert”.

We see such problems in practice again and again. Other issues with such approaches are a lack of

formal definition of the specification language and the embedding of natural language descriptions of

real world processes in process specifications. Leopold et al. [7] write “Due to the extensive symbol

set, a complete formalization of BPMN would introduce unnecessary complexity”. Our objective is to

avoid such problems by (1) using a formally defined specification language, in combination with (2) a

small set of mapping rules from expressions in the formal language to natural language expressions that

are understandable in the user community (building on our earlier work presented in [8,9]).

Essentially, the results of an RE-phase for a system to be developed consist of a description of the

statics, describing the relevant data (structures), and of the dynamics, describing the relevant processes.

The statics are often given in the form of a Conceptual Data Model. We propose to give the dynamics

in the form of textual System Sequence Descriptions (tSSDs). Together, the statics and the dynamics

constitute a complete conceptual ‘blue print’ of the system to be developed, as summarized in Table 1:

Table 1. Overview of concepts

Aspect Problem Analysis result

Statics / Data structure Conceptual Data Model

Dynamics / Processes Textual SSDs

Because Conceptual Data Models (CDMs) and Textual SSDs can be specified in a structured way,

we were able to give complete mapping rules how, in a systematic way, CDMs and Textual SSDs can

be mapped to (and therefore explained in) unambiguous expressions in natural language, say in English.

Depicted schematically:

 User world Specifications Specifications

 expressed in expressed in expressed in

Figure 1: Generating unambiguous natural language from unambiguous formal language

We emphasize here that the question of the explanation of formally specified FRs to the user can be

considered independent of the way the FRs were developed. Whether the requirements were developed

linear, incremental, agile, or elsewise is immaterial for our purposes. And although we use one specific

specification language, our approach is applicable to other formally and completely defined

specification languages as well. We will limit ourselves to functional requirements which, of course, is

not to deny the relevance of non-functional requirements!

The rest of the paper is organized as follows. Section 2 considers related work. Section 3 zooms in

on the possible meanings of explainability. Section 5 introduces the notion of textual SSDs. Sections 4

and 6 give mapping methods to explain Conceptual Data Models and textual SSDs (respectively) in

natural language to the user community. Section 7 zooms in on our early validation of the approach.

Section 8 contains a discussion and Section 9 presents some conclusions.

2. Related work

Kossack et al. address our question in their paper “Improving the Understandability of Formal

Specifications” [10]. The authors notice that reviewing a specification “relies on the assumption that

the readers must be able to build a consistent and complete mental image of the model that is sufficiently

precise to assess its correctness … Graphical notations, such as UML, are quite effective. Unfortunately,

they lack the precise mathematical basis that is required to express and assert critical properties. On the

other hand, mathematical-logical bases formalisms … are more appropriate for the latter purpose,

however, they are difficult to understand”. We completely agree with this dichotomy, and also with

their (readability) guideline to at least carefully choose the name of variables. However welcome such

improvements are, we do not think that such an approach will solve the problem of understandability

of specifications in a formal language by domain experts.

Wiegers [11] has written that “a formal inspection of the software requirement specifications by

project stakeholders who represent different perspectives is one way to determine whether each

requirement has these desired attributes”. However, his quality characteristics do not mention

“understandable”. While he observes that “only user representatives can determine the correctness of

user requirements”, he does not discuss how users can be expected to do this with formal specifications.

“A systematic literature review of use case research” by Tiwari and Gupta [12] discusses almost 120

papers. They notice that in writing use cases “their inherent utilization of natural language and a

behaviour of requirement documentation in a semi-conventional way, mean that they are affected by

issues such as ambiguity, redundancy, inconsistency and incompleteness. Several efforts have been

made by researchers in order to address these issues by formalizing both behavioural and structural

aspects of the use case specifications”. However, the research is mainly about the production of

formalized use cases and not about the issue how to validate a formalized use case by the average user.

The authors found that “the most used inspection technique for use case validation is the checklist”,

which is a rather indeterminate way of reviewing a formal specification.

The systematic literature review by Yaman et al. [13] discusses 25 papers and mentions in its abstract

that “In order to build successful software products and services, customer involvement and an

understanding of customers’ requirements and behaviours during the development process are

essential”, followed by their question/problem section which mentions learning from customers, but

not learning by customers. It is not about a systematic validation of requirements either. The

involvement of customers is about giving feedback about their experiences in using the software, not

about a direct systematic validation of the requirements by the customer.

The general impression is that the focus of the papers on requirements engineering seems to be on

the process, the model, the modeller, the tools, and the software quality. However, the role of the user

in the validation of the requirements gets little attention. The user seems to be reduced to a source whose

needs are to be elicited by the requirements engineer, rather than as an addressee of the resulting

requirements. This is corroborated by a scan of the tables of contents of the REFSQ conferences from

2007 – 2021, where we observe that very few paper titles or abstracts indicate research on the issue how

to present formally specified requirements back to the user community in such a way that genuine

understanding and validation can be achieved.

3. Explainability explored

A basic question in exploring the concept of ‘explaining’ is: Who explains what to whom?

Therefore, we clearly distinguish four different roles in software (SW) development involved: User,

Requirements Engineer, Software Designer, and Programmer. This identifies the possible “who” and

“whom” in explanations. The “what” concerns (1) user wishes / user world, (2) functional requirements

specification, (3) software design, (4) software. This results in the diagram in Figure 2, showing

interactions where an explanation could be given. The quoted parts below refer to the Oxford English

Dictionary lemma ‘explain’ [14]:

1. The users make their world & wishes “plain or intelligible” to the requirements engineer

2. The requirements engineer will “state the meaning or import of” their FRs to the user

3. The formal FRs the requirements engineer gives to the SW designer should be self-explaining;

any necessary explanation would reveal a shortcoming in the FRs

4. The SW designer does “make clear the cause, origin, or reason of” the SW design in relation to the

FRs (i.e.: the designer shows how the design fulfils the requirements)

5. Similar to 3: The design should be self-explaining

6. Similar to 4: The programmer makes clear how the software fulfils the design

Our paper focuses on Arrow 2: The explanation of the FRs back to the user.

Figure 2: Who explains what to whom?

4. Explainability of a given conceptual data model

When defining a CDM, we use the notions of concept and property of a concept. A CDM usually

consists of a set of concepts where each concept has a set of properties. A value for a property P might

be optional, which we indicate by ‘[P]’. A property can be a Yes/No-property (a ‘Boolean’), in which

case we use the form ‘P?’. A property P can refer to another instance of a concept, which we indicate

by ‘^P’ (where P is usually the name of the referenced concept). A property or combination of properties

of a concept might be uniquely identifying within that concept (a.k.a. a ‘key’). If a CDM consists of

concept C1 with properties P1,1 , …, P1,n1 , concept C2 with properties P2,1 , …, P2,n2 (etc.), until concept

Cm with properties Pm,1 , …, Pm,nm, then our ‘explanation’ runs as follows:

The system needs to contain:

• For each relevant C1: its P1,1 , …, and its P1,n1.

• For each relevant C2: its P2,1 , …, and its P2,n2.

⁞

• For each relevant Cm: its Pm,1 , …, and its Pm,nm.

We added the word ‘relevant’ because not each individual C might be relevant for the organization.

Furthermore, the following subsequent adaptions apply:

1. If a value for a property P is optional then we replace ‘its P’ by ‘optionally its P’.

2. If a property refers to another instance of a concept (so, is of the form ‘^P’)

then we replace ‘its ^P’ by ‘a reference to its P’.

(Hence, in case of an optional reference we get ‘optionally a reference to its P’.)

3. If a property is a Yes/No-property (so ‘P?’) and P is a verb phrase then we use ‘whether it is P’

instead of ‘its P?’; if P is a noun phrase then we use ‘whether it is a(n) P’.

4. If a concept C represents a human being then we use ‘his/her’ instead of ‘its’

and ‘whether he/she is [a(n)] P’ instead of ‘whether it is [a(n)] P’.

For each property (combination) P1, …, Pk of a concept C which is uniquely identifying within that

concept, we can add the sentence

‘The same value [combination] for P1, …, and Pk should not occur twice.’

immediately after the complete sentence ‘For each relevant C: … .’. The word ‘combination’ can be

left out if k = 1 (so if one property in itself is uniquely identifying).

Alternatively, we could add all the uniqueness conditions under one separate heading, say

‘Conditions’, but in that case we must mention the concept it applies to. We could then use a sentence

like ‘There can be no two different Cs with the same value [combination] for P1, …, and Pk.’, as in

our next example:

Example 1: Explanation of a conceptual data model

We give an example of a conceptual data model with one human being concept (Student) and two non-

human being concepts (Course and Course Enrolment), with some Yes/No-properties, some optional properties

and some combinations thereof. Furthermore there is one uniqueness condition consisting of one property

(Student number), and twice a uniqueness condition with two properties (e.g., Faculty, Course code); with the

uniqueness property (combination) underlined:

Student: Student number, Name, [Phone number,] [Freshman?,] Birth date

Course: Faculty, Course code, Name, [Master course?,] Description

Course Enrolment: ^Student, ^Course, Accepted?

The explanation of this conceptual data model applying our ‘explanation rules’ would result in:

The system needs to contain:

• For each relevant Student: his/her Student number, his/her Name, optionally his/her Phone number,

optionally whether he/she is a Freshman, and his/her Birth date.

• For each relevant Course: its Faculty, its Course code, its Name, optionally whether it is a Master

course, and its Description.

• For each relevant Course Enrolment: a reference to its Student, a reference to its Course, and whether

it is Accepted.

Conditions:

• There can be no two different Students with the same value for Student number.

• There can be no two different Courses with the same value combination for Faculty and Course code.

• There can be no two different Course Enrolments with the same value combination for Student and

Course.

Preceded by a short and simple legend explaining notions like optionality and uniqueness conditions,

it should be well understandable by the customer. In principle, the users should be able to understand

and confirm this, or correct this in case of incompleteness, ambiguity, or defect detection in the

specifications/requirements.

Note that the enumerations do not have limitations on the number of concepts, properties, or

relationships. Hence, we can also handle ‘large’ conceptual data models, i.e., models with a large

number of concepts, properties, and/or relationships. In that case, we get long enumerations of (simple)

statements. For such large conceptual data models, it might be useful to spread the concepts over

sections (‘sub-areas’), such as Shipping, Warehousing, and Production (and maybe a section General).

We could extend the explanation by mentioning the data type per property as well, say by replacing

Pj,k by Pj,k (being a date), by Pj,k (being a time), by Pj,k (being a date and time), by Pj,k (being an

integer), by Pj,k (being a decimal number), by Pj,k (being a string), or by Pj,k (being a string of exactly

n characters), etc.

5. Textual SSDs

As mentioned earlier, the dynamics / processes of FRs can be represented by textual SSDs, which

are schematic depictions of the interactions between the primary actor (user), the system (as a black

box), and other actors (if any), including the messages between them [15]. Following [8], we present

here a grammar for textual SSDs, in BNF (Backus–Naur form). The terminals are written in bold. The

nonterminal A stands for ‘atomic instruction’ (or step), P for ‘actor’ (or ‘participant’), M for ‘message’,

S for ‘instruction’ (or SSD), N for ‘instruction name’, and D for ‘definition’:

A ::= P  P: M /* ‘X  Y: M’ means: ‘X sends M to Y’

P ::= System│…

S ::= A│S ; S│begin S end│if C then S [else S] end

 │while C do S end│repeat S until C│perform N

 │S , S│maybe S end│either S or S end /* introducing non-determinism

D ::= define N as S end

Informally, the construct ‘s1, s2’ indicates that the order is irrelevant (‘do s1 and s2 in any order’),

‘s1; s2’ indicates ‘do s1 first; then do s2’. The expression ‘perform N’ represents the Include or Call.

‘Maybe s end’ means ‘do s or do nothing’, and ‘either s1 or s2 end’ means ‘choose between doing s1

and doing s2’. System represents the system under consideration.

The values for the nonterminals B, P, M, and N are application-dependent, or ‘domain specific’

(except the terminal System for the nonterminal P). Those values will appear during the development

of the specific application.

For atomic instructions where at least one actor/participant is System, we distinguish the following

situations (where Actor  System):

1. Actor  System: i Indicates the input messages the system can expect

2. System  System: y Indicates the transitions or checks the system should make

3. System  Actor: o Indicates the output messages the system should produce

Instruction (1) is called an input step, (2) an internal step, and (3) an output step. An atomic

instruction not involving System is called an external step. A quite common, simple basic pattern is:

input step, followed by an internal step, and then followed by an output step.

6. Explainability of a given textual SSD

We developed a mapping from textual SSDs to natural language (English in this case). The mapping

rules originate from [9], but are slightly modified. Function F below inductively maps textual SSDs to

English, assigning to each tSSD an expression in English in terms of the direct constituents of that

tSSD, according to the compositionality principle [16]. Most mappings are straightforward, i.e., leave

the language constructs as they are. The most important non-straightforward functions are:

1. F(Actor  System: γ) ≝ the F(actor) asks the System to F(γ) /* for Actor  System

2. F(System  Actor: γ) ≝ the System sends F(γ) to F(actor) /* for Actor  System

3. F(Actor  Actor: γ) ≝ the F(actor) does F(γ) /* if the same actor is mentioned twice

4. F(e1; e2) ≝ F(e1). <newline> F(e2) /* Sequential order is indicated by a dot

5. F(e1, e2) ≝ F(e1) and <newline> F(e2) /* Arbitrary order is indicated by ‘and’

6. F(n) means: F(e) end /* if n was introduced by ‘define n as e end’

Ad 1-3: F(actor) often is a (human) user but it could be an external system as well

Ad 3: If the same actor is mentioned twice, the step indicates what that actor has to do.

 Often Actor = System

Ad 6: This ‘follow-up’ can be put after the complete mapping of the main text

See for the nature of the message γ in the basic steps the explanation of atomic instructions in Section

5. For an actor, message, or instruction name x, F(x) could simply be x itself when it was well-chosen,

as in Example 2.

Essentially, the mapping boils down to replacing the basic steps by some standard sentence

constructions, replacing ‘;’ by ‘.’ , replacing ‘,’ by ‘and’ , and replacing ‘define n as’ by ‘F(n) means:’.

The marker ‘end’ in the NL expression is needed to indicate the end (the ‘scope’) of a construct in the

same way as in the formal language; cf. the use of markers such as “[end remark]” in NL texts by

authors such as E.W. Dijkstra.

In [17] we applied the mapping rules to Larman’s well-known large use case Process Sale [15]. The

following example contains an initial fragment of it after application of our mapping rules and keeping

the originally bold texts in bold. The complete elaboration can be found in [17].

processSale means:

The Cashier asks the System to make new Sale.

The System does create Sale.

While customer has more items do

perform handleItem.

The System sends description and running total to Cashier

end.

The Cashier asks the System to end Sale.

⁞
end

7. Early validation of the approach

We not only applied our approach to Larman’s large use case Process Sale but also to a specification

document we were working on. Size of its conceptual data model: >35 concepts, >180 properties, and

> 65 references. It generated 5 to 6 pages of sentences in English. Preceded by a short and simple legend

explaining notions like optionality and uniqueness conditions, the conceptual data model turned out to

be well understandable by the customer.

One of the authors has been working for many years in the food processing industry and has first-

hand experience with a rich variety of domain experts in the industry, ranging from the owners of

companies to operators on the shop floor. This experience has taught two lessons: (1) for real validation

you need to work with the people who are actually “doing the processes” (whose knowledge of the

process is “by acquaintance” and not “by description”), and (2) the capability of discussing rigorous

functional specifications is not dependent on educational or organisational level, but on the capability

of reflecting on the process.

One author applied the rules for generating NL-expressions for both the conceptual data model and

the textual SSDs to our formal specifications. The other author (‘from industry’) subsequently assessed

the understandability of the generated NL-specifications from the viewpoint of a typical domain expert

(with first-hand knowledge of the processes and capable of reflecting on the processes).

The results from this validation of our approach showed that (1) this kind of representation of formal

specifications in NL-expressions can considerably improve the understanding and discussion of the

formal requirements by the customer and (2) the choice of property names in the conceptual data model

is a really delicate issue for the understandability of the expressions (as also signalled in [10]).

Prototypes and test cases might be developed to check the behaviour in the user world. However,

such prototypes and test cases are ‘just’ a means to an end but they cannot replace a complete check of

the specifications. The customer must validate all the requirements as such. Therefore, we regard the

generated NL-expressions as the crucial step in validation that must “serve as a basis for common

agreement among all parties concerned”, to cite Barry Boehm [1].

8. Discussion

The main question in this paper is how to achieve the combination of a full formal specification of

the functional behaviour of the system (under development) with adequate explainability of that formal

specification to the user community. The answer is based on the idea that any validation of the

specification by the user community must be based on explainability (and understandability) of the

system (under development) to the users.

As argued before, the relevance of both conditions should be self-evident: we don’t want choices

concerning the functional behaviour of the system “hidden” in the software. We want unreserved

understanding by the user community of what will be delivered. Satisfying both conditions implies that

the system behaviour can be fully known and accepted by the user community after a requirements

phase. An additional point is that changing specifications later on (of course a normal phenomenon in

a dynamic world) can be fully dealt with on the conceptual level, and does not require knowledge of

implementation details.

The main contribution of the paper is to provide a method for mapping formal specifications to

expressions in natural language (NL), for the statics part as well as for the dynamics part; so for the

complete conceptual ‘blue print’ of the system to be developed.

This approach makes the formal specifications accessible and understandable for the users, without

making concessions to the precision of the expressions. It is a necessary step in explaining the

specifications to the users, in many cases to be followed by further discussions between user and

requirement engineer about the meaning and impact of the specifications in the user world. But

wherever such explanations and discussions may go, the reference for the system under development

consists of the precise formal specifications and their mappings to understandable expressions in NL.

9. Conclusions and Future Work

In SW development, the specifications must simultaneously serve two purposes: providing a full

formal specification of the system behaviour to be implemented, and being a basis for giving the user

an understandable specification of the system under development to be validated. These two purposes

are often considered to be conflicting, solutions either leaning towards formalism at the expense of

understandability for the user, or leaning towards natural language descriptions at the expense of

precision. In this paper we have shown that it is possible to have it both ways, by providing a full formal

specification of the behaviour of the system under development in combination with syntax-driven

mapping rules from the formal specifications to expressions in natural language. We have explored the

different meanings of explainability in SW development, having separated (1) the user explaining “their

world” to the requirements engineer to provide understanding, (2) the requirements engineer explaining

their interpretation of the requirements to the user, providing insight in the relation between system and

user world, (3) the SW designer explaining their design to the requirements engineer, demonstrating its

completeness and conformity, and (4) similarly, the programmer explaining their software to the SW

designer. In short: regarding functional behaviour, all formalization steps from user world to the system

under development belongs to the domain of requirements engineering and formal specifications of

functional behaviour are made accessible for user validation by generating expressions in natural

language. All later discussions about the functional behaviour of the system can be based on the formal

specifications only, making knowledge of its SW implementation unnecessary.

Future work. Since we can specify Conceptual Data Models (CDMs) and Textual SSDs in a

systematic way and are able to give complete mapping rules to map CDMs and Textual SSDs to

descriptions in natural language, it is possible to develop a tool for the automatic generation of such

descriptions. For large CDMs, it might be useful to spread the concepts over sections (and subsections),

e.g., with sub-areas such as Shipping (which sub-area could be further subdivided into Inbound and

Outbound), Warehousing, and Production (and maybe a necessary section General). And maybe there

might arise a need for a subdivision of the properties within a concept as well. Such structuring still has

to be investigated. Finally, it will be useful to do more empirical validation of our approach in customer

projects.

References

[1] B. Boehm: Software Engineering. IEEE Transactions on computers, vol. C25 no 12 (1976), pp.

1226-1241.

[2] Object Management Group, Unified Modeling Language (UML),

https://www.omg.org/spec/UML/2.5.1/About-UML.

[3] E. Kavakli, P. Loucopoulos: Goal Modeling in Requirements Engineering: Analysis and Critique

of Current Methods. In J. Krogstie, T. Halpin, & K. Siau (Ed.), Information Modeling Methods

and Methodologies: Advanced Topics in Database Research (2005), pp. 102-124. IGI Global.

[4] M. Dumas et al: Fundamentals of Business Process Management. Springer, 2018.

[5] J.L. Peterson: Petri Net Theory and the Modeling of Systems. Prentice Hall, 1981.

[6] T. Allweyer: Human-Readable BPMN Diagrams. In L. Fischer (Ed.): BPMN 2.0 Handbook,

2nd ed. (2014) pp. 217–232. Future Strategies.

[7] H. Leopold, J. Mendling, A. Polyvyanyy: Supporting Process Model Validation through Natural

Language Generation. IEEE Transactions on Software Engineering 40.8 (2014) pp. 818-840.

[8] E.O. de Brock: On System Sequence Descriptions, 2020. In M. Sabetzadeh et al (eds.):

Joint Proceedings of REFSQ-2020 Workshops, Doctoral Symposium, and Tracks. Pisa (2020).

[9] E.O. de Brock: An NL-based Foundation for Increased Traceability, Transparency, and Speed in

Continuous Development of Information Systems. NLP4RE (2019).

[10] F. Kossak, A. Mashkoor, V. Geist, C. Illibauer: Improving the Understandability of Formal

Specifications: An Experience Report. In C. Salinesi, I. van de Weerd (Eds.): REFSQ 2016,

Volume 8396 of LNCS (2016), pp. 184–199. Springer.

[11] K. Wiegers: Writing quality requirements. Software Development 7.5 (1999), pp. 44-48.

[12] S. Tiwari, A. Gupta: A systematic literature review of use case specifications research, Information

and Software Technology 67 (2015), pp. 128-158.

[13] S.G. Yaman et al.: Customer Involvement in Continuous Deployment: A Systematic Literature

Review. In M. Daneva, O. Pastor (Eds.): REFSQ 2016, Volume 9619 of LNCS (2016), pp. 249–

265, Springer. DOI: 10.1007/978-3-319-30282-9_18

[14] The Oxford English Dictionary. Oxford University Press, Oxford, 1989.

[15] C. Larman: Applying UML and patterns. Pearson Education, 2005.

[16] Stanford Encyclopedia of Philosophy (in particular Compositionality), Stanford.

[17] E.O. de Brock: Converting a non-trivial Use Case into an SSD: An exercise. SOM Research Report

2018011, University of Groningen, 2018

