13C signatures of aerosol organic and elemental carbon from major combustion sources in China compared to worldwide estimates

Yao, Peng; Huang, Ru Jin; Ni, Haiyan; Kairys, Norbertas; Yang, Lu; Meijer, Harro A.J.; Dusek, Ulrike

Published in:
Science of the Total Environment

DOI:
10.1016/j.scitotenv.2021.151284

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
13C signatures of aerosol organic and elemental carbon from major combustion sources in China compared to worldwide estimates

Peng Yaob, Ru-Jin Huanga,*, Haiyan Nia,b, Norbertas Kairysb, Lu Yanga, Harro A.J. Meijerb, Ulrike Dusekb,*

a State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China

b Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, 9747AG, the Netherlands

HIGHLIGHTS

• 13C source signatures of EC and OC determined by thermal-optical method.
• Composite 13C source signatures of EC with uncertainties and application conditions.
• A comprehensive literature review of 13C source signatures.
• Distinct regional variation of 13C signatures of crude oil and traffic EC.
• For the flaming combustion of C4 plants, OC can be strongly depleted in 13C.

GRAPHICAL ABSTRACT

ABSTRACT

Carbon isotope signatures are used to gain insight into sources and atmospheric processing of carbonaceous aerosols. Since elemental carbon (EC) is chemically stable, it is possible to apportion the main sources of EC (C3/C4 plant burning, coal combustion, and traffic emissions) using a dual 14C-13C isotope approach. The dual-isotope source apportionment crucially relies on accurate knowledge of 13C source signatures, which are seldom measured for EC. In this work, we present 13C signatures of organic carbon (OC) and EC for relevant sources in China. EC was isolated for 13C analysis based on the OC/EC split point of a thermal-optical method (EUSAAR_2 protocol). A series of sensitivity studies were conducted to investigate the EC separation and the relationship of the thermal-optical method to other EC isolation methods. Our results show that, first, the 13C signatures of raw materials and EC related to traffic emissions can be separated into three groups according to geographical location. Second, the 13C signature of OC emitted by the flaming combustion of C4 plants is strongly depleted in 13C compared to the source materials, and therefore EC is a better tracer for this source than total carbon (TC). A comprehensive literature review of 13C source signatures (of raw materials, of TC, and of EC isolated using a variety of thermal methods) was conducted. Accordingly, we recommend composite 13C source signatures of EC with uncertainties and detailed application conditions. Using these source signatures of EC in an example dual-isotope source apportionment study shows an improvement in precision. In addition, 13C signatures of OC were measured at three different desorption temperatures roughly corresponding to semi-volatile, low-volatile, and non-volatile OC fractions. Each source category shows a characteristic trend of 13C signatures with desorption temperature, which is likely related to different OC formation processes during combustion.

© 2021 Elsevier B.V. All rights reserved.

Keywords:
Elemental carbon
13C signature
Thermal-optical method
Source apportionment

Article history:
Received 7 September 2021
Received in revised form 19 October 2021
Accepted 23 October 2021
Available online 2 November 2021

Editor: Pingqing Fu

E-mail addresses: rujin.huang@iieecas.cn (R.-J. Huang), u.dusek@rug.nl (U. Dusek).

https://doi.org/10.1016/j.scitotenv.2021.151284
0048-9697/© 2021 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Carbonaceous aerosols and dual-isotope source apportionment

Carbonaceous aerosol is a major constituent of atmospheric particulate matter (Pöschl, 2005). Total carbon (TC) refers to the amount of carbon contained in carbonaceous aerosols (except for inorganic carbon) and can be further separated into organic carbon (OC) and elemental carbon (EC). EC is strongly light-absorbing and contributes significantly to the absorption of solar radiation by atmospheric aerosols (Ramanathan and Carmichael, 2008; Bond et al., 2013). OC contains a wide variety of organic compounds, which play a significant role in air pollution and radiative forcing of climate (Chung et al., 2012; Laskin et al., 2015). Quantifying the contribution of various pollution sources to OC and EC concentrations is therefore crucial for a better understanding of air pollution and global climate change.

Source apportionment is an approach to determine aerosol sources and their contribution to ambient aerosol concentrations. Different tracers, such as elements (Moreno et al., 2013), ions (Zhang et al., 2017), isotopes (Andersson et al., 2015; Ni et al., 2018; Masalatė et al., 2018), and specific organic compounds (Fu et al., 2012) are used in source apportionment. Radiocarbon (14C) can be used as a tracer to distinguish between fossil and non-fossil sources. 13C analysis has been used widely, e.g., (Sizidat et al., 2004a; Gustafsson et al., 2009; Heal, 2014; Dusek et al., 2017) for source apportionment, and applied to carbon fractions such as OC (Dusek et al., 2013), EC (Heal et al., 2011), water-soluble carbon (WSOC) (Morera-Gómez et al., 2021), and more volatile OC (mVOC) (Ni et al., 2019a). In addition, 13C source signatures have been found to differ for coal burning and traffic emissions, as well as for C3 and C4 plant burning. Therefore, 13C and 14C can be combined to achieve detailed insight into the sources. In regions where extensive coal burning and traffic emissions have an influence on air quality, a combination of 13C and 14C analysis in OC and EC is very promising to resolve contributions of the major sources, e.g., (Andersson et al., 2015; Fang et al., 2018; Ni et al., 2018).

There are two difficulties in using 13C signatures of OC or TC for accurate source apportionment. First, a large part of secondary organic aerosol (SOA) originates from biogenic precursor emissions (Hallquist et al., 2009; Bianchi et al., 2019), with uncertain 13C signatures. Second, organic aerosols can be aged in the atmosphere through photochemical processes, which leads to volatilization of part of the OC. The remaining OC tends to be gradually enriched in 13C due to isotope fractionation (Killelea et al., 2008; Pavuluri and Kawamura, 2012).

In contrast, EC is chemically inert, so the 13C value of EC is not strongly affected by aerosol transport, aging, photochemical reactions, and other processes in the atmosphere, and retains the original source information. Moreover, EC forms only in combustion and pyrolysis. Biomass burning, coal combustion, and traffic emissions are the main sources of EC. With limited sources and different 13C signatures for biomass burning (C3 and C4 plants), coal combustion and traffic emissions, 13C analysis of EC allows dual-isotope source apportionment using 13C and 14C (Andersson et al., 2015).

1.2. 13C source signatures of raw materials

The 13C signature is usually reported as δ13C, which is calculated as the relative deviation of the 13C/12C ratio (R13) of the sample from the international primary standard Vienna Pee Dee Belemnite (VPDB):

$$\delta^{13}C = \frac{R_{Sample}}{R_{VPDB}} - 1,$$

usually reported in ‰. To achieve accurate dual-isotope source apportionment, reliable 13C source signatures are increasingly important. The δ13C value of the emitted aerosol depends on the fuel that is combusted. Many studies have already investigated the 13C signatures of relevant raw materials. The 13C signatures of coals from all over the world are summarized in Table S1. The 13C signatures of coal do not vary strongly among different regions of the world (Mastalerz and Schimmelmann, 2002; Suto and Kawashima, 2016) and the worldwide average can be summarized as −24.5 ± 0.8‰. Coal originated from prehistoric plants (mainly C3), and isotope fractionation during the transformation process resulted in differences in 13C signatures between coal and the original biomass. The 13C signatures of C3 and C4 plants from all over the world are shown in Tables S3 and S4. The difference in δ13C between C3 and C4 plants is caused by different carbon fixation mechanisms. Most plant species on earth are C3 plants, such as most trees and grasses, rice, wheat, cotton, and soybeans. Common C4 plants include maize, sugarcane, and savanna grasses. There are many studies investigating the 13C signatures of different types of biomass, and some of them analyzed a considerable number of samples in a specific area or worldwide, e.g. 1000 species worldwide (O’Leary, 1988), 478 species in China (Ren and Yu, 2011). These studies have shown that the 13C signatures of global C3 and C4 plants follow approximately a unimodal normal distribution. Summarizing Tables S3 and S4, the worldwide averages are −27.2 ± 1.7‰ for C3 plants and −13.2 ± 1.1‰ for C4 plants. These two values are very similar to previous estimates in the literature, including worldwide averages of C3 plants (−27.1 ± 1.7‰) and C4 plants (−13.2 ± 1.1‰) of 1000 species (O’Leary, 1988), an average of C3 plants in China (−27.10 ± 1.70‰) with 478 species (Ren and Yu, 2011), and an average of C3 fossil in China (−27.23 ± 1.54‰) with 141 species (Zheng and Shangguan, 2007).

Therefore, the worldwide averages in this study should be applicable to most areas including China. In addition, the 13C signature of biomass can be influenced by geographical differences (essentially climatic difference, including rainfall gradient, light, temperature...) (Farquhar and Richards, 1984; Weiguo et al., 2005; de Bello et al., 2009; Yang et al., 2012) and the regional species (Farquhar et al., 1982; Ren and Yu, 2011), and this may be important for more regionally applicable values.

The 13C signatures of crude oil from all over the world can be found in Table S2. The composition of oils varies with geographic regions, and the 13C signatures of crude oil are actually determined by the geological periods of their formation (Andrusiевич et al., 1998; Maslen et al., 2011). In addition, the microbial degradation before the formation of crude oil can also influence the 13C signature (Huang et al., 2003). The 13C signatures of crude oil in Table S2 are summarized and separated into groups based on statistical and geographical distributions in Fig. 6, and more discussion can be found in Section 4. 13C signatures of combustion products

Previous studies showed that the isotopic composition of combustion products can differ from the isotopic composition of the fuels (Bird and Ascough, 2012; and references therein). Studies include gasous emissions (e.g. CO₂, CH₄) (Widory, 2006; Yang et al., 2011; Schumacher et al., 2011), particulate emissions (Turekian et al., 1998; Das et al., 2010; Garbaras et al., 2015; Aguilera and Whigham, 2018), or charcoal and ash (Turney et al., 2006; Malghani et al., 2013). OC and EC, which are parts of particulate emissions, form in different ways, and therefore the 13C signatures of OC and EC from the same combustion source can be different (Yao et al., 2021). As a consequence, the 13C signatures of raw materials and other specific combustion products, are not directly applicable as substitutes for 13C source signatures of EC, and it is important to characterize the 13C source signatures of OC and EC independently.

Compared to 13C signatures of raw materials, very few studies characterize the 13C signatures of OC and EC emitted by combustion. The majority of these studies use thermal methods to isolate OC and EC for 13C analysis. Usually, OC is first desorbed in an inert atmosphere. The remaining fraction is combusted in an oxidizing atmosphere and classified as EC for 13C analysis. However, during the first inert heating step, some
organic compounds will pyrolyze and form pyrolyzed organic carbon (pOC), which can only be combusted in an oxidizing atmosphere together with EC. pOC is therefore a common artifact of OC/EC separation methods (Sizidat et al., 2004b; Zhang et al., 2012; Dusek et al., 2014) and, if it is analyzed together with EC, can skew the isotopic signatures of EC. There are also several studies combusting OC in an oxidizing atmosphere at low temperature to minimize pyrolysis and remove pOC and then combusting the remaining part at high temperature as EC for 13C analysis, e.g., the CTO-375 method (Gustafsson et al., 1997). However, in these methods, some part of EC is already combusted in the low temperature oxygen step due to the long duration. To date, no 13C source signatures of EC have been obtained by thermal-optical methods, such as EUSAR_2 (Cavalli et al., 2010), IMPROVE (Chow et al., 2001), or NIOSH 5040 (Birch and Cary, 1996), which use an optical compensation to correct for the contribution of light-absorbing pOC to EC.

It is important to determine reliable 13C source signatures of EC before applying them to source apportionment. A previous study shows that pOC formation and EC loss both can have an impact on the 13C values of EC in aerosol samples and source samples (Yao et al., 2021). By reducing the influence of pOC, thermal-optical methods are expected to achieve more reliable 13C source signatures of EC. In addition, the differences between 13C source signatures of raw materials, TC, OC, and EC have not been systematically investigated for a wider range of sources.

1.4. General introduction of experiments

In this study, we test the application of the thermal-optical method to determine 13C source signatures of EC, including typical coal/biomass burning samples and traffic (tunnel) samples from China. Additionally, we report 13C source signatures of OC desorbed in three temperature steps. A sensitivity study of pOC/EC separation investigates how sensitive the 13C signatures of EC are to various approaches to EC isolation. Combining the results obtained by this study with a literature survey, we recommend composite 13C source signatures of EC with uncertainties and detailed application conditions. Finally, we test the new source signatures for dual-isotope source apportionment of ambient samples in China and compare to previous studies.

2. Materials and methods

2.1. Source samples

Some representative biomass samples from major crop-producing regions in China were collected for combustion experiments, including wheat straw (C3 plant) from Anhui Province, soybean straw (C3 plant), and poplar wood (C3 plant) from Shaanxi Province, and corn stalk (C4 plant) from Hebei Province. Some coal samples from different mine regions throughout China were collected for combustion experiments, including anthracite (A) coal from Shaanxi Province, and bituminous (B) coals from Shaanxi Province, Ningxia Province, Shanxi Province, and Inner Mongolia. According to the standard GB/T 5751–2009 (GB/T 5751–2009), anthracite coal refers to coals with volatile matter content (Vdaf, dry ash-free) less than or equal to 10.0%, and bituminous coal is the coal with Vdaf between 10.0% and 37.0%.

A typical Chinese household coal stove was used for combustion, measuring 51 cm height, 31 cm diameter, and 12 cm inner diameter. The air inlet hole is 6 cm in diameter and located near the bottom of the stove. The combustion experiments were conducted with 200–300 g samples each time. The combustion exhaust was drawn through a diluter with dilution ratios of ~5 and collected with a PM$_{2.5}$ impactor sampler (Airmetrics, OR, USA) at a flow rate of 5 L/min for 10–20 min duration on quartz filters (~47 mm, Whatman, QM-A, Clifton, NJ, USA). The effective diameter of the sampler was 38 mm, and the particle size selected was PM$_{2.5}$. The quartz filters were precleaned at 780 °C for 3 h to remove potential absorbed volatile organics. After sampling, the filters were packed in prebaked aluminum foil (~450 °C, 3 h), sealed in polyethylene bags, and stored in the freezer at ~18 °C. The combustion information and carbon fractions are shown in Table S6.

Traffic samples were collected from Wucun Tunnel and Xianyueshan Tunnel in Xiamen City, China. Sampling was conducted in the entrance and the exit of the tunnels with a high-volume sampler (TE-6070 MFC, Tisch Inc., Cleveland, OH, USA) at 1 m3/min and 4 h duration (Morning 7:00–11:00, Afternoon 12:00–16:00, Evening 17:00–21:00, local standard time, LST) from 17 September to 22 September 2014. PM$_{2.5}$ samples were collected on precleaned (780 °C, 3 h) quartz fiber filters (20.3 cm × 25.4 cm, Whatman QM-A, Clifton, NJ, USA). A video camera was placed at the exit to record the passing vehicles during the sampling periods. The sampling information and carbon fractions, as well as meteorological parameters and vehicle information during the sampling periods are shown in Tables S7a–b.

2.2. OC/EC separation and 13C analysis

The 13C values of TC, OC, and EC (δ^{13}C$_{TC}$, δ^{13}C$_{OC}$, δ^{13}C$_{EC}$) were measured on the filters containing biomass burning, coal combustion, and traffic emissions. A newly developed system that couples a thermal-optical analyzer (TOA, Sunset Laboratory Inc.) to an isotope ratio mass spectrometer (IRMS) was used for 13C analysis (Yao et al., 2021). OC and EC were first separated in the TOA and combusted into CO$_2$. Then the CO$_2$ was automatically collected, purified, and injected into IRMS for 13C analysis. The system works at normal pressure for combustion, and nearly vacuum for CO$_2$ capture.

Fig. 1 gives an overview of the carbon fractions of the thermal protocols used in this study. TC and EC were sequentially collected for 13C analysis based on the EUSAAR_2 protocol. On a first filter piece, all CO$_2$ evolved during the EUSAAR_2 protocol (except the calibration gas, methane) was captured for δ^{13}C$_{TC}$ analysis. At the same time, the OC/EC split was determined based on the laser transmission signal and later used for the isolation of EC. On a second filter piece, only the CO$_2$ evolved after the split time (except the calibration gas, methane) was captured for δ^{13}C$_{EC}$ analysis. Repeated analyses of the same filter sample show that small variations of the split time have little impact on δ^{13}C$_{EC}$ results. To avoid ambiguity, the abbreviation OC in the following description refers specifically to total OC as analyzed by the EUSAAR_2 protocol, which consists of desorbed OC (dOC) and pOC. δ^{13}C$_{OC}$ was calculated from the isotopic mass balance, from measured values of δ^{13}C$_{TC}$ and δ^{13}C$_{EC}$ (Eq. (2)). Uncertainties were propagated using a Monte Carlo method.

$$\delta^{13}C_{OC} = \left(\text{TC} \times \delta^{13}C_{TC} - \text{EC} \times \delta^{13}C_{EC}\right)/\text{OC}$$

Different fractions of OC were desorbed for subsequent 13C analysis under inert carrier gas flow (Helium) using the OC$_{3}$step protocol, which consists of three temperature steps (200 °C, 350 °C, and 650 °C) for 5 min each, as described in (Zenker et al., 2020). Since more volatile organic compounds tend to evaporate at lower temperatures, this separates OC approximately into compound classes with lower and higher carbon numbers.
volatilities. As the maximum desorption temperature used (650 °C) in the OC_3step protocol is equal to that of the EUSAAIR_2 protocol, the sum of the three fractions (dOC_3step) corresponds to dOC. A comparison between \(\delta^{13}C_{OC} \) and \(\delta^{13}C_{EC,3step} \) can be found in Fig. S2, where differences are caused by the influence of pOC.

Carbonates usually decompose when the temperature rises to 600 °C or higher (Gallagher and Johnson, 1973), and the decomposition rate increases with temperature. It means that potential carbonates in aerosol samples, especially in tunnel samples with road dust, may decompose during analysis and influence the \(\delta^{13}C \) value. Since the last step in He of EUSAAIR_2 protocol is 650 °C, carbonates will decompose in this step if present, and the \(\delta^{13}C_{EC} \) in this study should not be affected. To investigate if carbonate influence the traffic \(\delta^{13}C_{EC} \), we decreased the 650 °C step of OC_3step protocol to 550 °C for comparison.

The \(\delta^{13}C \) values were calibrated based on two local reference materials CAN (isotopically enriched caffeine, \(\delta^{13}C = 0.61\%\pm 0.15\% \)), CAF (caffeine, \(\delta^{13}C = -38.20\%\pm 0.15\% \)) with a two-point linear calibration. The international reference material LVal (L-Valine, USGS73, \(\delta^{13}C = -24.03\%\pm 0.04\% \)) was used as quality control (Schimmelmann et al., 2016). The standard reagents were first dissolved in deionized water (around 3 μg/mL), and then the solutions were loaded on a quartz filter, dried at 110 °C, and converted into CO₂ in the TOA for \(\delta^{13}C \) analysis at 650 °C under He flow, similar to the aerosol samples. The \(\delta^{13}C \) correction of Craig (Craig, 1957) was used in our IRMS software, but since reference materials have been determined using the \(\delta^{13}C \) correction method of Brand (Brand et al., 2010), the calibrated results agree with the latter correction method within <0.01‰. The CAN and CAF standards were measured at least once per day, and the LVal quality control standard was analyzed at least twice per day. The two-point linear calibration was calculated approximately every week using all \(\delta^{13}C \) values of CAN and CAF measured during that week for the linear fit. The \(\delta^{13}C \) value of LVal was used for evaluation of the uncertainty, the bias, and a potential drift over the day and over long time periods. The corrected LVal values from June 2019 to January 2020 are shown in Fig. S3, and the standard deviation (0.15‰) is in an acceptable range.

2.3 Ambient aerosol samples and dual-isotope source apportionment

The \(\delta^{13}C \) and \(\delta^{14}C \) raw data of ambient aerosol samples were collected from a previous study (Ni et al., 2020) and were used to re-evaluate the source apportionment with the new source signatures. The sampling was conducted at the building rooftop of the Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China (34.23°N, 108.88°E, 10 m above the ground). PM_{2.5} samples were collected on pre-combusted quartz filters (1.0 m²/min, TE-6070 MFC, Tisch Inc., Cleveland, OH, USA) with a high-volume aerosol sampler for 12 h duration each (daytime: 8:00 a.m. to 8:00 p.m.; nighttime: 8:00 p.m. to 8:00 a.m.; local standard time, LST) from 1 January 2017 to 10 January 2017. A source apportionment considering four sources was applied to these clean/haze aerosol samples. The dual-isotope source apportionment in EC was conducted with the following equations, considering 4 sources, namely, fossil (coal and traffic) and non-fossil (C3 and C4 plants).

\[
EC = EC_{coa} + EC_{traf} + EC_{C3} + EC_{C4}
\] (3)

\[
EC \times F^{14}C_{EC} = (EC_{coa} + EC_{traf}) \times F^{14}C_{fossil} + (EC_{C3} + EC_{C4}) \times F^{14}C_{non-fossil}
\] (4)

\[
EC \times \delta^{13}C_{EC} = EC_{coa} \times \delta^{13}C_{coa} + EC_{traf} \times \delta^{13}C_{traf} + EC_{C3} \times \delta^{13}C_{C3} + EC_{C4} \times \delta^{13}C_{C4}
\] (5)

The simmr package in R software was used for the source apportionment, in which Bayesian Markov chain Monte Carlo (MCMC) was used to propagate uncertainties (Parnell et al., 2010; Andersson et al., 2015). The C4 source was excluded in the equations for 3-source apportionment. The emissions from fossil sources are \(^{14}C \)-free, whereas non-fossil emissions contain the contemporary \(^{14}C \) content (\(F^{14}C_{fossil} \) = 0, \(F^{14}C_{non-fossil} \) = 1.10 ± 0.05) (Lewis et al., 2004; Mohn et al., 2008; Palstra and Meijer, 2014; Ni et al., 2019b). The \(\delta^{13}C \) source signatures of EC are determined by this study and can be different for different geo-physical areas.

3. Results

3.1. Typical \(\delta^{13}C \) source signatures of EC in China

The \(\delta^{13}C \) values of TC, OC, and EC of biomass burning, coal combustion, and traffic emissions are shown in Table 1. The \(\delta^{13}C \) values of TC, OC, and EC all follow the same order: C4 plant > coal > traffic > C3 plant, despite the small differences in \(\delta^{13}C \) between TC, OC, and EC within each source category. For C3 plant burning, differences between \(\delta^{13}C_{EC} \) and \(\delta^{13}C_{TC} \) vary among the species of plants, with EC depleted in \(\delta^{13}C \) for wood (\(\Delta^{13}C = -0.67\% \)), where \(\Delta^{13}C \) refers to the difference between the \(\delta^{13}C \) values of EC and TC, EC enriched in \(\delta^{13}C \) for wheat straw (\(\Delta^{13}C = 0.89\% \)), and no obvious difference for soybean straw. The \(\delta^{13}C_{EC} \) values for C3 plant burning also vary by region (Fig. 2), but it is not clear whether the variation originates from geographical differences (Farquhar and Richards, 1984; Weiguo et al., 2005; Yang et al., 2012) and/or species (Farquhar et al., 1982; Ren and Yu, 2011). For coal stalk, the main C4 plant in China, \(\delta^{13}C_{EC} \) is lower than \(\delta^{13}C_{TC} \), by 3.04‰, for flaming and by 0.36‰, for smoldering combustion, respectively. This is due to the strong enrichment in \(\delta^{13}C \) of OC produced during flaming combustion (Table 1). \(\delta^{13}C \) values are also different for flaming (−15.38‰; OC/EC ≈ 5) and smoldering (−13.89‰; OC/EC ≈ 14) combustion conditions, but the difference is much smaller than the one of \(\delta^{13}C_{TC} \).

For coal combustion samples, \(\delta^{13}C_{TC} \) values are similar to \(\delta^{13}C_{EC} \) values, but slightly lower than \(\delta^{13}C_{TC} \) values. However, \(\delta^{13}C \) values of OC, EC, and TC for all coals vary in a narrow range from −24.19‰ to −25.28‰. In Fig. 2, the \(\delta^{13}C \) signature of EC from coal combustion changes only slightly with the geophysical location of the major coal mine belts. Since these provinces provide the main coal supply in China, the average \(\delta^{13}C \) signatures of coal combustion should be applicable for most areas in China, except for some coastal cities (e.g., Xiamen) which import coal for industry and energy supply.

For traffic samples, EC is enriched in \(\delta^{13}C \) compared to TC, while OC is depleted. The standard deviation of \(\delta^{13}C \) values is smaller than 0.3‰, which shows that sampling dates and times exert small influence on \(\delta^{13}C \). The \(\delta^{13}C_{EC} \) values are also similar between the two tunnels, indicating that emissions from different vehicles (Table S7b) are well mixed in tunnels and provide a representative traffic \(\delta^{13}C \) signature of EC. Crude oil used in Xiamen, a coastal city in South China (Fig. 2), is mostly imported from the Middle East (customs data in Table S11). Therefore, the traffic \(\delta^{13}C \) signature of EC in Table 1 is representative for other locations using crude oil from the same producing area.

Due to the difference between \(\delta^{13}C_{TC} \) and \(\delta^{13}C_{EC} \) (e.g., maximum 3.04‰ between flaming and smoldering combustion of corn stalk), \(\delta^{13}C_{TC} \) is not always suitable as a substitute or approximation of \(\delta^{13}C \) source signature of EC in source apportionment. On the other hand, repeated combustion experiments of the same raw material give reproducible results, which gives confidence that representative \(\delta^{13}C \) source signatures of EC, OC, and TC can be obtained by averaging over multiple combustion experiments.

On a regional scale, different species of coal or biomass may be combusted under various conditions. Building a localized database of \(\delta^{13}C \) source signatures of EC is important for accurate source apportionment. In addition, the \(\delta^{13}C \) values of coal and traffic emissions are sometimes similar (Fig. 2), but the mean values are actually different at 95% confidence level (Welch Two Sample t-test, \(p = 0.0036 \)) and can still be applied to EC source apportionment.
3.2. 13C source signatures of OC fractions desorbed at different temperatures

δ^{13}C of OC desorbed at different temperatures ($OC_{200^\circ C}$, $OC_{350^\circ C}$, and $OC_{500^\circ C}$; δ^{13}C$_{OC200}$, δ^{13}C$_{OC350}$, δ^{13}C$_{OC500}$) for primary sources can be interpreted as 13C signatures of semi-volatile, low-volatile, and non-volatile primary combustion emissions, and are shown in Table 2 and Fig. 3. There are differences (significant at the 95% confidence level, unless otherwise mentioned) between δ^{13}C$_{OC}$ values at different temperatures for primary sources in China, as shown in Table 2.

Table 1

Typical 13C source signatures of EC (biomass, coal, and tunnel) in China determined by the thermal-optical method.

<table>
<thead>
<tr>
<th>Sample name/tunnel name</th>
<th>Combustion/location</th>
<th>N</th>
<th>δ^{13}C$_{OC200}$ (%)</th>
<th>SD</th>
<th>δ^{13}C$_{OC350}$ (%)</th>
<th>SD</th>
<th>δ^{13}C$_{OC500}$ (%)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybean straw (C3)</td>
<td>Flaming</td>
<td>3</td>
<td>−27.15</td>
<td>0.34</td>
<td>−28.12</td>
<td>0.46</td>
<td>−28.28</td>
<td>0.52</td>
</tr>
<tr>
<td>Poplar wood (C3)</td>
<td>Flaming</td>
<td>2</td>
<td>−27.17</td>
<td>0.37</td>
<td>−28.02</td>
<td>0.46</td>
<td>−28.16</td>
<td>0.26</td>
</tr>
<tr>
<td>Wheat straw (C3)</td>
<td>Smoldering then flaming</td>
<td>3</td>
<td>−26.69</td>
<td>0.41</td>
<td>−27.97</td>
<td>0.06</td>
<td>−27.45</td>
<td>0.26</td>
</tr>
<tr>
<td>Corn stalk (C4)</td>
<td>Flaming</td>
<td>2</td>
<td>−22.89</td>
<td>0.41</td>
<td>−18.67</td>
<td>0.06</td>
<td>−18.12</td>
<td>0.26</td>
</tr>
<tr>
<td>Shaanxi coal (B)*</td>
<td>Smoldering</td>
<td>1</td>
<td>−14.68</td>
<td>0.27</td>
<td>−14.06</td>
<td>0.27</td>
<td>−13.38</td>
<td>0.31</td>
</tr>
<tr>
<td>Ningxia coal (B)</td>
<td>Excess</td>
<td>3</td>
<td>−24.97</td>
<td>0.22</td>
<td>−24.07</td>
<td>0.25</td>
<td>−24.41</td>
<td>0.31</td>
</tr>
<tr>
<td>Inner Mongolia coal (B)</td>
<td>Excess</td>
<td>3</td>
<td>−24.19</td>
<td>0.46</td>
<td>−24.12</td>
<td>0.25</td>
<td>−24.81</td>
<td>0.27</td>
</tr>
</tbody>
</table>

* B refers to Bituminous coal; A refers to Anthracite coal.

* For combustion samples, N is the number of combustion experiments for each fuel type. For tunnel samples, N is the number of samples collected on different dates and time periods of the day.

* Each filter sample was analyzed once, and SD refers to the standard deviation of δ^{13}C measurements on one filter sample. For samples combusted once or twice, the laboratory 13C long-term measurement uncertainty of QC LVal (0.19‰) was used.

* The δ^{13}C$_{OC}$ is calculated from δ^{13}C$_{EC}$ based on isotopic mass balance, and the uncertainty comes from error propagation.
Tables S6

P. Yao, R.-J. Huang, H. Ni et al. Science of the Total Environment 810 (2022) 151284

...combined vehicles (such as

...percentages
do not add up to 100%, because of pOC (accounting for 10% of total OC mass, Tables S6-S7).

...values of OC fractions are lower than

...13C values of OC fractions are more depleted in 13C compared to OC fractions produced under smoldering combustion. For C4 plant burning (corn stalk), the 13C values of OC fractions are all lower than

...C3 and C4 plants and coal burning, as well as traffic emissions. (b) 13C signatures of OC desorbed at different temperatures for flaming and smoldering combustion of C4 plant. (c) The mass percentage of OC desorbed at different temperatures for

...fraction of total OC (80% for OC650°C (Table S9). However, the difference in

...13C of pOC is significantly different from a study of C3 plant (oak) burning in Italy, in which

...temperature steps for the same fuel, as well as between different fuels at the same temperature step. In Fig. 3a, δ13COC200 values of C3 plant burning are around 1% higher than δ13COC350 and δ13COC650. This is different from a study of C3 plant (oak) burning in Italy, in which δ13COC650 is the highest (Zenker et al., 2020). It is not clear whether the burning conditions or the biomass species cause the difference. For coal combustion, the differences among δ13COC200, δ13COC350 and δ13COC650 are within 1%, with the highest δ13C value at 350 °C and the lowest at 200 °C. The opposite δ13C trends of OC fractions between C3 plants and coal are a distinctive feature for these two combustion sources, which indicates a potential different OC formation mechanism and needs further investigation. Differences in the composition of various fuel components may be one possible explanation. Biomass contains different chemical fractions (e.g., cellulose, lipids) with distinct 13C signatures, which can contribute to different OC volatility classes, but the coal is relatively more homogeneous.

...significantly different from C3 plant burning, as well as traffic emissions. Regarding 13C analysis, pOC formation can cause a difference in 13C between desorbed OC and total OC, if 13C of pOC is significantly different from the desorbed part. As shown in Fig. S2, the differences between δ13COC and δ13COC3step are noticeable for traffic emissions, but small for other sources. This means that traffic δ13COC is different from δ13COC (actually close to δ13COC650), but δ13COC of other sources is close to δ13COC. These characteristics are explored further in the following sensitivity studies.

...temperatures higher than 600 °C (Gallagher and Johnson, 1973), so we decreased the third step from 650 °C to 550 °C to eliminate the influence of road dust. The traffic δ13COC650 (−25.56‰) is not very different from δ13COC550 indicating negligible influence of road dust in our case. The higher δ13COC650 value in the bus exhaust study in Italy is therefore likely caused by different vehicle types or fuel additives. For C4 plant burning (corn stalk), the δ13C values of OC fractions are all lower than δ13COC, and vary greatly with the combustion conditions (Fig. 3b). OC fractions emitted under flaming conditions are significantly depleted in 13C compared to OC fractions produced under smoldering conditions, with a difference Δ13C of −8.21‰ for OC650°C, −4.61‰ for OC350°C, and −4.74‰ for OC200°C (Table S9). However, the difference in δ13COC between flaming and smoldering combustion is relatively smaller (−15.38‰ vs −13.89‰, a difference of Δ13C = −1.49‰). With these much more 13C depleted OC fractions in flaming conditions, the 13C signature of EC can be strongly influenced by mixing with pOC if not well separated.

...not homogeneous in isotope composition. In principle, the different δ13COC values for higher and lower desorption temperatures show promise for OC source apportionment. However, since ambient organic aerosol (OA) is not chemically stable, source apportionment is complicated by biogenic SOA formation, OA aging, and accompanying isotope fractionation. These should be further studied before quantitative OC source analysis using 13C signatures is possible.

...source signatures of OC desorbed at different temperatures (200 °C, 350 °C, 650 °C) for C3 plant and coal burning, as well as traffic emissions. (b) 13C signatures of OC desorbed at different temperatures for flaming and smoldering combustion of C4 plant. (c) The mass percentage of OC desorbed at different temperatures (200 °C, 350 °C, 650 °C; OC_3step protocol) in the total OC (EUSAAR_2 protocol). The mass percentages do not add up to 100%, because of pOC (accounting for 10%-40% of total OC mass, Tables S6-S7).
3.3. Sensitivity studies of pOC/EC separation

Currently, $\delta^{13}\text{C}_{EC}$ values are analyzed by various methods in the literature, which capture different fractions. The EC fractions are potentially mixed with pOC, which is an artifact of the analysis method, produced from OC during inert heating steps. For methods that use a laser split point to isolate EC from pOC, the timing of the split point can vary, depending on e.g., the thermal protocol, or the filter loading (Zenker et al., 2017). To investigate if variations in the split point have a strong influence on $\delta^{13}\text{C}_{EC}$, we capture the carbon remaining on the filter at various times before and after the split point for ^{13}C analysis. This sensitivity study is summarized in Fig. 4. The x-axis shows the analysis time in the EUSAAR_2 protocol. The vertical dash-dot line indicates the time, where the carrier gas switched from He to He/O2. At this point all the desorbed OC has been removed in the He phase, while pOC and EC remain on the filter. With increasing analysis time in the He/O2 phase, more and more carbon is combusted. Since pOC is thermally less stable than the majority of EC, which is formed at high combustion temperatures, it is usually removed at earlier analysis times in the He/O2 phase. The vertical bars in the lower panel of the figure indicate the carbon fraction that remains on the filter as a function of analysis time. This remaining carbon fraction (RC) was collected for the carbon fraction that remains on the filter as a function of analysis time. This remaining carbon fraction (RC) was collected for ^{13}C measurement and the respective $\delta^{13}\text{C}$ values are shown in the upper panel of Fig. 4. As the analysis time increases, RC represents the transition from pOC + EC (the first point in Fig. 4 at the start of the He/O2 phase) to our best estimate of EC (at the split point), to more refractory EC fractions (collected after the split point).

Fig. 4a shows the change of $\delta^{13}\text{C}_{EC}$ with increasing analysis time for emissions from C3 plant burning. The $\delta^{13}\text{C}_{EC}$ values of soybean and wheat both increase by 1‰ from the start of the He/O2 phase to the last data point. Since $\delta^{13}\text{C}_{POC+EC}$ is lower than $\delta^{13}\text{C}_{EC}$ isolated after the split point, this suggests that $\delta^{13}\text{C}_{EC}$ is lower than $\delta^{13}\text{C}_{EC}$. If pOC is not well separated from EC, this could lead to biased lower $\delta^{13}\text{C}_{EC}$. However, since the differences between pOC + EC and EC are on the order of 0.5‰, analyzing a fraction of pOC together with EC should therefore only have a moderate influence on ^{13}C source signatures.

Fig. 4b shows a similar analysis for samples from C4 plant burning. The $\delta^{13}\text{C}_{EC}$ values are much lower for samples collected under flaming than under smoldering conditions, especially $\delta^{13}\text{C}_{POC+EC}$ (−16.40‰ for Flaming1, −17.25‰ for Flaming2, −14.53‰ for Smoldering). On the other hand, the $\delta^{13}\text{C}_{EC}$ values increase by 1.1‰ (Flaming1), 1.8‰ (Flaming2), and 0.6‰ (Smoldering) from pOC + EC (at the start of the analysis) to EC remaining at the split point. Under flaming combustion conditions, OC (and as a consequence pOC), are strongly depleted in ^{13}C compared to the typical raw plant material (Fig. 3). Therefore, the strong increasing trend in $\delta^{13}\text{C}_{EC}$ from the start of the He/O2 phase to the split point is consistent with the preferential removal of pOC before the split point. In contrast, under smoldering combustion conditions $\delta^{13}\text{C}_{POC+EC}$ and $\delta^{13}\text{C}_{EC}$ are similar, consistent with $\delta^{13}\text{C}_{OC}$. This suggests that pOC and EC have similar $\delta^{13}\text{C}$ values, and consequently $\delta^{13}\text{C}_{EC}$ is much less sensitive to the timing of the split point.

In Fig. 4c, the $\delta^{13}\text{C}_{RC}$ values of coal combustion samples are relatively stable (within 0.5‰) as pOC is gradually oxidized and finally less refractory EC is also combusted. The comparable $\delta^{13}\text{C}_{RC}$ values before and after the OC/EC split suggest that $\delta^{13}\text{C}_{RC}$ of coal combustion samples is not sensitive to the split time. Moreover, $\delta^{13}\text{C}_{RC}$ of pOC + EC is comparable with $\delta^{13}\text{C}_{EC}$, suggesting that pOC has similar $\delta^{13}\text{C}$ value with EC. This is consistent with similar $\delta^{13}\text{C}_{EC}$ and $\delta^{13}\text{C}_{EC}$ in Table 1.

Compared to biomass (C3/C4) and coal burning (where pOC accounts for roughly 23% of TC), much lower pOC mass fractions (9% of TC) were found for tunnel traffic samples (Fig. 5) and the OC/EC split time is on average earlier. The $\delta^{13}\text{C}_{RC}$ values first increase and then decrease with analysis time for both entrance/exit and two different tunnels, and the $\delta^{13}\text{C}_{RC}$ at split time ($\delta^{13}\text{C}_{EC}$) is the highest. However, the differences are in the range of the measurement uncertainties and therefore not significant. This indicates that $\delta^{13}\text{C}$ values of pOC and EC are comparable and $\delta^{13}\text{C}_{EC}$ is not sensitive to the isolation protocol used. This is in contrast to the strong ^{13}C variation among the OC fractions for traffic samples in Fig. 3a. Since $\delta^{13}\text{C}_{RC}$ values are similar before and after the split time, variations in the split time should not make much difference to the determination of traffic ^{13}C signature of EC.

In summary, for C3 plant burning, C4 plant burning under smoldering conditions, coal combustion, and traffic emissions, $\delta^{13}\text{C}_{EC}$ values do not change strongly with time around the OC/EC split (within 1‰ for C3 plants, 0.6‰ for C4 plant smoldering, 0.5‰ for coal, and 0.5‰ for traffic). This suggests that the $\delta^{13}\text{C}_{EC}$ values of these sources may not be strongly influenced by the isolation protocol of EC, for example by various degrees of pOC removal or uncertainties in OC/EC split point. Therefore, the ^{13}C signatures of EC determined by various methods (e.g., thermal methods without optical correction, the thermal methods in an oxidizing atmosphere) should be comparable for the above sources. However, the $\delta^{13}\text{C}_{RC}$ values of C4 plant flaming change strongly (1.1‰ and 1.8‰ in our case), which means that pOC could influence the ^{13}C signature of EC from flaming combustion of C4 plants, if not separated from EC.

Fig. 4. The $\delta^{13}\text{C}$ values (symbols) and mass fractions (bars) of remaining carbon (RC) in TC. RC was captured at various times in He/O2 phase (EUSAAR_2 protocol), after removal of desorbed OC in He phase. The carrier gas changing from He into He/O2 is marked by the black dash-dot line. The OC/EC split time of each sample is marked by respective colored dashed lines. Thus, the RC trend represents the change from pOC/EC mixture to EC to partial EC, as pOC is gradually oxidized and finally EC is also combusted. The error bars represent the measurement uncertainty (0.1‰). (a) Two different C3 plants: soybean and wheat. (b) Three different combustion experiments of C4 plant (corn stalk): flaming and smoldering conditions. (c) Two different burning experiments of bituminous coal from Yulin City, Shaanxi Province, China.
4. Discussion

The 13C source signatures of EC are mainly dependent on the 13C signatures of raw materials. Literature δ^{13}C values of various raw materials are summarized as histograms in Fig. 7, and given in more detail in Tables S1–S4. The 13C signatures of different types of coal, C3 plants, and C4 plants follow approximately unimodal normal distributions. For crude oil, considering the geographical distribution (Fig. 6) together with the frequency distribution (Fig. 7), we separate 13C signatures of crude oil into three groups. The three groups have different regional average δ^{13}C values: Group 1, -26.0% to -27.5%; Group 2, -28.0% to -29.5%; Group 3, -30.0% to -31.0%. Group 1 is most enriched in 13C and mainly located in low latitude areas, including the southern part of the USA, the Gulf of Mexico (coastline of North and South America), South Europe, the Middle East (Asia), the Gulf of Guinea (Africa), South and East Asia, and Oceania. Group 2 has intermediate δ^{13}C values and is mainly located in mid-to-high latitude continental areas, including the north part of North America (Canada and north part of USA), Northwest Europe, North China, and the southern coastline of the Mediterranean Sea. Group 3 is depleted in 13C and located in high latitudes (around the Arctic Ocean), including Northeast Europe, North Asia (Russia), and the circum-Bering Strait area (Asian part, North American part).

The 13C signatures of raw materials are usually different from the 13C signatures of combustion products (e.g., TC, EC, OC) due to the isotope fractionation during combustion. For example, δ^{13}C values of TC or other burning residuals from traffic emissions are different from δ^{13}C of raw materials, with a difference of up to 2% comparing Fig. 7 and Table 3. The 13C source signatures of EC can be further different from other carbon fractions of combustion emissions, including TC and OC.

Fig. 5. The δ^{13}C values (symbols) and mass fractions (bars) of remaining carbon (RC) in TC for traffic emissions. RC is captured at various times after changing to the He/O2 phase (EUSAAR_2 protocol). The carrier gas changing from He into He/O2 is marked by the black dash-dot line. The OC/EC split time of each sample is marked by respective colored dashed lines. Thus, the RC trend represents the change from pOC/EC mixture to EC to partial EC, as pOC is gradually oxidized and finally EC is also combusted. The error bars represent the measurement uncertainty (0.19‰). (a) Entrance and exit of Wucun Tunnel. (b) Entrance and exit of Xianyueshan Tunnel. Both tunnels are in Xiamen City, China.

Fig. 6. The geographical distribution of crude oils with different 13C signatures. The colors refer to different groups separated by regional average 13C signatures, with red indicating $-26.0\% < \delta^{13}$C < -27.5%, blue $-28.0\% < \delta^{13}$C < -29.5%, black $-30.0\% < \delta^{13}$C < -31.0%.

Crude oil 13C (‰)
will vary with the method used and will be larger for methods that include all pOC to EC, such as the methods listed in Table 4 that remove OC in inert atmosphere. Results of these methods could be considered comparable to the data points at the start of the He/O₂ phase in Figs. 4 and 5. In addition, for methods using a low temperature during OC desorption in He, the most refractory OC fraction (e.g., OC desorbed at 650 °C step) might remain to be combusted together with EC. On the other hand, for methods that remove OC by heating the sample in an oxidizing atmosphere with long duration (e.g., CTO method), some part of EC can be lost in the OC removal step and only more refractory EC is actually captured for 13C analysis (Han et al., 2007). This corresponds to data points after the split point in Figs. 4 and 5. These effects are considered in the following data selection to determine the 13C source signatures of EC.

For coal combustion, the δ13C_EC values do not change drastically before and after the OC/EC split time (within 0.5‰; Fig. 4), and this indicates that most EC isolation methods should give comparable results. For the combustion of C₃ plants, increasing δ13C_EC with analysis time indicate possible differences in δ13C_EC values, obtained by different methods. Methods that desorb OC in inert atmosphere and do not use an optical split point, should yield lower δ13C_EC values compared to thermal-optical method used in our work. On the other hand, methods using an oxidizing atmosphere to remove OC, and capture the most refractory part of EC should yield higher δ13C values. However, since the difference over the whole analysis range is less than 1‰, different methods should only deviate moderately. This is an important result, since complete physical separation of pOC and EC is impossible, even for thermal-optical methods. Since δ13C_EC of C₃ plant and coal burning is not strongly influenced by OC/EC separation methods, the values in Table 4 together with the values analyzed in this study are summarized as 13C source signatures of EC. This results in the recommended 13C signatures of EC of −27.7‰ ± 1.1‰ for C₃ plant burning and of −23.9‰ ± 0.8‰ for coal burning, respectively (Table 5, EC_worldwide).

The traffic δ13C_EC values are relatively stable before and after the split-time in Fig. 5. Therefore, the traffic 13C signatures of EC in Table 4 should not be strongly biased by the different EC isolation methods used. However, the 13C signature are expected to vary with geographical location. The geographical distribution of traffic 13C signatures of EC in Table 4 are highly related to the 13C signatures of crude oil in Fig. 7. The most enriched 13C signatures are found in Asia and South America, where crude oil in Group1 is used. In these regions, the averaged δ13C_EC is −25.0‰ ± 0.6‰, which is more enriched compared to the 13C signature of crude oil (−26.8‰ ± 0.9‰) in Group1. In Europe and North America, where the crude oils are representative for Group2, EC from traffic emissions is depleted in 13C compared to EC associated with Group1. The δ13C_EC of a tunnel study in Canada (−27.0‰ ± 0.5‰) (Huang et al., 2006), can be regarded as a typical 13C signature of EC for these regions. This 13C signature of EC is also enriched compared to the 13C signature of crude oil (−28.9‰ ±

Table 3

13C source signatures of TC and other burning residuals in the literature, reported as δ13C (%)..

<table>
<thead>
<tr>
<th>Continent</th>
<th>Location</th>
<th>C₄ plant</th>
<th>C₃ plant</th>
<th>Coal</th>
<th>Traffic</th>
<th>Fraction</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia</td>
<td>China, Guangzhou</td>
<td></td>
<td>−25.9 to −29.4</td>
<td>−24.6 to −25.5</td>
<td>TC tunnel</td>
<td>(Das et al., 2015)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>India</td>
<td></td>
<td></td>
<td>−25.3 ± 0.3a</td>
<td>TC</td>
<td>(Agnihotri et al., 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nepal</td>
<td></td>
<td></td>
<td>−25.1 to −26.05</td>
<td>TC; road aerosol</td>
<td>(Shakya et al., 2010)</td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td>France</td>
<td>−23.9 ± 0.5a</td>
<td></td>
<td>−26.5 ± 0.5a: diesel</td>
<td>TC; particle</td>
<td>(Widory et al., 2004)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nepal</td>
<td></td>
<td></td>
<td>−26.0 ± 0.5a: fuel oil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>France</td>
<td>−23.5 to −25.3</td>
<td></td>
<td>−26.5 to −28.5</td>
<td>Burning residuals: Particles</td>
<td>(Widory, 2006)</td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td>USA (±4)b</td>
<td>−12.3 to −13.8</td>
<td>−24.6 to −26.1</td>
<td>−24.7 to −28.3</td>
<td>Raw materials</td>
<td>(Das et al., 2010)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>New Zealand</td>
<td></td>
<td></td>
<td>TC</td>
<td>Ash</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oceania</td>
<td>New Zealand</td>
<td>−24.9 to −27.6</td>
<td></td>
<td>−24.7 to −28.3</td>
<td>TC</td>
<td>(Ancelet et al., 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>New Zealand</td>
<td></td>
<td></td>
<td>TC</td>
<td></td>
<td>(Ancelet et al., 2013)</td>
<td></td>
</tr>
</tbody>
</table>

a The standard deviation of several source samples.
b The isotope fractionation between raw materials and ash.

Fig. 7. Frequency distribution of 13C signatures of raw materials reported in the literature (worldwide): (a) crude oil, (b) coal, (c) C₃ plant, and (d) C₄ plant. n is the number of studies. The data are presented in Tables S1–S4. See Section 4 for the description of three groups for crude oil.
13C source signatures of EC determined by different thermal methods in the literature, reported as δ13C (%).

<table>
<thead>
<tr>
<th>Continent</th>
<th>Location</th>
<th>C4 plant δ13C (%)</th>
<th>C3 plant δ13C (%)</th>
<th>Coal δ13C (%)</th>
<th>Traffic δ13C (%)</th>
<th>Steps to remove OC in the EC separation method</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia</td>
<td>China, North China, South China</td>
<td>−14.88 ± 0.86</td>
<td>−27.77 ± 0.79</td>
<td>−24.68 ± 0.46</td>
<td>−25.11 ± 0.20</td>
<td>Exh)</td>
<td>375 °C, 24 h, air, N2</td>
</tr>
<tr>
<td></td>
<td>China</td>
<td>−13.62 ± 0.30a</td>
<td>−26.49 ± 1.17a</td>
<td>−23.46 ± 0.37a</td>
<td>−25.17 ± 0.40a</td>
<td>Exh</td>
<td>340 °C, 3 h, O2</td>
</tr>
<tr>
<td></td>
<td>Shanghai</td>
<td>−25.04 to −27.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Wang et al., 2013)</td>
</tr>
<tr>
<td></td>
<td>China</td>
<td>−15.0 to −22.2</td>
<td>−25.4 to −29.9</td>
<td></td>
<td></td>
<td></td>
<td>(Liu et al., 2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−13.0 to −13.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>−16.1 to −19.3a</td>
<td>−28 to −29.4</td>
<td>−23.3 ± 0.14a</td>
<td>−25.4 to −25.9</td>
<td>Exh</td>
<td>375 °C, 3 h, inert</td>
</tr>
<tr>
<td></td>
<td>Europe</td>
<td>−16.1 ± 0.15a</td>
<td>−28.83 to −30.42</td>
<td>−22.17 to −26.15</td>
<td>−23.57 to −26.32</td>
<td></td>
<td>(Kawashima and Haneishi, 2012)</td>
</tr>
<tr>
<td>Europe</td>
<td>Poland</td>
<td>−28.3 ± 0.78</td>
<td>−27.2 to −27.47</td>
<td>−24.1 to −24.9</td>
<td>−25.4 to −25.9</td>
<td>Exh</td>
<td>375 °C, 3 h, inert</td>
</tr>
<tr>
<td>North America</td>
<td>Canada</td>
<td>−26.47 to −27.47</td>
<td>−24.0 to −25.50</td>
<td>−23.57 to −26.15</td>
<td>−23.57 to −26.32</td>
<td></td>
<td>(Tanner and Miguel, 1989)</td>
</tr>
<tr>
<td>South America</td>
<td>Brazil</td>
<td>−24.0 to −25.50</td>
<td>−22.17 to −26.15</td>
<td>−23.57 to −26.32</td>
<td>−23.57 to −26.32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tables 4 and 5.

1.3%) in Group2. However, one study may not be representative enough for Group2, so more studies are needed. The traffic δ13C in Poland (−26.8% to −28.3%) (Górka and Jędrzejewski, 2008) is representative for Northeast Europe (including Russia) and is converted to −27.6 ± 0.8% for Group3. Again, this δ13C signature is enriched compared to the 13C signature of crude oil (−30.2 ± 1.3%) in these regions. In this study, we did not differentiate petrol and diesel due to limited studies. However, as a different fraction of crude oil, petrol seems to be slightly more enriched in 13C than diesel (Tables 3–4 and Table S2).

More studies are needed to determine accurate traffic 13C signatures of EC for specific locations, especially for Group2 and Group3 with limited studies. To determine local traffic 13C signature of EC, we suggest tunnel studies with thermal-optical OC/EC separation to measure a representative mixture of the traffic fleet. The second-best option is to use the appropriate 13C signature of EC according to the geographical region or the crude oil supply. Alternatively, with the known signature of the local crude oil, the average isotope fractionation from crude oil to traffic EC (1.8% ± 1.1%, 2.0% ± 1.4%, 2.6% ± 1.5%, for three groups respectively) can be used for a rough estimate of δ13C (−20.6% ± 1.5%), which is excluded.

Table 4
Summarized worldwide and Chinese 13C source signatures of EC and of raw materials.

<table>
<thead>
<tr>
<th>C4 plant δ13C (%)</th>
<th>C3 plant δ13C (%)</th>
<th>Coal δ13C (%)</th>
<th>Traffic δ13C (%)</th>
<th>C1 plant δ13C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw_materials_worldwide</td>
<td>−13.2 ± 1.1</td>
<td>−24.5 ± 0.8</td>
<td>−26.8 ± 0.9</td>
<td>−27.2 ± 1.7</td>
</tr>
<tr>
<td>EC_North_China</td>
<td>−14.88 ± 0.86</td>
<td>−24.68 ± 0.46</td>
<td>−25.11 ± 0.20 (G1)</td>
<td>−27.77 ± 0.79</td>
</tr>
<tr>
<td>EC_South_China</td>
<td>−14.0 ± 0.7</td>
<td>−23.9 ± 0.8</td>
<td>−25.0 ± 0.6</td>
<td>−27.7 ± 1.1</td>
</tr>
<tr>
<td>EC_worldwide</td>
<td>−14.0 ± 0.7</td>
<td>−23.9 ± 0.8</td>
<td>−25.0 ± 0.6</td>
<td>−27.7 ± 1.1</td>
</tr>
<tr>
<td>Literature_A&H</td>
<td>−16.4 ± 1.4a</td>
<td>−23.4 ± 1.3a</td>
<td>−25.5 ± 1.3a</td>
<td>−26.7 ± 1.8a</td>
</tr>
</tbody>
</table>

| aRaw_materials_worldwide gives the averages of 13C signatures of raw materials summarized in Fig. 3 and listed in Tables S1–S4. bEC_North_China and EC_South_China are the 13C source signatures of EC analyzed by thermal-optical method in this study. cEC_worldwide is the recommended 13C signatures of EC if no local signature is available, and the values are averages of the selected values in Table 4 and this study. dLiterature_A&H lists 13C signatures compiled in two previous studies (Andersson et al., 2015; Ni et al., 2018) for EC source apportionment, summarizing 13C signatures of raw materials, TC, and EC together.
comparable to the source material and the values determined in this study. Taking pOC influence and isotope fractionation into consideration, $\delta^{13}C_{OC}$ of $-13.62 \pm 0.30\%$ (Chen et al., 2012) and -13.9% to -13.9% (Liu et al., 2014) in Table 4 are selected and averaged with the value in this study to a composite $\delta^{13}C_{EC}$ for C4 plant burning, to be $-14.0 \pm 0.7\%$ (Table 5, EC_worldwide).

The final recommended ^{13}C signatures and uncertainties of EC and of raw materials from the literature and this study are summarized in Table 5 and visualized in Fig. 8. The calculation of signatures and uncertainties are detailed in the Supporting Information Section S2. In summary, ^{13}C source signatures of EC are established for the main combustion sources, with EC from C3 and C4 plant burning slightly depleted in ^{13}C (0.5\% and 0.8\%, respectively) compared to raw materials, while EC of coal combustion and traffic emissions enriched in ^{13}C (0.6\% and 1.8\%, respectively).

5. Application case study

The ^{13}C source signatures of EC were applied to aerosol samples collected during clean and haze days in Xi’an, China, to illustrate the role of ^{13}C source signatures in the EC source apportionment using Bayesian MCMC approach (Section 2.3). As shown in Fig. 9, different ^{13}C source signatures of EC in Table 5 were taken for comparison, including EC_North_China (the North China ^{13}C signatures in Table 5, + traffic Group2), EC_worldwide (+ traffic Group2), and Literature_A&H (^{13}C signatures summarized in previous studies, combining raw material, TC, and EC). Using the North China ^{13}C signatures of EC, the resulting source apportionment shows 27\% contribution of coal combustion and 47\% contribution of traffic emissions to EC during clean days, and 35\% (coal) vs 27\% (traffic) during haze days, with the remaining contribution from C3 and C4 plant burning. Compared to EC_North_China, ^{13}C source signatures of EC_worldwide are more enriched for C4 plant burning and coal combustion by 0.8–0.9\%, and Literature_A&H are more depleted for C4 plant burning by 1.5\% but more enriched for other three sources by as much as 1.1–1.5\%. Consequently, the different ^{13}C source signatures shift the estimated relative contribution of coal combustion and of traffic emissions, e.g., the coal contribution is underestimated by 6–11% if using the ^{13}C source signatures EC_worldwide relative to EC_North_China, and by 8–15% if using ^{13}C source signatures of Literature_A&H. Different ^{13}C source signatures lead to moderate changes in source contributions, but do not change the conclusion that the contribution of coal combustion increased and the contribution of traffic emissions decreased from clean to haze days.

To investigate if more precisely known source signatures improve source apportionment, the EC_North_China ^{13}C source signatures were used with different uncertainties (1σ and 2σ). This alters the median values (i.e., best estimate) and interquartile ranges (i.e., uncertainties) of the source contributions slightly in Fig. 9b. This indicates that narrower uncertainties of ^{13}C source signatures do not necessarily lead to lower uncertainties of source contributions, especially for source apportionment considering four sources.

Knowledge of the local sources is important. For example, the C4 plant burning should be considered in Xi’an, because it is used for heating and cooking in Xi’an and surrounding areas (Sun et al., 2017; Zhu et al., 2017). If C4 plant burning is ignored (source apportionment with only 3 sources in Fig. S4a), the results are significantly different.

Fig. 8. Comparison of ^{13}C source signatures of raw materials and of EC in China and worldwide. The ^{13}C signature of EC of Traffic G1 in China refers to the traffic emissions in Xiamen City in South China, where crude oil is imported from the Middle East.

Fig. 9. (a) The ^{14}C-based fraction fossil vs. ^{13}C for EC during haze and clean periods in Xi’an, China, with local ^{13}C signatures of EC, including C3 plant burning (green rectangle), traffic emissions (red rectangle), coal combustion (grey rectangle). ^{13}C source signatures of EC from C4 plant burning are also indicated ($^{13}C = -14.88 \pm 0.86\%$). (b) The EC source apportionment results during clean and haze days, using different ^{13}C source signatures of EC and uncertainties in Table 5 in the Bayesian MCMC approach. The EC_North_China are the local ^{13}C signatures with different uncertainties (1σ: 68.27\% of the distribution, 2σ: 95.45\%). The data are presented in Table S13.
with overestimated contribution of coal combustion, because 13C source signatures of C4 plant burning are strongly enriched compared to those of other sources. For 3-source apportionment, changing the uncertainties of 13C source signatures (1σ and 2σ) can sometimes significantly shift the results (e.g., clean days in Fig. S4a). Therefore, the uncertainties of 13C source signatures should also be carefully determined, considering the representativeness of local emission sources.

6. Conclusions

13C signatures of EC were analyzed for typical combustion source samples from China using split point of the EUSAR_2 protocol for separation of EC. The 13C source signatures of EC were $-27.77\pm0.79\%$ (±1σ) for C3 plant burning, $-14.88\pm0.86\%$ for C4 plant burning, $-24.68\pm0.46\%$ for coal combustion in North China, and $-25.11\pm0.20\%$ for traffic emissions in Xiamen City in South China, where crude oil is imported from the Middle East. The 13C signatures of TC and OC fractions were also investigated and provided for reference.

For comparing the δ^{13}C$_{EC}$ values obtained by different EC isolation methods, it is necessary to consider the influence of pOC, which forms due to pyrolysis during OC removal and can bias δ^{13}C$_{EC}$, if not removed. Different methods separate pOC and EC to different extent. A sensitivity study shows that the influence of pOC on 13C source signatures of EC is variable among the sources. For C3 plant burning, C4 plant smoldering, coal combustion, and traffic emissions, the biases are all within 1%, even if pOC is not separated from EC at all or if EC is only partially recovered. Therefore, the 13C signatures of EC based various EC isolation methods can be comparable. For flaming combustion of C4 plants, desorbed OC and pOC are significantly depleted in 13C compared to raw plant materials, both in this study and in the literature. Biased 13C signatures of EC (too depleted) are obtained, if pOC is not separated well from EC. The thermal-optical method for OC/EC separation seems successful in this, but also the CTO method gives comparable δ^{13}C$_{EC}$ values. The 13C source signatures from the literature obtained by the CTO method for both flaming and smoldering conditions and other methods only for smoldering conditions are therefore combined with the values obtained in this study (thermal-optical method) for the 13C signature of EC of C4 plant burning. This results in a recommended value of $-14.0\pm0.7\%$ for δ^{13}C$_{EC}$ from C4 plant burning.

For the other sources, selected δ^{13}C$_{EC}$ values from the literature and the values in this study are summarized, resulting in $-27.7\pm1.1\%$ for C3 plant burning and $-23.9\pm0.8\%$ for coal combustion, representative of regions all around the globe. These are recommended for regions with local signatures unavailable. The 13C signatures of EC from the literature and from this study are highly correlated with the signatures of regional crude oils (but more enriched by around 2%). Therefore, they are summarized in three groups: $-25.0\pm0.6\%$ for Group1 (low latitude), $-27.0\pm0.5\%$ for Group2 (mid-to-high latitude), and $-27.6\pm0.8\%$ for Group3 (high latitude). For more accurate and representative regional signatures, more studies on 13C analysis of EC from combustion sources are needed, especially for traffic emissions.

CRediT authorship contribution statement

Peng Yao: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Visualization, Data curation, Writing – original draft, Writing – review & editing. Ru-Jin Huang: Conceptualization, Validation, Investigation, Resources, Writing – review & editing, Supervision, Project administration, Funding acquisition. Hailyan Ni: Validation, Investigation, Resources, Visualization, Writing – review & editing. Ulrike Dusek: Conceptualization, Methodology, Validation, Investigation, Writing – review & editing, Supervision, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Acknowledgments

The authors acknowledge the project grants from the National Key Research and Development Program of China (grant no. 2017YFC0212701) and the program of China Scholarships Council No. 201806320346. Special thanks are given to Henk Jansen, Dipayan Paul, Marc Bleeker, Bert A.M. Kers, Marcel de Vries, and Roel A. Schellenkens for their help with the TOA-IRMS modification and tests at CIO, and to Romke Tjoelker and Katrin Zenker for developing the system connection interface at CIO. Thanks to Matt Drury for the suggestions in the grammar and writing revision.

Appendix A. Supplementary data

Supporting Information to this article can be found online at https://doi.org/10.1016/j.scitotenv.2021.151284.

References

