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Introduction: It has been proposed that bilinguals� language use patterns are 
differentially associated with executive control. To further examine this, the present 
study relates the social diversity of bilingual language use to performance on a color-
shape switching task (CSST) in a group of bilingual university students with diverse 
linguistic backgrounds. Crucially, this study used language entropy as a measure of 
bilinguals� language use patterns. This continuous measure re�ects a spectrum of 
language use in a variety of social contexts, ranging from compartmentalized use to 
fully integrated use.

Methods: Language entropy for university and non-university contexts was calculated 
from questionnaire data on language use. Reaction times (RTs) were measured to calculate 
global RT and switching and mixing costs on the CSST, representing con�ict monitoring, 
mental set shifting, and goal maintenance, respectively. In addition, this study innovatively 
recorded a potentially more sensitive measure of set shifting abilities, namely, pupil size 
during task performance.

Results: Higher university entropy was related to slower global RT. Neither university 
entropy nor non-university entropy were associated with switching costs as manifested 
in RTs. However, bilinguals with more compartmentalized language use in non-university 
contexts showed a larger difference in pupil dilation for switch trials in comparison with 
non-switch trials. Mixing costs in RTs were reduced for bilinguals with higher diversity 
of language use in non-university contexts. No such effects were found for 
university entropy.

Discussion: These results point to the social diversity of bilinguals� language use as being 
associated with executive control, but the direction of the effects may depend on social 
context (university vs. non-university). Importantly, the results also suggest that some of 
these effects may only be�detected by using more sensitive measures, such as pupil 
dilation. The paper discusses theoretical and practical implications regarding the language 
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entropy measure and the cognitive effects of bilingual experiences more generally, as well 
as how methodological choices can advance our understanding of these effects.

Keywords: bilingualism, executive control, language entropy, individual differences, pupillometry, generalized 
additive mixed modeling

INTRODUCTION

It has been theorized that the life experience of using more 
than one language contributes to enhanced domain-general 
executive control in bilinguals,1 as they are constantly required 
to regulate the simultaneous activation of multiple languages 
in one mind (Kroll et�al., 2012). However, de�ning �bilingualism� 
is perhaps an impossible feat (Surrain and Luk, 2019). �ere 
is now a general consensus that it is unattainable to accurately 
represent the dynamic, multifaceted, and complex nature of 
bilingualism by treating it as a binary construct (Bialystok, 
2021, this special issue). Recent work examining bilingualism 
on a continuum has suggested that individual experiences place 
di�erent demands on language control and domain-general 
cognitive systems, each di�erentially shaping language processing, 
cognitive functioning, and brain structure and function (DeLuca 
et� al., 2019; Beatty-Martínez and Titone, 2021; Gullifer and 
Titone, 2021b). Despite recent attempts to unravel the complexity 
of bilingualism and its consequences for cognition, much 
remains unknown about how bilingual experiences may 
be�responsible for these neurocognitive adaptations. Importantly, 
to capture these intricate e�ects, sensitive methodologies are 
required (Poarch and Krott, 2019). �is study investigates how 
the social diversity of language use relates to behavioral and 
pupil indices of executive control in bilinguals.

Bilingual experiences comprise static factors such as age of 
acquisition (AoA) and number of languages ever learned as 
well as ongoing, dynamic experiences such as code-switching 
practices and current language use within and across contexts. 
�ese static and dynamic experiences likely interact in modulating 
cognitive performance in bilinguals, but recent years have seen 
a particular focus on the diversity of language use, rather than 
knowledge, in shaping neurocognitive adaptations in bilinguals 
(Abutalebi and Green, 2016). �is idea was put forward by 
Green and Abutalebi (2013) in the Adaptive Control Hypothesis. 
Speci�cally, Green and Abutalebi identi�ed three types of 
interactional contexts: a single-language context (SLC), a dual-
language context (DLC), and a dense code-switching context 
(DCS). In the SLC, bilinguals use their languages for di�erent 
purposes and in strictly separate contexts (e.g., communicating 
in the L1 at home and in the L2� in educational settings). In 
the DLC, bilinguals engage in highly integrated language contexts 
in which their languages may be� used in a more balanced 
manner (e.g., speaking both the L1 and L2 at work, but with 
di�erent people). Finally, in the DCS, language use is also 
highly integrated, but fewer restrictions are placed on when 

1�Our paper uses the term �bilingualism� to represent the pro�ciency in more 
than one language, whether the pro�ciency is in two languages (bilingualism) 
or in three or more languages (multilingualism).

to use which language and with whom. According to the 
Adaptive Control Hypothesis, each context places di�erent 
demands on language- and domain-general executive control 
in bilinguals, with the DLC being the most challenging for 
the executive control system.

Empirical work looking at the in�uence of interactional 
contexts on executive control has, for instance, found that 
Spanish-English bilinguals who reside in contexts in which 
languages are used separately (i.e., an SLC) showed greater 
reliance on reactive control, whereas bilinguals residing in 
contexts in which languages are used interchangeably (i.e., both 
in dual-language and dense code-switching contexts) mostly 
adopted proactive control strategies (Beatty-Martínez et� al., 
2020). Similarly, Hartanto and Yang (2016) classi�ed bilinguals 
into SLC bilinguals and DLC bilinguals and found that DLC 
bilinguals showed lower switching costs than SLC bilinguals. 
In a follow-up study, the authors reported that DLC bilingualism 
predicted enhanced set shi�ing abilities and that DCS bilinguals 
were more likely to perform better on tasks requiring inhibitory 
control and goal maintenance (Hartanto and Yang, 2020). 
Likewise, Yow and Li (2015) found a relationship between 
enhanced goal maintenance (operationalized as mixing cost) 
and more balanced language use in bilinguals. Altogether, these 
�ndings suggest that demands that are placed on bilinguals 
by the environment di�erentially modulate cognitive adaptations, 
on an aggregated level and within bilingual groups.

Despite the empirical importance of investigating theoretical 
propositions in such aggregated groups, individual variation 
in bilingual language use is perhaps best captured using 
continuous measures (Luk and Bialystok, 2013). Bilinguals 
may not always �nd themselves in a purely SLC or DLC 
(cf. Lai and O�Brien, 2020), and on an individual level, some 
social settings may be� characterized as DLCs and others as 
SLCs (e.g., two languages are spoken at home, but only one 
language is spoken at work). In this light, Gullifer and Titone 
(2020) proposed a novel continuous measure of the social 
diversity of language use: language entropy. Entropy is a 
concept adapted from information theory (Shannon, 1948) 
and is generally used to quantify the diversity or uncertainty 
of a phenomenon. Language entropy re�ects a spectrum of 
language use across or between communicative contexts, and 
it draws on the concepts proposed in the Adaptive Control 
Hypothesis.2 Crucially, language entropy is not restricted to 

2�It needs to be�noted, however, that there is no one-to-one mapping of language 
entropy and the interactional contexts posited in the Adaptive Control Hypothesis, 
as language entropy does not di�erentiate between DLC and DCS. For example, 
language entropy is not able to distinguish a person frequently switching between 
two languages with one person in one context from a person perfectly balancing 
speaking two languages in one context with two di�erent people. �e resulting 
entropy values would be� comparable.
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a set number of languages, as its values range from 0 to 
log n (where n is the number of languages that entropy is 
computed over). It is calculated in such a way that it captures 
the inherent variability in bilingual language use, where the 
lowest values approximate compartmentalized language use 
(i.e., only one language is used in a context), and the highest 
value represents fully integrated language use (i.e., all languages 
are used equally). In fully compartmentalized contexts, one 
language is used much more than the other(s) and, as such, 
the predictability of which language to use is very high. In 
highly integrated contexts, the languages are used in a more 
balanced way and so the (appropriate) language to use is 
less predictable. It then follows that the degree of 
unpredictability is also a�ected by the number of languages 
a person speaks. �at is, when all available languages are 
used in a fully integrated manner, the unpredictability of 
which language to use increases as the number of available 
languages increases. �e extent to which the management 
of this unpredictability is needed is argued to drive 
neurocognitive adaptations, which consequently increase 
behavioral e�ciency and optimize decision making (Gullifer 
and Titone, 2021a).

However, it is less clear how this continuous measure of 
the diversity in bilingual language use may be associated 
executive control. To reiterate, the Adaptive Control Hypothesis 
posits that, in contexts where the predictability of which language 
to use is low, bilinguals need to engage domain-general executive 
control processes to adapt to changing environmental demands 
(e.g., a change in interlocutor with whom another language 
needs to be�spoken) to a larger extent than in high-predictability 
contexts. In other words, they must keep speaking the appropriate 
language without letting their other language(s) interfere (goal 
maintenance, also termed proactive control), scan the 
environment for changes (e.g., con�ict monitoring), and switch 
to another language when this is required (mental set shi�ing, 
henceforth set shi�ing). Previously, higher language entropy 
has been associated with increased reliance on proactive control 
(Gullifer et� al., 2018; Gullifer and Titone, 2021b), and with 
functional brain patterns related to enhanced con�ict monitoring, 
set shi�ing, and goal maintenance (Li et�al., 2021), underscoring 
the possible relationship between the diversity of language use 
and individual di�erences in executive control. Importantly, 
language entropy may re�ect a distinct aspect of bilingual 
language use, as it has been shown by Ka�ama�a et� al. (2021) 
that other indices of bilingual language use, such as code-
switching and language-mixing habits, only moderately correlated 
with language entropy.

In the bilingualism literature, con�ict monitoring, set shi�ing, 
and goal maintenance have been frequently assessed using 
cued-switching paradigms (Lehtonen et� al., 2018), such as the 
color-shape switching task (CSST). �e cued-switching paradigm 
is di�cult enough to result in large RT costs even in young 
adults (Monsell, 2003). Despite this, reaction times may not 
always be� sensitive enough in capturing individual di�erences 
in certain groups. For example, young adults, a commonly 
studied demographic, showcase less individual variation in 
cognitive performance and, as such, in RTs, than other age 

groups (Hultsch et� al., 2002). �is may be� due to the fact 
that young adults are at their cognitive performance peak (Park 
et�al., 2002; Bialystok et�al., 2012). Perhaps unsurprisingly then, 
behavioral e�ects of bilingualism have been found least 
consistently in young adults (Antoniou, 2019). It is therefore 
paramount that a measurement is used that is sensitive enough 
to yield relatively large e�ects and individual variation when 
studying young adults, while also capturing a form of processing 
that is expected to be� modulated by bilingual experiences.

It is worth mentioning that cognitive e�ects of bilingualism 
have been found in brain indices in the absence of behavioral 
e�ects between bilingual and monolingual groups, as well as 
between bilingual groups with di�erent characteristics (e.g., 
Bialystok, 2017; Lehtonen et� al., 2018; DeLuca et� al., 2020). 
�us, to further increase sensitivity of the assessments, behavioral 
indices may be� supplemented with a proxy of brain activity, 
such as pupil dilation. Pupil dilation in response to task demands 
is commonly thought to be� modulated by phasic activity in 
the locus coeruleus-norepinephrine (LC-NE) system (Aston-
Jones and Cohen, 2005; van der Wel and van Steenbergen, 
2018). �e LC-NE system receives information from the 
orbitofrontal cortex and the anterior cingulate cortex about 
task demands. In turn, the LC adjusts its activation patterns 
to ensure that behavioral responses are optimal (Aston-Jones 
and Cohen, 2005). As such, pupil dilation can serve as a 
window into processes related to task performance. An increase 
in pupil size has o�en been used as an index of higher resource 
allocation (i.e., increased cognitive e�ort and attention allocation 
to complete the task). �is e�ect has been found in a variety 
of cognitive tasks (for a literature review, see van der Wel 
and van Steenbergen, 2018). For example, Rondeel et�al. (2015) 
showed that switch trials elicited larger pupil dilation than 
non-switch trials in a number switch task. To date, there have 
been no inquiries regarding the cognitive e�ects of bilingualism 
on set shi�ing using pupil dilation as an outcome measure.

�e current study�s primary goal is to examine how the 
social diversity of bilingual language use, as measured by 
language entropy, relates to executive control in university 
students with diverse bilingual experiences, using behavioral 
measures and pupil dilation. �e study was conducted in 
November and December 2020 at the University of Groningen, 
the Netherlands, when COVID-19 restrictions were in place. 
Speci�cally, the data were collected at a time when teaching 
took place fully online. �e University of Groningen�s student 
population consists mostly of native speakers of Dutch but 
also includes international students from all over the world 
(University of Groningen, 2020). �is diverse student population 
is the result of many of the study programs at the University 
of Groningen being taught exclusively in English. �e Dutch 
student population starts to formally learn English from a 
young age (the end of primary school or even earlier) and is 
regularly exposed to the language through media input, as 
Dutch television subtitles its foreign programs, for instance. 
At university, students may speak English in the classroom 
but Dutch or English or yet other languages with their fellow 
students during breaks. �eir multilingual experience may 
extend to contexts outside of university, as the North of the 
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Netherlands is a highly multilingual region in itself (Schmeets 
and Cornips, 2021). In this part of the Netherlands, some 
speak a regional minority language such as Frisian (in the 
province of Fryslân) or a form of the Low Saxon dialect in 
addition to Dutch. In sum, the sample that was targeted in 
this study was linguistically diverse and likely to vary in how 
they used their languages across social contexts. �is allowed 
us to assess the impact of inter-individual di�erences in the 
social diversity of bilingual language use on executive control.

In our study, we� used a color-shape switching task (see 
method below) to measure con�ict monitoring, set shi�ing, 
and goal maintenance. As described previously, bilinguals who 
mainly use their languages in separate contexts are not regularly 
required to monitor the interactional context for linguistic 
changes. However, bilinguals who use two or more languages 
within one context need to engage these precise executive 
control processes more o�en to appropriately regulate the 
activation of their languages, thereby possibly increasing their 
e�ciency over time (Green and Abutalebi, 2013). �us, 
we�predicted bilingual individuals with higher language entropy 
to demonstrate enhanced con�ict monitoring, set shi�ing, and 
goal maintenance abilities relative to those individuals whose 
language use is more compartmentalized. Crucially, the CSST 
was adapted to allow for simultaneous recording of pupil size 
over time, permitting an additional, and potentially more 
sensitive, measure of set shi�ing in addition to RTs. Behavioral 
versions of the CSST have been used regularly in this �eld 
(see meta-analysis by Lehtonen et� al., 2018). However, to our 
knowledge, only one study has examined set shi�ing with 
simultaneous tracking of pupil size (Rondeel et� al., 2015). 
Changes in pupil size occur very slowly and require slower-
paced task designs than purely behavioral tasks (Mathôt, 2018; 
Winn et� al., 2018). �erefore, our secondary objective was to 
validate whether our version of the CSST captured the expected 
additional e�ort of completing switch trials over non-switch 
trials, henceforth denoted as pupil switching cost, and whether 
a smaller pupil switching cost was related to higher language 
entropy. In the case of the CSST, we� proposed that a smaller 
di�erence in pupil size between switch and non-switch trials 
would re�ect enhanced set shi�ing e�ciency. We� explored the 
possibility that increased e�ciency in set shi�ing is visible in 
the pupil data only, given that pupil size over time may be�more 
sensitive in detecting individual di�erences than RTs in our 
young adult sample.

MATERIALS AND METHODS

General Procedure
Fi�y-�ve young adults were recruited for this study at the 
University of Groningen, the Netherlands, and through posts 
on a Facebook page targeting research participants in Groningen. 
Participants enrolled in the study by �lling out a short screening 
questionnaire at home, which simultaneously served to determine 
their eligibility to participate. Participants were excluded from 
participation when they reported having (1) reading or learning 
disorders; (2) uncorrected sight problems (e.g., color blindness); 

(3) current substance abuse; (4) past traumatic brain injury; 
and (5) a history of psychological or neurological disorders. 
Furthermore, participants belonging to a COVID-19 at-risk 
group (e.g., people with compromised immune systems and/
or pulmonary problems) were not eligible to participate, as 
data were collected during the COVID-19 pandemic (November 
and December of 2020). Importantly, participants were not 
selected based on their language background, as the current 
study aimed to explore the impact of various bilingual experiences 
on executive control. Hence, our target demographic consisted 
of students being born in the Netherlands as well as international 
students. With most degree programs at the University of 
Groningen teaching (at least partially) in English, no subjects 
reported exclusive monolingual daily language use; all reported 
to be� bilingual or multilingual and were pro�cient in English 
and at least one other language.

Eligible participants �rst provided written informed consent 
online. �ey were then asked to complete an online background 
questionnaire at home. �ey were subsequently invited to an 
experimental laboratory session. In this session, participants 
completed three eye-tracking tasks, of which the CSST was 
administered last. Prior to the CSST, participants completed a 
resting-state measurement and an anti-saccade task (the results of 
which are not reported here). Task instructions were given in English.

�e entire experimental session took approximately 1 h and 
45 min to complete, of which 45 min were spent on the 
CSST. Participants received a monetary compensation of �15 
upon session completion and were debriefed on the goals of 
the study. �e study protocol was approved by the Research 
Ethics Committee (CETO) of the Faculty of Arts at the University 
of Groningen (reference number: 69895095).

Participants
Complete data were collected for 44 participants (33 women), 
aged 18�30 years (M = 22.75, SD = 2.78). Demographic variables 
such as age, gender, educational attainment, and paternal and 
maternal educational attainment as a proxy of socio-economic 
status were extracted from the online background questionnaire. 
Nineteen out of 44 participants reported to have been born 
in the Netherlands. Sample characteristics, including language 
background indices, are listed in Table� 1.

In total, participants reported 14 di�erent �rst languages 
(L1s; �rst language based on reported age of onset of learning). 
Dutch was most frequent (n = 18), followed by English (n = 6), 
Italian, and German (both n = 4). �e majority (n = 32) reported 
to speak English as their second language (L2). Participants 
reported speaking English with a generally high pro�ciency 
level (scale of 1�10: M = 8.42, SD = 1.22, min = 6, max = 10).

�ere were 10 participants who did not complete the study, 
either because they did not �ll out the background questionnaire 
(n = 1), because of COVID-19 symptoms or COVID-19 
restrictions (n = 4), technical di�culties (n = 2), or a lack of 
available lab facilities (n = 3). Additionally, it was impossible 
to calculate entropy scores for one participant due to missing 
data. �is last participant�s data were used in the analyses 
investigating the main e�ect of trial type in the CSST, however.
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Materials
Background Questionnaire
In order to obtain a detailed picture of participants� language 
background and usage patterns, a questionnaire was administered 
online to participants using Qualtrics (Qualtrics, Provo, UT). 
In addition to questions asking about standard demographic 
information, the questionnaire included questions from the 
LEAP-Q 3.0 (Marian et� al., 2007) and the Language Social 
Background Questionnaire (Anderson et� al., 2018). �is was 
done to tailor the questionnaire to the University of Groningen 
context, speci�cally. For the purposes of the current study, 
we�extracted data pertaining to language use in several contexts 
(for reading, for speaking, at home, at university, at work, 
and in social settings), global language exposure, AoA, and 
self-assessed language pro�ciency for the L1, L2, and L3. Please 
see our entry in the Open Science Framework (OSF; see section 
�Data Availability Statement�) for the complete questionnaire.

Color-Shape Switching Task
To tap con�ict monitoring, set shi�ing, and goal maintenance 
abilities, we�used a CSST. In the CSST, participants are presented 
with colorful geometric �gures and are asked to respond to 
the color (in our case, blue or orange) or the shape (in our 
case, a circle or a square) of the �gure by means of a button-
press. In so-called single blocks, participants are required to 

respond to a single criterion (i.e., only color or only shape). 
In the color task, participants decide by means of a button-
press whether the �gure is blue or orange, and in the shape 
task, participants press a button to indicate whether the �gure 
is a circle or a square. In mixed blocks, a cue indicates to 
which criterion the participant should respond. �ese cues 
randomly alternate within blocks, resulting in switch trials 
(trials for which the criterion changes) and non-switch trials 
(trials for which the criterion is the same as for the previous trial).

Following Li et�al. (2021), we�extracted global RT, switching 
costs, and mixing costs as indices of executive control. Global 
RT is represented by the overall RT in the mixed blocks and 
has been used previously to relate language entropy to con�ict 
monitoring (Li et� al., 2021). Switching costs were calculated 
as the di�erence in RTs between switch trials and non-switch 
trials in the mixed blocks and were used as a proxy for set 
shi�ing (Prior and MacWhinney, 2010). Mixing costs were 
calculated by the di�erence in RTs between non-switch trials 
in the mixed blocks and single trials and have been considered 
to tap goal maintenance abilities (Marí-Be�a and Kirkham, 
2014). As engaging in contexts where language use is more 
integrated requires a speaker to monitor the environment for 
linguistic changes, we� expected that bilinguals with more 
integrated language use would have more e�cient con�ict 
monitoring abilities, as manifested in faster global RTs. 
Furthermore, we� predicted that more integrated bilingual 

TABLE�1  |  Participant demographics and language experience.

Participants (n = 44)

M SD min max

Demographics
Gender 33 female; 11 male
Age (years) 22.75 2.78 18 30
Educational attainment1 3.25 1.40 2 5
Paternal educational attainment2 3.89 1.03 1 5
Maternal educational attainment1 3.82 1.05 1 5

Language experience
Number of known languages3 3.61 1.03 2 5
Age of Acquisition (AoA)
�L2 AoA (years) 6.42 3.45 0 19
�L3 AoA (n = 33; years) 12.30 4.45 0 22
Pro�ciency
�L1 Speaking (1�10) 9.54 0.87 6 10
�L2 Speaking (1�10) 7.79 1.97 1 10
�L3 Speaking (n = 33; 1�10) 4.66 2.65 1 10
Exposure
�L1 Exposure (%) 42.32 24.60 5 85
�L2 Exposure (%) 43.49 25.88 0 95
�L3 Exposure (n = 33; %) 10.97 16.11 0 72
Code-switching habits n (%)
�No switching 21 (47.7%)
�Switches on sentence-by-sentence basis 7 (15.9%)
�Switches on word-by-word basis 16 (36.4%)

1Scale of 1�6:1 = primary school, 2 = secondary school, 3 = intermediate vocational education/community college, 4 = University of Applied Sciences or equivalent, 5 = university, and 
6 = PhD degree.
2Scale of 1�5: 1 = no secondary school diploma, 2 = secondary school diploma, 3 = some post-secondary education, 4 = post-secondary degree or diploma, or 5 = graduate/PhD 
degree or professional degree.
3Participants were able to indicate up to �ve languages in the language background questionnaire. Therefore, it is possible that they knew more than �ve languages.
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FIGURE�1  |  Sample trial procedure for a mixed trial in the color-shape switching task.

language use would be� associated with smaller switching and 
mixing costs in RTs, taking into account the �ndings by Li 
et� al. (2021), Gullifer et� al. (2018), and Gullifer and Titone 
(2021b).

Apparatus
Pupil size over time (in arbitrary units) was recorded using 
the Eyelink Portable Duo eye-tracking system (SR Research, 
Canada) at a sampling rate of 500 Hz. Data were only collected 
for the participants� dominant eye. �e CSST was programmed 
using OpenSesame version 3.2.8 (Mathôt et� al., 2012) and the 
PyGaze library (Dalmaijer et� al., 2014) and was presented on 
a 17.3-inch laptop with a 1920 × 1080 resolution.

Stimuli
In the CSST, participants were presented with blue (RGB: 95, 
167, and 252) and orange (RGB: 207, 152, and 24) squares 
and circles (square: 2.3° × 2.3°; circle: 2.3° diameter), which 
appeared one-by-one in the middle of the screen on a light 
gray background (RGB: 155, 155, and 155). Depending on 
the criterion, the participant had to either decide on the color 
or the shape of the stimulus by pressing a key. �e cues, 
which only appeared in mixed blocks, were the words �SHAPE� 
or �COLOR� and appeared in dark gray (RGB: 112, 112, and 
112) in Arial (font size: 72) in the middle of the screen.3

Experimental Procedure
Participants were seated approximately 60 cm from the 
eye-tracker. Distance to the eye-tracker was tracked online 
with a target sticker placed on the participant�s forehead. �e 
eye-tracking signal was calibrated and validated using a 

3�Whereas in previous versions of the CSST, graphic cues are used to circumvent 
possible linguistic e�ects (Yang et�al., 2016); for the purpose of our experiment, 
it was vital to keep the luminosity of the cues constant across conditions. As 
such, we� opted for words denoting the task (cf. Ramos et� al., 2017).

nine-point procedure before the start of the task. Manual dri� 
correction took place before each experimental block.

Following Prior and MacWhinney (2010), the participants 
completed two single-task blocks of 36 items each (color and 
shape), followed by three mixed blocks of 48 trials each, and 
ended with two single-task blocks of 36 items each. �e order 
of the single-task blocks, as well as the dedicated response 
keys, were counterbalanced across participants, resulting in 
four versions of the experiment. Responses were made pressing 
the �d� and �f � keys with the le� hand and the �j� and �k� 
keys with the right hand. One hand always responded to the 
�color� criterion and the other always responded to the �shape� 
criterion. Experimental blocks were preceded by eight practice 
trials in single-task blocks, and 16 practice trials in mixed 
blocks. �e practice blocks were repeated until the participant 
reached an accuracy of at least 80%, to ensure a correct 
understanding of the task. Participants received feedback on 
their performance during the practice trials only. In total, the 
experiment contained 144 single-task block trials (72 color 
and 72 shape task trials) and 144 mixed trials (72 switch and 
72 non-switch trials).

Trials were presented as follows. First, the participants looked 
at a �xation cross at the center of the screen for 400�600 ms 
in order to trigger the start of the trial. In the single-task 
blocks, the stimulus appeared a�er a lag of 150 ms. Alternatively, 
in mixed blocks, a cue (�COLOR� or �SHAPE�; 500 ms) and 
an additional gap of 500 ms preceded the stimulus. �e stimulus 
always remained on the screen for 3,000 ms to ensure a �xed 
trial length within blocks. Despite this, participants were 
instructed to respond as fast and as accurately as possible. In 
the mixed blocks, trials of the same type did not appear more 
than four times in a row. Figure� 1 schematically illustrates a 
mixed block trial.

Analysis
�e data were preprocessed, analyzed, and plotted in R version 
4.1.1 (R Core Team, 2021) using version 1.0.7 of the dplyr 
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package (Wickham et� al., 2018). �e full reproducible code 
is available in the OSF repository.

Calculating Language Entropy Scores
Following Gullifer and Titone (2020), language entropy scores 
were calculated from the self-reported language use data for 
the L1, L2, and L3� in each communicative context (at home, 
at university, in social domains, for reading, and for speaking; 
see Table� 2), using the languageEntropy package (Gullifer and 
Titone, 2018). �e usage data for the home, university, and 
social contexts were elicited using Likert scales, with the prompt 
�Please rate the amount of time you� actively use the following 
language(s)/dialect(s) in [context] on a scale of 1�7 (1 = no 
usage at all, 7 = all the time).� Following Gullifer and Titone 
(2020), these scores were baselined by subtracting 1 from each 
response, such that a score of 0 represented �no usage at all.� 
Subsequently, these scores were converted to proportions by 
dividing a language�s score by the sum total of the scores in 
each context. For reading and speaking, language use was 
elicited by percentage of use (e.g., �When choosing a language/
dialect to speak with a person who is equally �uent in all 
your languages, what percentage of time would you� choose 
to speak each language/dialect?�). All percentages added up 
to 100%. �ese percentages were converted to proportions, 
which were then used to calculate the entropy values per 
context for each participant. Language entropy was calculated 
using the entropy formula of Shannon (1948):
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�

�
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�
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In this formula, the number of possible languages within 
the social context is represented by n, and Pi is the proportion 
of the use of languagei in that context. A language entropy 
value of 0 indicates that only one language is used in a certain 
context. If a bilingual�s language use is completely balanced, 
then the entropy value approximates 1 for two languages and 
1.60 for three languages.

To reduce the complexity of the entropy data, we� followed 
Gullifer and Titone (2020) and conducted a Principal Component 
Analysis (PCA). PCA is used to reduce the complexity of a 
given dataset by grouping correlated variables into a limited 
set of �principal components� re�ecting the variance found 
in the data set (Abdi and Williams, 2010). We� used varimax 

rotated components and selected our �nal number of 
components using a biplot and correlation matrices of the 
PC scores and individual entropy scores. �is resulted in two 
PC components. Home, social, reading, and speaking entropy 
loaded into one component and explained 43.2% of the data. 
University entropy, with some cross-loading from social entropy, 
loaded into the second component and explained 26.7% of 
the data. �e individual varimax component loadings are 
provided in the Supplementary Table� 1. As a PCA can only 
be� computed over complete cases, work entropy was not 
included in the PCA, as a considerable number of participants 
(n = 13, 29.5% of the sample) reported to be� unemployed. 
Component scores for each participant were extracted and 
served as indices of university entropy and entropy anywhere 
else (non-university entropy) in the subsequent analyses. Recall 
from above that lower scores represent a more 
compartmentalized context, whereas higher scores represent 
a more integrated context, where the proportion of use of 
each language is more balanced.

Preprocessing
Behavioral Data
Since participants performed at ceiling level for all trial types 
(see Section ��e E�ect of Language Entropy on RTs�), we�limited 
our analyses to RTs. Only RTs from correct responses were 
analyzed. Following recommendations for RT analysis (Luce, 
1991; Whelan, 2008), responses <100 ms were excluded from 
the analysis (0.38% of the entire dataset). �e data were subsetted 
per trial type to calculate global RT and switching costs (switch 
and non-switch trials) and mixing costs (non-switch and single-
task trials). �e processed datasets are available in the 
OSF repository.

Pupil Data
�e pupil data collected during the CSST were preprocessed 
using version 0.0.1.2. of the gazeR package (Geller et�al., 2020). 
To preprocess the data, we� executed the following steps. First, 
we� identi�ed blinks in the signal and subsequently applied a 
smoothing function and interpolated the signal using a cubic 
spline. �en, we� applied subtractive baseline correction (pupil 
size�baseline) for the 200 ms preceding the 150 ms gap in 
the trial. During the artifact rejection procedure, we� excluded 
3.98% of the data in the entire dataset in several steps. First, 
we�removed trials that missed >25% of the data. �en, following 
recommendations by Mathôt et� al. (2018), we� rejected unlikely 
pupil values by visually inspecting a histogram of pupil values 
per participant. Any value that was clearly much higher or 
lower than the majority of the data was deleted. Lastly, 
we� estimated the mean absolute deviation and removed 
observations for which the pupil size changed quicker than 
physiologically probable. As a next step, we� aligned the event 
start time to the presentation of the cue. Finally, we�downsampled 
the data to 50 Hz (i.e., time bins of 20 ms). For a complete 
discussion and accompanying code of the preprocessing 
procedure, we� refer to our preprocessing script in the OSF 
repository and Geller et� al. (2020).

TABLE�2  |  Mean language entropy scores for reading, speaking, home, 
university, and social contexts.

Language 
entropy

Participants (n = 44)

M SD min max

Reading 0.79 0.38 0 1.57
Speaking 0.74 0.47 0 1.58
Home 0.73 0.47 0 1.58
University 0.43 0.49 0 1.49
Social 0.95 0.37 0 1.58
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Reaction Times
�e RT data were analyzed using a trial-by-trial approach with 
generalized linear mixed-e�ects models using the glmer function 
from the lme4 package (version 1.1-27.1; Bates et� al., 2015). 
p-Values of the estimates were obtained via t-tests using the 
Satterthwaite approximations to degrees of freedom, using version 
3.1-3 of the lmerTest package (Kuznetsova et�al., 2017). Following 
recommendations for RT analysis (Lo and Andrews, 2015), 
instead of using linear mixed-e�ects models and log-transforming 
the RTs, we� �tted generalized linear mixed-e�ects models with 
an Inverse Gaussian distribution paired with an �identity� link 
to approximate the distribution of our RT data. We� added 
sum-to-zero orthogonal contrasts to the trial type variable to 
improve interpretation of the results (Baguley, 2012; Schad et�al., 
2020). For mixing cost, we� coded single trials as �0.5 and 
non-switch trials as +0.5 (�SI + NS). For switching cost, we�coded 
non-switch trials as �0.5 and switch trials as +0.5 (�NS + SW). 
As such, the e�ect of trial type is to be� interpreted as the 
change in e�ect when moving from one trial type to the other.

To investigate the e�ect of the diversity of language use at 
university and in non-university contexts on global RT and 
switching and mixing costs, we� �tted two hypothesis models 
(RTs for switch and non-switch trials and RTs for non-switch 
and single trials). RT was entered as the dependent variable, 
followed by an interaction between trial type (switch and 
non-switch, or non-switch and single) and university and 
non-university entropy, a �xed e�ect of trial number to account 
for autocorrelation in the data, and a random intercept for each 
participant. �is resulted in the following basic model speci�cation:
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Trial number was scaled and centered around the mean in 
each model. Model comparisons using the anova function and 
the Akaike�s Information Criterion (AIC) assessed whether the 
addition of random slopes of trial type or trial number per 
subject improved the �t of each hypothesis model. �ese random 
slopes were included in the model to account for the possibility 
that participants may show individual fatigue e�ect patterns 
(i.e., in some participants, RTs may increase as the number 
of completed trials increases).

Considering that more traditional bilingual language variables 
may explain variance in the data in addition to language use 
patterns (Gullifer and Titone, 2020), additional �xed e�ect 
predictors of L2 age of acquisition, L2 pro�ciency, and L2 
exposure were added one-by-one to our hypothesis model. 
�ese predictors did not signi�cantly contribute to the model 
�t for switching cost [L2 AoA: (�2(1) = 0.2302, p = 0.63); L2 
pro�ciency: (�2(1) = 0.6773, p = 0.41); L2 exposure: (�2(1) = 0.1484, 
p = 0.70)] or mixing cost [L2 AoA: (�2(1) = 0.8309, p = 0.36); L2 
pro�ciency: (�2(1) = 0.946, p = 0.33)], or inclusion led to 
unresolvable model convergence issues (in the case of L2 exposure 
in the mixing cost analysis). �erefore, these predictors were 
not included in the �nal models. Model assumptions were 

checked with version 0.8.0 of the performance package (Lüdecke 
et� al., 2021). We� applied model criticism on the best �tting 
models by excluding all observations with absolute residuals 
larger than 2.5 SDs above the mean (1.99% of the observations 
for switching cost and 2.14% of the observations for mixing 
cost). No undue in�uence from outliers on the model estimates 
was identi�ed. �e �nal models (see Table�3) re�ect the results 
on the basis of the trimmed datasets. �e results were visualized 
using version 2.8.9 of the sjPlot package (Lüdecke, 2021).

Pupil Size Over Time
Pupil size over time was analyzed using Generalized Additive 
Mixed Models (GAMMs).4 GAMMs are an extension of mixed-
e�ects regression models (Sóskuthy, 2017). However, they di�er 
in that they are able to model non-linear data using so-called 
�smooths� (Baayen et� al., 2018; Wieling, 2018). �ese smooths 
are made by combining a set of basis functions in such a 
way that they �t the data (for more details, see Wieling, 2018, 
p.� 91). GAMMs then apply a non-linearity penalty to prevent 
over�tting. �is penalty is called wiggliness. �is method is 
especially suitable for analyzing time-course data, as it can 
take into account autocorrelation and because the signal needs 
not be� averaged over a prespeci�ed epoch. For this reason, 
GAMMs have become quite popular in recent years for studying 
event-related potentials (Meulman et�al., 2015), dynamic phonetic 
data (Wieling, 2018), and pupillometric data (van Rij et� al., 
2019; Boswijk et� al., 2020).

GAMMs were fitted in R version 4.1.2 (R Core Team, 
2021), using version 1.8-38 of the mgcv package (Wood, 
2011). First, a base model was built to verify that our version 
of the CSST captured the additional attentional resources 
needed to respond to the more difficult switch trials. That 
is, to see whether switch trials resulted in larger pupil size 
over time than non-switch trials.5 This model included a 
factor smooth modeling the pupil size over time per 
participant. Another factor smooth modeled the individual 
variation over time by trial type. We� then investigated if 
gaze position (i.e., the x and y-coordinates on the screen), 
distance to the eye-tracker, and the effect of distance to 
the eye-tracker per participant needed to be� added to the 
model by comparing AIC scores per model using the 
CompareML function in mgcv.

To test our hypotheses, two models were built that included 
an interaction between trial type with university entropy or 
non-university entropy. �ese models were based on the best 
models resulting from the analysis investigating the main trial 
type e�ect. �e best �tting models resulting from these comparisons 
are presented in the Results section. Since the models� residuals 
were not normally distributed, all �nal models were re�tted 
with a scaled-t distribution used for heavy-tailed data. �e results 
were visualized using version 2.4 of the itsadug package  

4�For introductions and tutorials for GAMMs, please refer to Sóskuthy (2017), 
Wood (2017), and Wieling (2018).
5��e current design of the CSST did not permit appropriate comparison of 
pupil size during single and non-switch trials. As such, we� only target the 
di�erence in pupil size for switch- and non-switch trials.
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(van Rij et� al., 2020). For a complete overview of our model-
building procedure, see our entry in the OSF repository.

RESULTS

The Effect of Language Entropy on RTs
Mean RTs and accuracy rates per condition, followed by mean 
global RT, switching costs, and mixing costs in the CSST, are 
displayed in Table� 4. �e e�ects of university entropy and 
non-university entropy on global RT and switching costs, and 
on mixing costs are visualized in Figures� 2, 3, respectively. 
Summaries of the �nal models, including random e�ects, are 
available in Table� 3.

�e model summary for switching cost showed a main e�ect 
of trial type (est = 129.358, p < 0.001), such that, overall, participants 
were slower to respond to switch trials in comparison to non-switch 
trials (i.e., showed a switching cost, as expected). In addition, 
university entropy modulated global RT (est = 127.393, p < 0.001), 
suggesting that those individuals with higher diversity of language 
use at university were generally slower in performing the mixed 
blocks. No main e�ect of non-university entropy was found, 
indicating that non-university entropy did not modulate global 
RT. Likewise, the interactions between trial type and neither 
entropy measure were not signi�cant.

Similarly, for mixing cost, a main e�ect of trial type was found 
(est = 163.158, p < 0.001): participants responded signi�cantly slower 
to non-switch trials in the mixed block in comparison with single 
trials (i.e., showed a mixing cost). �e results also revealed a 
main e�ect of university entropy on RTs (est = 115.336, p < 0.001), 
such that participants who used their languages in a more integrated 
manner at university were slower in responding overall. �e reverse 

was found for non-university entropy (est = �37.972, p < 0.01), 
indicating that those bilinguals with higher diversity of language 
use in contexts outside university were faster at responding overall. 
Finally, non-university entropy interacted with trial type 
(est = �41.526, p < 0.01), such that higher diversity of language 
use in contexts outside the university setting was related to a 
smaller mixing cost. No interaction e�ect was found between 
university entropy and trial type.

Pupil Dilation Results
The Main Effect of Switching on Pupil Size
�e �rst GAMM modeled the main e�ect of trial type (switch 
trials versus non-switch trials) on pupil size over time. �e 
results of this model, as well as the interaction models, can 
be� found in Table� 5. �e average pupil size for switch trials 
was signi�cantly larger than for non-switch trials (est = 19.591, 
p < 0.001). �e model estimates do not tell us how pupil dilation 
developed over time. In order to evaluate the actual pattern 

TABLE�3  |  Summary of the glmer models of the effect of language entropy on global RT and switching costs (RT) as well as the effect of language entropy on mixing 
costs (RT) reporting the explained variance and standard deviation (SD) for the random effects, and the model estimates, standard errors (SE), t-values, and p-values for 
the �xed effects.

Global RT and Switching cost Mixing cost

Random effects

Grouping Effect Variance SD Correlation Effect Variance SD Correlation

Participant (Intercept) 9,793 98.960 � (Intercept) 4,415 66.444 �
Trial Type 

(-NS + SW)
2,413 49.126 0.41 Trial Type 

(-SI + NS)
4,888 69.912 0.60

Trial Number 7,623 87.311 � Trial Number 348.5 18.668 0.28 0.04
Residual 0.0002903 0.017 � � 0.0002089 0.0145 �

Fixed effects

Effect Estimate SE t-value p-value Estimate SE t-value p-value

(Intercept) 851.515 19.937 42.710 <0.001*** 709.160 12.478 56.834 <0.001***
Trial Type (�NS + SW) 129.358 12.323 10.497 <0.001*** � � � �
Trial Type (�SI + NS) � � � � 163.158 12.068 13.520 <0.001***
Trial Number 41.743 17.452 2.392 0.017* 29.046 5.169 5.619 <0.001***
University Entropy 127.393 27.433 4.644 <0.001*** 115.336 11.837 9.744 <0.001***
Non-university Entropy �38.015 27.184 �1.398 0.162 �37.972 11.570 �3.282 0.001**
Trial Type * University Entropy 19.874 19.607 1.014 0.311 23.557 14.206 1.658 0.097
Trial Type * Non-university Entropy 4.933 19.520 0.253 0.801 �41.526 14.454 �2.873 0.004**

*p < 0.05; **p < 0.01; ***p < 0.001. The values in bold re�ect signi�cance at at least the p < 0.05 level.

TABLE�4  |  Mean RTs (ms) and accuracy, and EF measures derived from the 
CSST.

Reaction time (ms)

M (SD)

Accuracy

M (SD)

Single-task trials 525.74 (225.23) 0.99 (0.11)
Non-switch trials (mixed block) 624.18 (366.88) 0.97 (0.17)
Switch trials (mixed block) 710.79 (409.77) 0.96 (0.20)

EF measures

Global RT (mixed block) 667.24 (391.17)
Switching cost 82.92 (505.65)
Mixing cost 95.57 (426.66)



van den Berg et al.	 Language Entropy and Executive Control

Frontiers in Psychology | www.frontiersin.org	 10	 May 2022 | Volume 13 | Article 864763

FIGURE�3  |  Regression model plot of the interaction between non-university entropy (left panel) and university entropy (right panel) and trial type (blue striped: 
single; red solid: non-switch) on RTs (ms). Shading represents the size of the con�dence bands.

of this non-linear e�ect during the trial, we�plotted the change 
in pupil size over time for switch trials and non-switch trials 
in Figure� 4. As can be� seen in the plots, a pupil switching 
cost emerged immediately a�er the cue was shown. �e di�erence 
between switch and non-switch trials became signi�cant at 
609 ms a�er the cue was shown; it peaked around 2,200 ms, 
and it remained signi�cant for the remainder of the trial.

University Entropy and Pupil Switching Cost
�e second model supplemented the original model by including 
a non-linear interaction with university entropy. �e model 
summary can be� found in Table� 5. �e main e�ect of trial 

type remained signi�cant (est = 12.481, p < 0.001), meaning that 
the average pupil dilation for switch trials (the reference level) 
remained larger than for non-switch trials. Figure�5 is a contour 
plot that models the di�erence in pupil size between the switch 
and non-switch trials over time, while taking into account an 
interaction with university entropy. Contour plots are useful 
in visualizing three-dimensional interactions, but it is di�cult 
to quantify the size of the di�erence between switch and 
non-switch trials based on color alone. �e solid lines in the 
contour plot, therefore, show us how big the di�erence in 
pupil size is between switch and non-switch trials. �e dotted 
green and red lines represent the con�dence intervals for each 
line. �e pupil switching cost became signi�cant slightly earlier 

FIGURE�2  |  Regression model plot of the interaction between non-university entropy (left panel) and university entropy (right panel) and trial type (blue striped: 
switch; red solid: non-switch) on RTs (ms). Shading represents the size of the con�dence bands.
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for participants with higher university entropy scores. However, 
apart from this, there did not appear to be� a clear interaction 
between pupil switching cost and university entropy.

Non-university Entropy and Pupil Switching Cost
�e last model supplemented the base model by including a 
non-linear interaction with non-university entropy. �e summary 
for this model is available in Table� 5. �e main e�ect of trial 
type (est = 12.941, p < 0.001) remained, meaning that the average 
pupil dilation for switch trials continued to be� larger than for 
non-switch trials. To understand the model output, a contour 
plot was made showing the interaction between non-university 
entropy and pupil switching cost over time (Figure�6). Participants 
with lower non-university entropy scores (i.e., more 
compartmentalized language use) showed a larger pupil switching 
cost, whereas the di�erence in pupil size between switch and 
non-switch trials for participants with higher non-university 
entropy scores (i.e., more integrated language use) was much 
smaller. When looking at Supplementary Figure� 1, we� can 
deduce that there was no signi�cant di�erence in pupil size 
between switch and non-switch trials for participants with the 
highest non-university entropy scores.

DISCUSSION

�e primary goal of the present study was to examine the 
e�ect of the social diversity of language use, as measured by 
language entropy, on executive control in young adults with 
diverse bilingual experiences. �is was done by administering 
a CSST, tapping con�ict monitoring (global RT), mental set 
shi�ing (switching cost), and goal maintenance (mixing cost). 
We� also recorded pupil size over time during the task and 
compared pupil size during switch and non-switch trials as an 
additional, and potentially more sensitive measure of set shi�ing. 
�e social diversity of language use was calculated by looking 
at self-reported language use in several contexts (at home, 
speaking, reading, in social settings, and at university). �ese 
�ve contexts were reduced to two components using a PCA, 
namely, a university entropy component (language use at 
university) and a non-university entropy component (language 
use in all other contexts). Based on previous studies, we�predicted 
that language entropy scores would modulate the performance 
on the CSST, such that individuals who engaged in more 
integrated language contexts (i.e., had higher entropy scores) 
would perform the task more e�ciently. For RTs, higher university 
entropy scores were related to slower global RT. In addition, 
we� found reduced mixing costs for individuals with higher 
non-university entropy scores but not reduced switching costs. 
However, in the pupillometric data, we�found a smaller di�erence 
in pupil size between switch trials in comparison with non-switch 
trials (i.e., a smaller pupil switching cost) for participants with 
more integrated bilingual language use in non-university contexts. 
�is study is, to the best of our knowledge, the �rst to provide 
evidence for the bene�cial e�ects of the diversity of bilingual 
language use on executive control using pupillometry.TA
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FIGURE�4  |  Pupil dilation per trial type over time. Left panel: Pupil dilation (in arbitrary units) for switch trials (blue) and non-switch trials (red). Time (x-axis) starts at 
cue onset. The black dotted line at 1,000 ms represents the stimulus onset. Right panel: Pupil switching cost. The red dotted line represents the moment the 
difference in pupil size between switch and non-switch trials became signi�cant.

FIGURE�5  |  Contour plot showing the interaction between university entropy, time, and the pupil switching cost (i.e., the difference in pupil size between switch and 
non-switch trials). Time is plotted on the x-axis, university entropy is plotted on the y-axis, and the pupil switching cost is indicated by color: darker green indicates a 
small or even reversed effect (where non-switch trials elicit a larger pupil dilation). The more red or even white the plot becomes, the larger the pupil switching cost. 
The white bars indicate missing data (i.e., non-existing entropy values in our dataset).

Language Entropy and Executive Control
Before discussing our primary outcomes, it is important to 
consider the suitability of the employed method to answer 

our main research question. In other words, we� needed to 
establish whether the CSST captured robust switching and 
mixing costs. �e pace of the CSST version used in the present 
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