Relationships between Community Virus Activity and Cardiorespiratory Rehospitalizations From Post-Acute Care

Riester, Melissa R; Bosco, Elliott; Manthana, Rishik; Eliot, Melissa; Bardenheier, Barbara H; Silva, Joe B B; van Aalst, Robertus; Chit, Ayman; Loiacono, Matthew M; Gravenstein, Stefan

Published in:
Journal of the American Medical Directors Association

DOI:

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Version created as part of publication process; publisher's layout; not normally made publicly available

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Original Study - Brief Report

Relationships between Community Virus Activity and Cardiorespiratory Rehospitalizations From Post-Acute Care

Melissa R. Riester PharmD a,b,e, Elliott Bosco PharmD, PhD a,b, Rishik Manthana a,b, Melissa Eliot PhD b,c, Barbara H. Bardenheier PhD a,b,c, Joe B.B. Silva ScM a,b, Robertus van Aalst PhD, MSc d,e, Ayman Chit PhD d,f, Matthew M. Loiacono PhD d, Stefan Gravenstein MD, MPH a,b,g,h, Andrew R. Zullo PharmD, PhD a,b,c,h

Objectives: Quantify the relationship between increasing influenza and respiratory syncytial virus (RSV) community viral activity and cardiopulmonary rehospitalizations among older adults discharged to skilled nursing facilities (SNFs).

Design: Retrospective cohort.

Setting and Participants: Adults aged ≥65 years who were hospitalized and then discharged to a US SNF between 2012 and 2015.

Methods: We linked Medicare Provider Analysis and Review claims to Minimum Data Set version 3.0 assessments, PRISM Climate Group data, and the Centers for Disease Control and Prevention viral testing data. All data were aggregated to US Department of Health and Human Services regions. Negative binomial regression models quantified the relationship between increasing viral activity for RSV and 3 influenza strains (H1N1pdm09, H3N2, and B) and cardiopulmonary rehospitalizations from SNFs. Incidence rate ratios described the relationship between a 5% increase in circulating virus and the rates of rehospitalization for cardiopulmonary outcomes. Analyses were repeated using the same model, but influenza and RSV were considered “in season” or “out of season” based on a 10% positive testing threshold.

Results: Cardiorespiratory rehospitalization rates increased by approximately 1% for every 5% increase in circulating influenza A (H3N2), influenza B, and RSV, but decreased by 1% for every 5% increase in circulating influenza A (H1N1pdm09). When respiratory viruses were in season (vs out of season), cardiopulmonary rehospitalization rates increased by approximately 6% for influenza A (H3N2), 3% for influenza B, and 5% for RSV, but decreased by 6% for influenza A (H1N1pdm09).

Conclusions and Implications: The respiratory season is a particularly important period to implement interventions that reduce cardiopulmonary hospitalizations among SNF residents. Decreasing viral transmission in SNFs through practices such as influenza vaccination for residents and staff, use of respiratory syncytial virus vaccine, and RSV prophylaxis.

Keywords: Hospitalization influenza A virus influenza B virus respiratory syncytial virus
Influenza and respiratory syncytial virus (RSV) are responsible for substantial morbidity and mortality in older adults and can lead to cardiorespiratory sequelae. These sequelae include incident adverse cardiovascular events and exacerbations of underlying chronic illnesses like heart failure (HF), chronic obstructive pulmonary disease (COPD), and asthma. Older adults hospitalized and then discharged to skilled nursing facilities (SNFs) may be particularly susceptible to adverse cardiorespiratory outcomes for at least 2 reasons: (1) those requiring SNF care are more physiologically vulnerable, multimorbid, and functionally impaired than those discharged elsewhere, which collectively contribute to the most severe consequences of viral infections, and (2) the SNF environment presents a higher risk for influenza and RSV infection because these are institutional settings with spaces shared with more people, including other residents and staff. Although hospital readmissions during the post-acute period are already common among older adults in SNFs, there may be added risk of cardiorespiratory rehospitalizations when community levels of circulating influenza and RSV are highest because staff, visitors, and new SNF admissions are more likely to introduce viruses into the SNF setting, which may subsequently precipitate cardiorespiratory events. However, little is known about these relationships. Therefore, we sought to examine the association between circulating influenza and RSV and cardiorespiratory rehospitalizations among older adults discharged to SNFs. We hypothesized that the rate of cardiorespiratory rehospitalizations would increase with greater levels of circulating influenza and RSV.

Methods

Data Sources

This study linked data from multiple national data sets. Medicare Provider Analysis and Review claims supplied information on inpatient admissions and readmission diagnoses, whereas Minimum Data Set version 3.0 assessments identified and SNF claims verified that participants were receiving post-acute care under the SNF benefit following the index hospitalization. The Medicare Master Beneficiary Summary File provided demographic information. We ascertained mean weekly temperatures through PRISM Climate Group data and used Centers for Disease Control and Prevention testing data to identify the weekly percentage of specimens testing positive for influenza A(H1N1) pandemic 2009 (pdm09), influenza A(H3N2), influenza B, and RSV. All data were aggregated to US Department of Health and Human Services (HHS) regions (Supplementary Table 1). The study protocol received institutional review board approval. Because of the use of deidentified administrative data, informed consent was not required.

Study Design

We derived our retrospective cohort from more than 10 million US SNF stays across 3 respiratory seasons between 2012 and 2015. Each year started on Morbidity and Mortality Weekly Report (MMWR) week 27 and ended on week 26. Eligible participants had ≥12 months of continuous enrollment in Medicare Part A immediately before the index date, were ≥65 years at the index date, and entered an SNF within 5 days of discharge from the index hospitalization with any principal diagnosis. Index dates were assigned as the date of hospital discharge. We excluded beneficiaries with an index hospitalization from a psychiatric or long-term care hospital, cancer diagnosis based on primary discharge diagnosis (defined by Clinical Classifications Software single-level diagnosis categories 11–47), discharge to an SNF located in Puerto Rico or the Virgin Islands, or missing data on any covariate used in analyses. Follow-up occurred from index date until rehospitalization, SNF discharge, Medicare Part A disenrollment, death, day 100 of follow-up (the maximum post-acute length of stay), or the study period end, whichever occurred first. The residents’ first rehospitalization within 99 days of follow-up was identified. Participants could have multiple index hospitalizations per season, where rehospitalizations could also serve as index hospitalizations, and could reenter in subsequent seasons if eligibility criteria were met.

We examined rehospitalizations for cardiorespiratory causes, acute myocardial infarction (AMI), HF, COPD, and asthma. Hospital readmission diagnoses were identified by the presence of an International Classification of Diseases, 10th Edition (ICD-10) diagnosis code. Study participants could have multiple index hospitalizations per season, and rehospitalizations could also serve as index hospitalizations, and could reenter in subsequent seasons if eligibility criteria were met.

Table 1

<table>
<thead>
<tr>
<th>HHS Region</th>
<th>SNF Stays, n (%)</th>
<th>Person-Years</th>
<th>Age ≥75, n (%)</th>
<th>White, Non-Hispanic, n (%)</th>
<th>Male, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>5,053,231 (100.0)</td>
<td>929,498</td>
<td>3,773,410 (74.7)</td>
<td>4,394,151 (87.0)</td>
<td>1,857,982 (36.8)</td>
</tr>
<tr>
<td>Region 1: Boston</td>
<td>362,707 (7.2)</td>
<td>68,225</td>
<td>280,050 (77.2)</td>
<td>342,802 (94.5)</td>
<td>133,468 (36.8)</td>
</tr>
<tr>
<td>Region 2: New York</td>
<td>538,757 (10.7)</td>
<td>98,246</td>
<td>418,029 (87.6)</td>
<td>453,757 (84.2)</td>
<td>198,730 (36.9)</td>
</tr>
<tr>
<td>Region 3: Philadelphia</td>
<td>579,293 (11.5)</td>
<td>105,575</td>
<td>437,116 (75.5)</td>
<td>485,851 (83.9)</td>
<td>210,462 (36.3)</td>
</tr>
<tr>
<td>Region 4: Atlanta</td>
<td>1,093,231 (21.6)</td>
<td>190,688</td>
<td>802,097 (73.4)</td>
<td>935,848 (85.6)</td>
<td>391,929 (35.9)</td>
</tr>
<tr>
<td>Region 5: Chicago</td>
<td>1,028,229 (20.3)</td>
<td>190,457</td>
<td>765,131 (74.4)</td>
<td>925,426 (90.0)</td>
<td>376,876 (36.7)</td>
</tr>
<tr>
<td>Region 6: Dallas</td>
<td>439,439 (8.7)</td>
<td>78,203</td>
<td>323,208 (73.6)</td>
<td>369,733 (84.1)</td>
<td>159,410 (36.3)</td>
</tr>
<tr>
<td>Region 7: Kansas City</td>
<td>237,272 (4.7)</td>
<td>44,163</td>
<td>181,722 (76.6)</td>
<td>223,673 (94.3)</td>
<td>85,001 (35.8)</td>
</tr>
<tr>
<td>Region 8: Denver</td>
<td>129,276 (2.6)</td>
<td>25,350</td>
<td>95,065 (73.5)</td>
<td>122,860 (95.0)</td>
<td>47,121 (36.4)</td>
</tr>
<tr>
<td>Region 9: San Francisco</td>
<td>496,498 (9.8)</td>
<td>91,045</td>
<td>361,870 (72.9)</td>
<td>394,908 (95.0)</td>
<td>198,359 (40.0)</td>
</tr>
<tr>
<td>Region 10: Seattle</td>
<td>148,529 (2.9)</td>
<td>28,545</td>
<td>109,122 (73.5)</td>
<td>139,293 (93.8)</td>
<td>56,026 (38.1)</td>
</tr>
</tbody>
</table>

*Participants discharged to an SNF located in Puerto Rico or the Virgin Islands were excluded from the study population, as well as those with missing region.

1Denominator for each cell is the SNF Stays column for the given HHS Region.

2Overall, 4,394,151 (87.0%) were White, non-Hispanic participants; 454,516 (9.0%) were Black, non-Hispanic participants; 72,067 (1.4%) were Hispanic participants; and 132,497 (2.6%) participants were other races.

© 2021 Published by Elsevier Inc. on behalf of AMDA – The Society for Post-Acute and Long-Term Care Medicine. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Figure 1. Association between circulating influenza and RSV and rates of cardiorespiratory rehospitalization, per 5% increase in viral activity. IRRs for the association between 3 influenza strains (influenza A(H1N1pdm09), influenza A(H3N2), influenza B) and RSV and 5 cardiorespiratory rehospitalization outcomes, per 5% increase in viral activity. Cardio-Resp, cardiorespiratory.

Abbreviations
- *AIC*: Akaike Information Criteria
- *HHS*: Health and Human Services
- *IRR*: Incidence rate ratio
- *SNF*: Skilled Nursing Facility
- *RSV*: Respiratory syncytial virus

Classification of Diseases, Ninth Revision, diagnosis code in the principal position on the inpatient claim (Supplementary Table 2).

Statistical Methods

We quantified the relationships between increasing influenza and RSV viral activity and cardiorespiratory rehospitalizations by fitting negative binomial regression models. Candidate models were fit and compared, and the final model was selected based on the Akaike Information Criteria (AIC) (Supplementary Material). Our final model contained polynomial terms for time trends; annual sine and cosine harmonic terms; proportion of residents aged 75 years, proportion of White residents, and proportion of male residents in each HHS region; HHS region fixed effects; average weekly temperature in each HHS region; and 2-week lagged viral terms for percentage weekly influenza (H1N1pdm09, H3N2, and B) and RSV specimens testing positive in each HHS region (Supplementary Figure 1). Time in the SNF was aggregated into MMWR-defined person-weeks and included as an offset term of the natural log-transformed number of person-weeks at risk in a specific HHS region.

The model's outcome consisted of the frequency of specific readmission outcomes during a given week. Coefficient estimates were incidence rate ratios (IRRs) representing the relative change in rehospitalization rates. We reported IRRs with 95% CIs to describe the relationship between community RSV and influenza (H1N1pdm09, H3N2, B) viral activity and the rates of rehospitalization for 5 cardiorespiratory outcomes (cardiorespiratory causes, AMI, HF, COPD, and asthma). Analyses were conducted using 2 viral activity definitions: (1) as a continuous measure for percentage weekly influenza and RSV specimens testing positive in each HHS region (scaled to a 5% increase in viral activity to be more easily interpretable) and (2) as a binary measure classifying influenza and RSV as "in season" vs "out of season" based on a 10% positive testing threshold. We chose to include the proportion of specimens testing positive for each viral strain and a 10% positive testing threshold (ie, "in season" if >10% of specimens collected tested positive for the viral strain) as these measures have traditionally been used by the Centers for Disease Control and Prevention to define respiratory seasons. Data were analyzed using SAS, version 9.4 (SAS Institute, Inc), and R version 3.5.1 (R Foundation for Statistical Computing) using the package flumod.

Results

Study Cohort

Our study cohort included 5,053,231 SNF stays (Supplementary Figure 2). Overall, 3,773,410 (74.7%) stays included participants ≥75 years, 1,857,982 (36.8%) included male residents, and 4,394,151 (87.0%) included White, non-Hispanic residents (Table 1). Participant demographics and person-time contributions differed slightly by HHS region. Overall, there were 621,739 readmissions for cardiorespiratory causes, 25,673 for AMI, 138,472 for HF, 40,722 for COPD, and 6178 for asthma (Supplementary Table 3).

Influenza and RSV Association With Rehospitalization

Nationally, influenza A(H3N2) was the predominant influenza strain in the 2012-2013 and 2014-2015 seasons, whereas influenza...
A(H1N1pdm09) was predominant in the 2013–2014 season (Supplementary Figure 2). During the study period, cardiorespiratory rehospitalizations displayed well-defined seasonality (Supplementary Figure 4). Seasonal trends in rehospitalization rates were more apparent for HF and COPD compared to AMI or asthma (Supplementary Figures 5–8). Cardiorespiratory readmission rates increased by approximately 1% for every 5% increase in circulating influenza A(H3N2) (IRR 1.014, 95% CI 1.008–1.016), influenza B (IRR 1.014, 95% CI 1.008–1.020), and RSV (IRR 1.013, 95% CI 1.009–1.018), but decreased by 1% for every 5% increase in circulating influenza A(H1N1pdm09) (IRR 0.990, 95% CI 0.984–0.996) (Figure 1). When respiratory viruses were in season (vs out of season), cardiorespiratory rehospitalization rates increased by approximately 6% for influenza A(H3N2) (IRR 1.057, 95% CI 1.041–1.074), 3% for influenza B (IRR 1.030, 95% CI 1.013–1.047), and 5% for RSV (IRR 1.050, 95% CI 1.036–1.063) but decreased by 6% for influenza A(H1N1pdm09) (IRR 0.941, 95% CI 0.915–0.968) (Figure 2). For both viral activity definitions, influenza A(H3N2) viral activity was associated with increased rehospitalization rates for asthma and COPD; RSV was associated with increased rehospitalization rates for HF and COPD; and we found no association between influenza or RSV viral activity and readmissions rates for AMI. Associations between viral activity and rehospitalization rates differed slightly for influenza B based on the viral activity definition.

Discussion

In this retrospective cohort study, increased community viral activity for RSV and certain influenza strains was associated with greater rates of cardiorespiratory rehospitalizations from SNFs. Prior literature suggests that influenza or RSV infection may lead to cardiovascular sequelae,1–3 and some studies have investigated the association between circulating respiratory viruses and adverse cardiorespiratory outcomes in community-dwelling adults.4–11 However, to our knowledge, this was the first study that investigated the relationship between circulating influenza or RSV and cardiorespiratory readmissions from SNFs. Our results suggest that the respiratory season is a particularly important time period to implement interventions that reduce cardiorespiratory rehospitalizations for SNF residents. Surveillance community viral activity and employing infection control and prevention measures with proportional intensity to reduce viral transmission in SNFs may be effective strategies.

Unlike influenza A(H3N2) and B, we found that increased influenza A(H1N1pdm09) viral activity was associated with decreased cardiorespiratory rehospitalization rates. In general, older adults are at high risk of serious complications from seasonal influenza, but influenza A(H1N1pdm09) affects younger age groups more severely.15 Vaccine effectiveness against predominant circulating influenza strains also varies across respiratory seasons.16 During seasons with high vaccine effectiveness, influenza vaccination may confer the greatest protection against serious influenza complications, including cardiorespiratory sequelae. During our study period, among adults ≥65 years, adjusted “vaccine effectiveness” estimates were 11%-15% for influenza A(H3N2) and 59% for influenza A(H1N1pdm09) in predominant years.17–19 Interestingly, very few older adults in these studies received the high-dose influenza vaccine, although some literature suggest the high-dose vaccine is more effective than standard dose vaccine irrespective of circulating influenza strain or antigenic match.20
Vaccination of SNF staff may also reduce influenza transmission and confer additional protection to SNF residents.21 Surveillance trends in predominant viral strains, seasonal vaccine match, and vaccine uptake and effectiveness by vaccine formulation in SNFs may inform when hospitals and SNFs should increase resources to prevent and treat cardiorespiratory conditions.

The ongoing Coronavirus Disease 2019 pandemic has highlighted the importance of infection control measures to reduce respiratory virus transmission and control outbreaks in SNFs, many of which are likely applicable to other respiratory viruses that may lead to outbreaks, morbidity, and mortality. Using personal protective equipment (eg, masks), handwashing, decontaminating surfaces, vaccinating residents and staff, daily symptom screening, nursing staff-initiated testing for symptomatic residents, facility-wide testing during outbreaks, cohorting residents who test positive, contact tracing, visitation restrictions during periods of high community viral spread, reducing staff presenteeism (working while ill), planning staff assignments to limit transmission between units/facilities, and routinely assessing SNFs for susceptible residents and resident cohorting may be efficient, and balancing the intensity of infection control practices with cost-effectiveness.22 In the case of respiratory virus testing, multivirus respiratory panel tests may be an efficient method to guide diagnosis and treatment23 and may provide useful information on the burden of other respiratory viruses (eg, human metapneumovirus, parainfluenza, rhinovirus) in SNFs, for which literature is scarce.24 However, future research should first compare various testing strategies specifically in the SNF setting to examine cost-effectiveness, sustainability, and clinical outcomes.25

Our study has several limitations. Because viral activity data were only available at the HHS-region level, we were unable to report how many participants were infected with influenza or RSV and we could not account for viral outbreaks or perform other facility-level analyses. Also, we did not adjust for vaccination against influenza, person-level comorbidities, or other infectious pathogens that may co-circulate with influenza or RSV. If more granular viral testing data become available, future research should examine how increased community respiratory viral activity may operate to impact rehospitalizations at the SNF level (eg, through staffing shortages, changes in clinician behavior, sequelae due to infection) and if racial and ethnic disparities in cardiorespiratory rehospitalizations exist.

Conclusions and Implications

Our results demonstrated that increases in circulating influenza A(H3N2), influenza B, and RSV were associated with increased cardiorespiratory rehospitalization rates among older adults who were hospitalized and subsequently discharged to SNFs. Hospital readmissions during the post-acute period are already common among older adults discharged to SNFs, and our results suggest that there is added risk of cardiorespiratory rehospitalizations when community levels of circulating RSV and certain influenza strains are highest. Therefore, the respiratory season is a particularly important time period to implement interventions that reduce cardiorespiratory hospitalizations among SNF residents. Decreasing viral transmission in SNFs through practices such as influenza vaccination for SNF residents and staff, using personal protective equipment, improved environmental cleaning measures, screening and testing of residents and staff, surveilling viral activity, and quarantining infected individuals may be potential strategies to limit viral infections and associated cardiorespiratory rehospitalizations.

Acknowledgments

The authors thank the National Respiratory and Enteric Virus Surveillance System (NREVSS) team at the Centers for Disease Control and Prevention (CDC) for providing viral testing data.

References

SCO 5.6.0 DTD ■ JMDA4233_pro.pdf ■ 24 January 2022 ■ 10:15 am ■ ce

Supplementary Material. Negative Binomial Regression

Model Selection

Candidate models were fit and compared, consisting of different linear combinations of (1) a continuous measure of week number transformed with sine and cosine harmonic terms (i.e., Fourier series) to allow annual or semiannual periodicity trends, (2) polynomial terms (quadratic, cubic) for number of weeks from the first observed timepoint to model nonlinear, aperiodic time trends, (3) indicators for viral activity in each HHS region (for influenza viral subtypes and respiratory syncytial virus) with or without 1- to 2-week lags to account for delays between viral testing and rehospitalizations, (4) a fixed effect for HHS region, (5) the percentage of residents that are male, age ≥75 years, and White non-Hispanic within each HHS region, and (6) the mean weekly temperature for an HHS region. Model selection was guided by the Akaike information criterion (AIC), with the best model chosen based on the lowest AIC. The final model is presented in Supplementary Figure 1.
Supplementary Table 1

<table>
<thead>
<tr>
<th>HHS Region</th>
<th>States and Territories Included in HHS Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region 1: Boston</td>
<td>Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont</td>
</tr>
<tr>
<td>Region 2: New York*</td>
<td>New Jersey and New York</td>
</tr>
<tr>
<td>Region 3: Philadelphia</td>
<td>Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, and West Virginia</td>
</tr>
<tr>
<td>Region 4: Atlanta</td>
<td>Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee</td>
</tr>
<tr>
<td>Region 5: Chicago</td>
<td>Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin</td>
</tr>
<tr>
<td>Region 6: Dallas</td>
<td>Arkansas, Louisiana, New Mexico, Oklahoma, and Texas</td>
</tr>
<tr>
<td>Region 7: Kansas City</td>
<td>Iowa, Kansas, Missouri, and Nebraska</td>
</tr>
<tr>
<td>Region 8: Denver</td>
<td>Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming</td>
</tr>
<tr>
<td>Region 9: San Francisco</td>
<td>Arizona, California, Hawaii, and Nevada</td>
</tr>
<tr>
<td>Region 10: Seattle</td>
<td>Alaska, Maho, Oregon, and Washington</td>
</tr>
</tbody>
</table>

HHS, Department of Health and Human Services.

*Participants discharged to an SNF located in Puerto Rico or the Virgin Islands were excluded from the study population because the geography and climate differs markedly from other states in Region 2.

Supplementary Table 2

International Classification of Diseases Codes Used to Identify Cardiorespiratory Readmission Outcomes

<table>
<thead>
<tr>
<th>Readmission Outcome*</th>
<th>Codes Used to Identify Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiorespiratory</td>
<td>ICD-9-CM codes associated with Clinical Classifications Software single-level diagnosis categories 96-134</td>
</tr>
<tr>
<td>Acute myocardial infarction</td>
<td>ICD-9-CM codes 410.X0, 410.X1</td>
</tr>
<tr>
<td>Heart failure</td>
<td>ICD-9-CM code 428.X</td>
</tr>
<tr>
<td>Asthma</td>
<td>ICD-9-CM code 493.X</td>
</tr>
</tbody>
</table>

*Readmissions were identified based on the ICD-9-CM discharge diagnosis code in the principal position on the inpatient claim.

†Included ICD-9-CM codes for acute myocardial infarction, heart failure, chronic obstructive pulmonary disease, and asthma, as well as other cardiorespiratory causes (eg, conduction disorders, pneumonia).
E(Yi) = α * exp\left(\frac{\beta_0 \cdot \text{Age}(75) + \beta_1 \cdot \text{White} + \beta_2 \cdot \text{Male} + \beta_3 \cdot \text{HHS Region} + \beta_4 \cdot \text{Avg Temp Region}}{2\pi} + \frac{\beta_5 \cdot \text{Sin}(2\pi \cdot t)}{52} + \frac{\beta_6 \cdot \text{Cos}(2\pi \cdot t)}{52}\right)

Supplementary Figure 1. Negative Binomial model to estimate the relative change in cardiorespiratory rehospitalization rates. The final model contained an annual Fourier term; polynomial week terms (quadratic and cubic); 2-week lagged viral terms for influenza A(H1N1pdm09), influenza A/H3N2, influenza B, and RSV in each Department of Health and Human Services (HHS) region; HHS region fixed effect; percentage male, ≥75 years, and White non-Hispanic in each HHS region; weekly mean temperature in each HHS region; and models were offset with the natural log-transformed number of person-weeks at risk.

Supplementary Figure 2. Flow diagram of the study population. Participants could have more than 1 index hospital admission per season and could be included in multiple seasons if eligibility criteria were met. *Cancer was defined by Clinical Classifications Software single-level diagnosis categories 11-47 based on primary diagnosis position. MDS, Minimum Data Set; SNF, skilled nursing facility.
Supplementary Table 3

Observed Readmissions by HHS Region, 2012-2015 (N = 5,053,231 Total SNF Stays)

<table>
<thead>
<tr>
<th>HHS Region</th>
<th>SNF Stays, n (%)</th>
<th>Cardiorespiratory Readmissions, n (%)</th>
<th>AMI, n (%)</th>
<th>HF, n (%)</th>
<th>COPD, n (%)</th>
<th>Asthma, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>5,053,231 (100.0)</td>
<td>621,739 (12.3)</td>
<td>25,673 (0.51)</td>
<td>138,472 (2.7)</td>
<td>40,722 (0.81)</td>
<td>6178 (0.12)</td>
</tr>
<tr>
<td>Region 1: Boston</td>
<td>362,707 (7.2)</td>
<td>44,199 (12.2)</td>
<td>1892 (0.52)</td>
<td>10,601 (2.9)</td>
<td>3081 (0.85)</td>
<td>389 (0.11)</td>
</tr>
<tr>
<td>Region 2: New York</td>
<td>538,757 (10.7)</td>
<td>68,396 (12.7)</td>
<td>2990 (0.55)</td>
<td>15,222 (2.8)</td>
<td>4832 (0.90)</td>
<td>920 (0.17)</td>
</tr>
<tr>
<td>Region 3: Philadelphia</td>
<td>579,293 (11.5)</td>
<td>73,341 (12.7)</td>
<td>2828 (0.50)</td>
<td>16,351 (2.8)</td>
<td>4403 (0.76)</td>
<td>675 (0.12)</td>
</tr>
<tr>
<td>Region 4: Atlanta</td>
<td>1,093,231 (21.6)</td>
<td>140,981 (12.9)</td>
<td>5453 (0.50)</td>
<td>29,465 (2.7)</td>
<td>9518 (0.87)</td>
<td>1226 (0.11)</td>
</tr>
<tr>
<td>Region 5: Chicago</td>
<td>1,028,229 (20.3)</td>
<td>127,552 (12.4)</td>
<td>5174 (0.50)</td>
<td>27,985 (2.7)</td>
<td>7764 (0.76)</td>
<td>1259 (0.12)</td>
</tr>
<tr>
<td>Region 6: Dallas</td>
<td>439,439 (8.7)</td>
<td>57,096 (13.0)</td>
<td>2226 (0.51)</td>
<td>11,760 (2.8)</td>
<td>3824 (0.87)</td>
<td>505 (0.11)</td>
</tr>
<tr>
<td>Region 7: Kansas City</td>
<td>237,272 (4.7)</td>
<td>29,529 (12.4)</td>
<td>1018 (0.43)</td>
<td>6659 (2.8)</td>
<td>1604 (0.68)</td>
<td>184 (0.07)</td>
</tr>
<tr>
<td>Region 8: Denver</td>
<td>129,276 (2.6)</td>
<td>11,377 (8.8)</td>
<td>367 (0.28)</td>
<td>2275 (1.8)</td>
<td>552 (0.43)</td>
<td>90 (0.07)</td>
</tr>
<tr>
<td>Region 9: San Francisco</td>
<td>496,498 (9.8)</td>
<td>54,570 (11.0)</td>
<td>2282 (0.46)</td>
<td>10,019 (2.0)</td>
<td>3194 (0.64)</td>
<td>607 (0.12)</td>
</tr>
<tr>
<td>Region 10: Seattle</td>
<td>148,529 (2.9)</td>
<td>14,698 (9.9)</td>
<td>603 (0.41)</td>
<td>3475 (2.3)</td>
<td>600 (0.40)</td>
<td>88 (0.06)</td>
</tr>
</tbody>
</table>

AMI, acute myocardial infarction; COPD, chronic obstructive pulmonary disease; HF, heart failure; HHS, Department of Health and Human Services; SNF, skilled nursing facility.

*Participants discharged to an SNF located in Puerto Rico or the Virgin Islands were excluded from the study population, as well as those with missing region.

\(\text{y} \) Denominator for each cell is the SNF Stays column for the given HHS Region.

\(\text{z} \) See Supplementary Table 2 for International Classification of Diseases codes used to identify cardiorespiratory readmission outcomes.

Supplementary Figure 3. US weekly influenza and respiratory syncytial virus positive tests reported from the CDC clinical and public health laboratories, 2012-2015. CDC, Centers for Disease Control and Prevention; RSV, respiratory syncytial virus.
Supplementary Figure 4. Observed rates of cardiorespiratory rehospitalization during skilled nursing facility resident days 1–99, by HHS Region. HHS, Department of Health and Human Services; MMWR, Morbidity and Mortality Weekly Report.

Supplementary Figure 5. Observed rates of rehospitalization for heart failure during skilled nursing facility resident days 1–99, by HHS Region. HHS, Department of Health and Human Services; MMWR, Morbidity and Mortality Weekly Report.
Supplementary Figure 6. Observed rates of rehospitalization for chronic obstructive pulmonary disease during skilled nursing facility resident days 1-99, by HHS Region. HHS, Department of Health and Human Services; MMWR, Morbidity and Mortality Weekly Report.

Supplementary Figure 7. Observed rates of rehospitalization for acute myocardial infarction during skilled nursing facility resident days 1-99, by HHS Region. HHS, Department of Health and Human Services; MMWR, Morbidity and Mortality Weekly Report.
Supplementary Figure 8. Observed rates of rehospitalization for asthma during skilled nursing facility resident days 1-99, by HHS Region. HHS, Department of Health and Human Services; MMWR, Morbidity and Mortality Weekly Report.